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Spin in the waveform

M. Favata

P. Schmidt 

• Different merger frequency 
(like the ISCO) 

• Aligned spins take longer 
to merge

• spin precession; orbital plane precession 
• Peculiar waveform modulations

Aligned components

In-plane components



• Best measured quantity: effective spin 

• Constant of motion at 2PN

Spin measurements

A. Masses

The binary component masses of all three systems lie
within the range expected for stellar-mass black holes. The
least massive black hole is the secondary of GW151226,
which has a 90% credible lower bound that msource

2 ≥
5.6M⊙. This is above the expected maximum neutron star
mass of about 3M⊙ [80,81] and beyond the mass
gap where there is currently a dearth of black holes
observed in x-ray binaries [82–84]. The range of our
inferred component masses overlaps with those for stellar-
mass black holes measured through x-ray observations but
extends beyond the nearly 16M⊙ maximum of that
population [85–87].
GW150914 corresponds to the heaviest BBH system

(Msource ¼ 65.3þ4.1
−3.4M⊙) we observed, and GW151226

corresponds to the least massive (Msource ¼ 21.8þ5.9
−1.7M⊙).

Higher mass systems merge at a lower gravitational-wave
frequency. For lower-mass systems, the gravitational-wave

signal is dominated by the inspiral of the binary compo-
nents, whereas for higher-mass systems, the merger and
ringdown parts of the signal are increasingly important.
The transition from being inspiral dominated to being
merger and ringdown dominated depends upon the sensi-
tivity of the detector network as a function of frequency;
GW150914 had SNR approximately equally split between
the inspiral and post-inspiral phases [41]. Information
about the masses is encoded in different ways in the
different parts of the waveform: The inspiral predominantly
constrains the chirp mass [70,88,89], and the ringdown is
more sensitive to the total mass [90]; hence, the best-
measured parameters depend upon the mass [91–93]. This
is illustrated in the posterior probability distributions for the
three events in Fig. 4. For the lower-mass GW151226 and
LVT151012, the posterior distribution follows curves of
constant chirp mass, but for GW150914, the posterior is
shaped more by constraints on the total mass [94].

FIG. 5. Posterior probability distributions for the dimensionless component spins cS1=ðGm2
1Þ and cS2=ðGm2

2Þ relative to the normal to
the orbital plane L, marginalized over the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt
angles, and therefore have equal prior probability. The left plot shows the distribution for GW150914, the middle plot is for LVT151012,
and the right plot is for GW151226.

FIG. 6. Posterior probability distributions for the sky locations of GW150914, LVT151012, and GW151226 shown in a Mollweide
projection. The left plot shows the probable position of the source in equatorial coordinates (right ascension is measured in hours and
declination is measured in degrees). The right plot shows the localization with respect to the Earth at the time of detection. Hþ and Lþ
mark the Hanford and Livingston sites, and H− and L− indicate antipodal points; H-L and L-H mark the poles of the line connecting the
two detectors (the points of maximal time delay). The sky localization forms part of an annulus, set by the difference in arrival times
between the detectors.
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two. The inferred component masses are shown in Fig. 2.
The formof the two-dimensional distribution is guidedby the
combination of constraints on M and M. The binary was
composed of two black holeswithmassesm1 ¼ 31.2þ8.4

−6.0M⊙
and m2 ¼ 19.4þ5.3

−5.9M⊙; these merged into a final black hole
of mass 48.7þ5.7

−4.6M⊙. This binary ranks second, behind
GW150914’s source [5,37], as themost massive stellar-mass
binary black hole system observed to date.
The black hole spins play a subdominant role in the

orbital evolution of the binary, and are more difficult to
determine. The orientations of the spins evolve due to
precession [62,63], and we report results at a point in the
inspiral corresponding to a gravitational-wave frequency of
20 Hz [37]. The effective inspiral spin parameter χeff ¼
ðm1a1 cos θLS1 þm2a2 cos θLS2Þ=M is the most important
spin combination for setting the properties of the inspiral
[64–66] and remains important through to merger [67–71];
it is approximately constant throughout the orbital evolu-
tion [72,73]. Here θLSi ¼ cos−1ðL̂ · ŜiÞ is the tilt angle
between the spin Si and the orbital angular momentum L,
which ranges from 0° (spin aligned with orbital angular
momentum) to 180° (spin antialigned); ai ¼ jcSi=Gm2

i j is
the (dimensionless) spin magnitude, which ranges from 0 to
1, and i ¼ 1 for the primary black hole and i ¼ 2 for the
secondary. We use the Newtonian angular momentum for
L, such that it is normal to the orbital plane; the total orbital
angular momentum differs from this because of post-
Newtonian corrections. We infer that χeff ¼ −0.12þ0.21

