Multi-timescale post-Newtonian dynamics of spinning black-hole binaries: a status update

Davide Gerosa

University of Birmingham

<u>with</u>: M. Kesden, E. Berti, R. O'Shaughnessy, U. Sperhake, A. Klein, M. Mould, L. Reali, A. Lima, J. Vosmera, X. Zhao, D. Trifiro' June 26th, 2020 23rd Capra Meeting Austin TX (remote)

Institute for Gravitational Wave Astronomy d.gerosa@bham.ac.uk — www.davidegerosa.com

Outline

- 1. Spinning BH binaries
- 2. PN timescale separation
- **3.** Spin morphologies
- 4. Predictions

Spin in the waveform

Aligned components

- Different merger frequency
 (like the ISCO)
 h(t)
- Aligned spins take longer to merge

In-plane components

- spin precession; orbital plane precession 🛃
- Peculiar waveform modulations

Spin measurements

A tale of three timescales

DG+ 2015a; Kesden, DG+, 2014

- 1. Orbital motion $t_{
 m orb} \propto (r/r_g)^{3/2}$ Kepler's third law
- 2. Spin & orbital-plane precession $t_{
 m pre} \propto (r/r_g)^{5/2}$ Apostolatos+ 1994
- 3. GW emission and **inspiral** $t_{\rm RR} \propto (r/r_g)^4$ Quadrupole formula Peters & Matthews 1963

Post-Newtonian: $r \gg r_g = GM/c^2$ timescale separation

Orbit \ll Precession \ll Inspiral

BH binary **multi-timescale** analysis:

- 1. Solve the dynamics (hopefully analytically) on the shorter time
- 2. Quasi-adiabatic evolution ("average") on the longer time

Common practice in binary dynamics

- periastron precession
- osculating orbital elements
- variation of constants

Two-spin PN dynamics

- Constraints Spin magnitudes are constants
 - Reference frame (3 constraints)

Spin precession is a **4D** problem! $r, \ \theta_1, \ \theta_2, \ \Delta \Phi$

Timescale separation: freeze GW emission

- r and $J = |\mathbf{L} + \mathbf{S_1} + \mathbf{S_2}|$ vary on t_{RR}
- Effective spin is constant at 2PN $(\xi = \chi_{\rm eff})$ Damour 2001; Racine 2008

Spin precession is (actually) a **1D** problem! Chosen parameter is $S = |S_1 + S_2|$

Analytical solution!

Kepler's two-body problem

What you do:

- One effective particle: 3D
- 3D to 2D problem:
 L is a constant of motion!
- Energy is constant: 2D to 1D?
- Effective potential

What you get:

- A lot of understanding
- Solutions are Kepler's orbits
- Phases: bound, unbound

Integrate GMm/r^2 to get a bunch of points along an orbit or... knowing that that curve is an ellipse!

Effective potentials for spin precession

What you do:

- Start from 4D problem
- 4D to 2D problem: GW are frozen, r and J are constant,
- Further constant of motion, effective spin: 2D to 1D
- Effective potentials for BH binary spin precession

What you get:

- Analytical solutions
- Phases, resonances
- A lot of understanding

Integrating the PN eq. to get a bunch of points on a precession cone or... **knowing** the shape of that cone!

Spin morphologies

Spin tilts $heta_1, heta_2$

- Monotonic oscillations: nutations
- Bounded by the effective potentials
- Azimuthal projection $\Delta\Phi$
 - Three different morphologies
 - Boundaries if aligned

A complete classification

- Effective potentials allow a full classification of the parameter space
- Using only geometry and constant of motions!
- Extremely rich phenomenology!

Averaging the average

Orbit \ll Precession \ll Inspiral

Let's turn on GW emission

- Quasi-adiabatic approach
- Only r and J vary on $t_{
 m RR}$. One single ODE.

Usual orbit average

$$\langle X \rangle_{\rm orb} = \frac{\int d\psi \ X \ dt/d\psi}{\int d\psi \ dt/d\psi}$$

Some parameters for the dynamics (here ψ is Kepler's true anomaly)

Orbital period

Precession-averaged inspiral

Result is very simple!

$$\left\langle \frac{dJ}{dL} \right\rangle_{\rm pre} = \frac{1}{2LJ} (J^2 + L^2 - \langle S^2 \rangle_{\rm pre})$$

- PN evolution is reduced to solving **one single ODE**
- Computationally, very easy
- Domain can be compactified to integrate from $r/M = \infty$
- Precession-timescale quantities are then resampled

Morphological phase transitions

The role of alignment

- The range grows fatter
- "Bounce" at the alignment configuration...
- ... and sharp transition

 $\hat{\mathbf{z}}'$

L

 θ_{12}

 $\Delta \Phi$

 \mathbf{S}_1

 \mathbf{S}_{2}

 $\hat{\mathbf{v}}$

 $\hat{\mathbf{x}}$

A predictive statement

- **Morphology**: feature of spin precession that does <u>not</u> vary on the precessional time!
- The final spin orientations are scattered around, **but back in the days...**

The final morphology encodes the initial spin orientation: **how BHs form!**

New predictions

Binary-star astrophysics

"precession" python module DG, Kesden 2016

Used in 25+ papers to date

Stay tuned! New awesome version coming **DG**, Mould 2020 (in prep)

pip install precession >>> import precession

- Precessional dynamics
- Orbit-averaged inspirals
- Precession-averaged inspirals
- Remnant predictions

Outline

<u>Thanks!</u> M. Kesden, E. Berti, R. O'Shaughnessy, U. Sperhake, A. Klein, M. Mould, L. Reali, A. Lima, J. Vosmera, X. Zhao, D. Trifiro'

- 1. Spinning BH binaries
- 2. A new approach to BH spin precession
- 3. Astrophysics with BH spins