−0.30 .
Similarly to GW150914 [5,37,44], χeff is close to zero with
a preference towards being negative: the probability that
χeff < 0 is 0.82. Our measurements therefore disfavor a
large total spin positively aligned with the orbital angular
momentum, but do not exclude zero spins.
The in-plane components of the spin control the amount

of precession of the orbit [62]. This may be quantified by
the effective precession spin parameter χp which ranges
from 0 (no precession) to 1 (maximal precession) [39].
Figure 3 (top) shows the posterior probability density for
χeff and χp [39]. We gain some information on χeff ,
excluding large positive values, but, as for previous events
[3,5,37], the χp posterior is dominated by the prior (see
Sec. III of the Supplemental Material [11]). No meaningful
constraints can be placed on the magnitudes of the in-plane
spin components and hence precession.
The inferred component spin magnitudes and orienta-

tions are shown in Fig. 3 (bottom). The lack of constraints
on the in-plane spin components means that we learn
almost nothing about the spin magnitudes. The secondary’s
spin is less well constrained as the less massive component
has a smaller impact on the signal. The probability that the
tilt θLSi is less than 45° is 0.04 for the primary black hole
and 0.08 for the secondary, whereas the prior probability is
0.15 for each. Considering the two spins together, the
probability that both tilt angles are less than 90° is 0.05.

FIG. 3. Top: Posterior probability density for the effective
inspiral and precession spin parameters, χeff and χp. The
one-dimensional distributions show the posteriors for the two
waveform models, their average (black), and the prior distribu-
tions (green). The dashed lines mark the 90% credible interval for
the average posterior. The two-dimensional plot shows the 50%
and 90% credible regions plotted over the posterior density
function. Bottom: Posterior probabilities for the dimensionless
component spins, cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the

normal of the orbital plane L̂. The tilt angles are 0° for spins
aligned with the orbital angular momentum and 180° for spins
antialigned. The probabilities are marginalized over the azimuthal
angles. The pixels have equal prior probability (1.6 × 10−3);
they are spaced linearly in spin magnitudes and the cosine
of the tilt angles. Results are given at a gravitational-wave
frequency of 20 Hz.

PRL 118, 221101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

221101-4

GW150914 GW151012 GW151226 GW170104

III PARAMETER INFERENCE

FIG. 3. A Mollweide projection of the posterior probability
density for the location of the source in equatorial coordinates
(right ascension is measured in hours and declination is mea-
sured in degrees). The location broadly follows an annulus
corresponding to a time delay of ⇠ 3.0+0.4

�0.5 ms between the
Hanford and Livingston observatories. We estimate that the
area of the 90% credible region is ⇠ 1200 deg2.

FIG. 4. Posterior probability density for the source luminos-
ity distance DL and the binary inclination ✓JN . The one-
dimensional distributions include the posteriors for the two
waveform models, and their average (black). The dashed lines
mark the 90% credible interval for the average posterior. The
two-dimensional plot shows the 50% and 90% credible regions
plotted over the posterior density function.

values because of the greater preference for spins with
components antialigned with the orbital angular momen-
tum.

The final calibration uncertainty is su�ciently small
to not significantly a↵ect results. To check the impact
of calibration uncertainty, we repeated the analysis using
the e↵ective-precession waveform without marginalising

FIG. 5. Posterior probability densities for the e↵ective in-
spiral spin �e↵ for GW170104, GW150914, LVT151012 and
GW151226 [13], together with the prior probability distri-
bution for GW170104. The distribution for GW170104 uses
both precessing waveform models, but, for ease of compari-
son, the others use only the e↵ective-precession model. The
prior distributions vary between events, as a consequence of
di↵erent mass ranges, but the di↵erence is negligible on the
scale plotted.

FIG. 6. Posterior probability density for the final black hole
mass Mf and spin magnitude af . The one-dimensional dis-
tributions include the posteriors for the two waveform mod-
els, and their average (black). The dashed lines mark the
90% credible interval for the average posterior. The two-
dimensional plot shows the 50% and 90% credible regions
plotted over the posterior density function.

4

Racine 2008; DG+ 2015a

LIGO/Virgo Collaboration

LIGO/Virgo Collaboration



A tale of three timescales

1. Orbital motion 
2. Spin & orbital-plane precession 
3. GW emission and inspiral tRR / (r/rg)

4

torb / (r/rg)
3/2

Kepler’s third law 

Quadrupole formula 
Peters & Matthews 1963

tpre / (r/rg)
5/2

Apostolatos+ 1994

Post-Newtonian:                               timescale separation

BH binary multi-timescale analysis:
1. Solve the dynamics (hopefully analytically) on the shorter time 

2. Quasi-adiabatic evolution (“average”) on the longer time

Common practice in  
binary dynamics 

• periastron precession 
• osculating orbital 

elements 
• variation of constants

r � rg = GM/c2

DG+ 2015a; Kesden, DG+, 2014

Precession InspiralOrbit ⌧
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FIG. 1. Reference frames used in this paper to study BBH
spin precession. The angles ✓1, ✓2, ��, and ✓12 are defined
is a frame aligned with the orbital angular momentum L (left
panel). The binary dynamics can also be studied in a frame
aligned with the total angular momentum J (right panel).
Once L is taken to lie in the xz-plane, its direction is spec-
ified by S through the angle ✓L. The angle '0 corresponds
to rotations of S1 and S2 about the total spin S. The two
frames pictured here are not inertial because the direction of
L changes together with the spins to conserve J. These angles
are defined in Eqs. (2), (4) and (9).

of these parameters, greatly reducing the number of de-
grees of freedom. At the PN order considered here, the
magnitudes of both spins are conserved throughout the
inspiral, reducing the number of degrees of freedom from
nine to seven. The magnitude of the orbital angular mo-
mentum is conserved on the precession time (although
it shrinks on the radiation-reaction time), further reduc-
ing the number of degrees of freedom from seven to six.
The total angular momentum J = L + S1 + S2 is also
conserved on the precession time, reducing the number
of degrees of freedom from six to three. As described
in greater detail in the next subsection, the projected
e↵ective spin ⇠ [55, 56] is also conserved by both the
orbit-averaged spin-precession equations at 2PN and ra-
diation reaction at 2.5 PN, providing a final constraint
that reduces the system to just two degrees of freedom.
In an appropriately chosen non-inertial reference frame
precessing about J, precessional motion associated with
one of these degrees of freedom can be suppressed, im-
plying that the relative orientations of the three angu-
lar momenta L, S1 and S2 can be specified by just a
single coordinate! We will provide an explicit analytic
construction of this procedure in this and the following
subsection.

We begin by introducing two alternative reference
frames in which the relative orientations of the three an-
gular momenta can be specified explicitly. As shown in
the left panel of Fig. 1, one may choose the z0-axis to lie
along L, the x0-axis such that S1 lies in the x0z0-plane,
and the y0-axis to complete the orthonormal triad. In

this frame only three independent coordinates are needed
to describe the relative orientations of the angular mo-
menta; we choose them to be the angles

cos ✓1 = Ŝ1 · L̂ , (2a)

cos ✓2 = Ŝ2 · L̂ , (2b)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·

Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (2c)

where the sign of �� is given by (cf. Fig. 1)

sgn �� = sgn{L · [(S1 ⇥ L) ⇥ (S2 ⇥ L)]}. (2d)

The relative orientations of the three angular momenta
can alternatively be specified in a frame aligned with the
total angular momentum J. For fixed values of L, S1,
and S2, the allowed range for J = |J| is

Jmin  J  Jmax (3a)

where

Jmin = max(0, L � S1 � S2, |S1 � S2| � L) , (3b)

Jmax = L + S1 + S2 . (3c)

As shown in the right panel of Fig. 1, one can choose the
z-axis parallel to J and the x-axis such that L lies in the
xz-plane:

J = J ẑ and L = L sin ✓Lx̂ + L cos ✓Lẑ . (4)

The third unit vector ŷ = ẑ ⇥ x̂ completes the orthonor-
mal triad. The total spin S = S1 + S2 = J � L will also
lie in the xz-plane:

S = �L sin ✓Lx̂ + (J � L cos ✓L)ẑ , (5)

implying

cos ✓L =
J2 + L2

� S2

2JL
. (6)

We can also define a unit vector

Ŝ? =
(J � L cos ✓L)x̂ + L sin ✓Lẑ

S
(7)

which also lies in the xz-plane but is orthogonal to Ŝ.
While the magnitudes L and J of the orbital and to-

tal angular momenta are conserved on the precession
timescale, the same is not true for the total-spin mag-
nitude S, which oscillates within the range

Smin  S  Smax , (8a)

where

Smin = max(|J � L|, |S1 � S2|) , (8b)

Smax = min(J + L, S1 + S2) . (8c)

Two-spin PN dynamics

Constraints • Spin magnitudes are constants 
• Reference frame (3 constraints) 

Variables • Three momenta, 9 components L,S1,S2

tRR

Timescale separation: freeze GW emission

Damour 2001; Racine 2008

•     and                                 vary on  
• Effective spin is constant at 2PN

r J = |L+ S1 + S2|

Spin precession is (actually) a 1D problem!

r, ✓1, ✓2, ��

Spin precession is a 4D problem!

Chosen parameter is S = |S1 + S2|
Analytical  
solution!

(⇠ = �e↵)

Precession InspiralOrbit ⌧
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What you do: 
• One effective particle: 3D 
• 3D to 2D problem:                        

L is a constant of motion! 
• Energy is constant: 2D to 1D? 
• Effective potential

Kepler’s two-body problem

What you get: 
• A lot of understanding 
• Solutions are Kepler’s orbits 
• Phases: bound, unbound

Integrate                  to get a bunch of points along an orbit or…  
knowing that that curve is an ellipse! 

GMm/r2
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Effective potentials for spin precession
What you do: 
• Start from 4D problem 
• 4D to 2D problem: GW are frozen,                       

r and J are constant, 
• Further constant of motion,     

effective spin: 2D to 1D 
• Effective potentials for BH binary    

spin precession
What you get: 
• Analytical solutions 
• Phases, resonances  
• A lot of understanding

Integrating the PN eq. to get a bunch of points on a precession cone or…  
knowing the shape of that cone! 

Kesden, DG+, 2014
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S? = ŷ ⇥ S

FIG. 1. Reference frames used in this paper to study BBH
spin precession. The angles ✓1, ✓2, ��, and ✓12 are defined
is a frame aligned with the orbital angular momentum L (left
panel). The binary dynamics can also be studied in a frame
aligned with the total angular momentum J (right panel).
Once L is taken to lie in the xz-plane, its direction is spec-
ified by S through the angle ✓L. The angle '0 corresponds
to rotations of S1 and S2 about the total spin S. The two
frames pictured here are not inertial because the direction of
L changes together with the spins to conserve J. These angles
are defined in Eqs. (2), (4) and (9).

of these parameters, greatly reducing the number of de-
grees of freedom. At the PN order considered here, the
magnitudes of both spins are conserved throughout the
inspiral, reducing the number of degrees of freedom from
nine to seven. The magnitude of the orbital angular mo-
mentum is conserved on the precession time (although
it shrinks on the radiation-reaction time), further reduc-
ing the number of degrees of freedom from seven to six.
The total angular momentum J = L + S1 + S2 is also
conserved on the precession time, reducing the number
of degrees of freedom from six to three. As described
in greater detail in the next subsection, the projected
e↵ective spin ⇠ [55, 56] is also conserved by both the
orbit-averaged spin-precession equations at 2PN and ra-
diation reaction at 2.5 PN, providing a final constraint
that reduces the system to just two degrees of freedom.
In an appropriately chosen non-inertial reference frame
precessing about J, precessional motion associated with
one of these degrees of freedom can be suppressed, im-
plying that the relative orientations of the three angu-
lar momenta L, S1 and S2 can be specified by just a
single coordinate! We will provide an explicit analytic
construction of this procedure in this and the following
subsection.

We begin by introducing two alternative reference
frames in which the relative orientations of the three an-
gular momenta can be specified explicitly. As shown in
the left panel of Fig. 1, one may choose the z0-axis to lie
along L, the x0-axis such that S1 lies in the x0z0-plane,
and the y0-axis to complete the orthonormal triad. In

this frame only three independent coordinates are needed
to describe the relative orientations of the angular mo-
menta; we choose them to be the angles

cos ✓1 = Ŝ1 · L̂ , (2a)

cos ✓2 = Ŝ2 · L̂ , (2b)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·

Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (2c)

where the sign of �� is given by (cf. Fig. 1)

sgn �� = sgn{L · [(S1 ⇥ L) ⇥ (S2 ⇥ L)]}. (2d)

The relative orientations of the three angular momenta
can alternatively be specified in a frame aligned with the
total angular momentum J. For fixed values of L, S1,
and S2, the allowed range for J = |J| is

Jmin  J  Jmax (3a)

where

Jmin = max(0, L � S1 � S2, |S1 � S2| � L) , (3b)

Jmax = L + S1 + S2 . (3c)

As shown in the right panel of Fig. 1, one can choose the
z-axis parallel to J and the x-axis such that L lies in the
xz-plane:

J = J ẑ and L = L sin ✓Lx̂ + L cos ✓Lẑ . (4)

The third unit vector ŷ = ẑ ⇥ x̂ completes the orthonor-
mal triad. The total spin S = S1 + S2 = J � L will also
lie in the xz-plane:

S = �L sin ✓Lx̂ + (J � L cos ✓L)ẑ , (5)

implying

cos ✓L =
J2 + L2

� S2

2JL
. (6)

We can also define a unit vector

Ŝ? =
(J � L cos ✓L)x̂ + L sin ✓Lẑ

S
(7)

which also lies in the xz-plane but is orthogonal to Ŝ.
While the magnitudes L and J of the orbital and to-

tal angular momenta are conserved on the precession
timescale, the same is not true for the total-spin mag-
nitude S, which oscillates within the range

Smin  S  Smax , (8a)

where

Smin = max(|J � L|, |S1 � S2|) , (8b)

Smax = min(J + L, S1 + S2) . (8c)
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these extrema the derivatives
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vanish and S = S� = S+ is constant. Since

lim
S!Smin

d⇠+

dS
� lim

S!Smin

d⇠�
dS

, (19a)

lim
S!Smax

d⇠+

dS
 lim

S!Smax

d⇠�
dS

, (19b)

and at most two turning points can exist, it follows that
⇠+ admits a single maximum in [Smin, Smax] and ⇠� ad-
mits a single minimum in [Smin, Smax]. The e↵ective po-
tentials therefore have exactly two distinct extrema for
each value of the constants J , r, q, �1 and �2. As clari-
fied below, these special configurations correspond to the
spin-orbit resonances discovered by other means in [37].

The equal-mass limit q ! 1 corresponds to ⇠+(S) =
⇠�(S) [cf. Eq. (14)] implying that S is constant for all
values of ⇠ [note that ⇠±(Smin) 6= ⇠±(Smax)]. This fact
was noted at least as early as 2008 by Racine [56] and it
was recently exploited in numerical-relativity simulations
[39, 58], but the constancy of S is a peculiarity of the
equal-mass case and does not hold for generic binaries.

C. Morphological classification

Although the evolution of '0 already provides a way to
characterize the precessional dynamics (Fig. 2), a more
intuitive understanding can be gained by switching back
to the L-aligned frame illustrated in the left panel of
Fig. 1. Substituting Eqs. (10) and (13) into (2), we can
express the angles ✓1, ✓2 and �� as functions of S, J and
⇠. This yields the remarkably simple expressions [1]

cos ✓1 =
1

2(1 � q)S1


J2

� L2
� S2

L
�

2qM2⇠

1 + q

�
,

(20a)

cos ✓2 =
q

2(1 � q)S2


�

J2
� L2

� S2

L
+

2M2⇠

1 + q

�
,

(20b)

cos �� =
cos ✓12 � cos ✓1 cos ✓2

sin ✓1 sin ✓2

, (20c)

where the angle ✓12 = arccos Ŝ1 · Ŝ2 between the two
spins can also be written in terms of S:

cos ✓12 =
S2

� S2
1

� S2
2

2S1S2

. (20d)
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FIG. 3. Analytical solutions given by Eq. (20) for the evo-
lution of the angles ✓1 (top panel), ✓2 (middle panel), and
�� (bottom panel) during a precession cycle. The evolution
of three binaries with ⇠ = 0.25 (blue), 0.3 (green) and 0.35
(red) is shown for q = 0.8, �1 = 1, �2 = 0.8, r = 20M and
J = 1.29M2. The evolution of ✓1 and ✓2 is monotonic during
each half of a precession cycle and is bounded by the dotted
lines for which cos' = ⌥1 [these curves can be found by sub-
stituting ⇠±(S) for ⇠ in Eq. (20)]. Three classes of solutions
are possible and define the binary morphology: �� can oscil-
late about 0 (⇠ = 0.25), circulate (⇠ = 0.3) or oscillate about
⇡ (⇠ = 0.35). An animated version of this figure is available
online at [54], where precession solutions are evolved on tRR.

• Monotonic oscillations: nutations 
• Bounded by the effective potentials

Spin tilts ✓1, ✓2
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FIG. 4. E↵ective potentials ⇠±(S) of Eq. (14) for values of L, J , S1, and S2 leading to three di↵erent sets of spin morphologies.
The loop formed by the two curves encloses all allowed configurations for the constants listed in the legends. As in the left panel
of Fig. 2, empty squares mark the extrema of S (Smin and Smax), empty triangles mark the extrema of ⇠ (⇠min and ⇠max), and
conservation of ⇠ restricts the BBH spins to precess along horizontal lines between the turning points S±. BBH spin precession
can be classified into three di↵erent morphologies by the behavior of �� during a precession cycle: oscillation about 0 (blue
region), circulation from �⇡ to ⇡ (green region), or oscillation about ⇡ (red region). The dashed boundaries between these
morphologies occur at values of ⇠ where the dotted curves cos ✓i = ±1 intersect the e↵ective-potential loop, as shown by the
empty circles. All three morphologies are present if one intersection occurs on ⇠+(S) and a second occurs on ⇠�(S) (left panel),
oscillation of �� about 0 is forbidden if two intersections occur on either ⇠+(S) or ⇠�(S) (middle panel), and only oscillations
about ⇡ are allowed if there are no such intersections (right panel).

FIG. 5. The (J, ⇠) parameter space for BBHs with di↵erent minimum allowed total angular momentum Jmin. BBH spin
morphology is shown with di↵erent colors, as indicated in the legend. The extrema ⇠min(J) and ⇠max(J) of the e↵ective
potentials constitute the edges of the allowed regions and are marked by solid blue (red) curves for �� = 0 (⇡). Dashed
lines mark the boundaries between the di↵erent morphologies. The parameters q, �1, �2 and r are chosen as in Fig. 4, whose
panels can be thought of as vertical (constant J) “sections” of this figure (where we suppress the S dependence). The lowest
allowed value of ⇠ occurs at J = |L � S1 � S2| in all three panels. Three phases are present for each vertical section with
J > |L� S1 � S2|. This condition may either cover the entire parameter space (left panel) or leave room for additional regions
where vertical sections include two di↵erent phases in which �� oscillates about ⇡ and a circulating phase in between (center
panel) or only a single phase where the spins librate about �� = ⇡ (right panel). An animated version of this figure evolving
on the radiation-reaction time tRR is available online [54].

Azimuthal projection
• Three different morphologies 
• Boundaries if aligned

�� cos ✓2

��

cos ✓1
DG+ 2015a
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FIG. 4. E↵ective potentials ⇠±(S) of Eq. (14) for values of L, J , S1, and S2 leading to three di↵erent sets of spin morphologies.
The loop formed by the two curves encloses all allowed configurations for the constants listed in the legends. As in the left panel
of Fig. 2, empty squares mark the extrema of S (Smin and Smax), empty triangles mark the extrema of ⇠ (⇠min and ⇠max), and
conservation of ⇠ restricts the BBH spins to precess along horizontal lines between the turning points S±. BBH spin precession
can be classified into three di↵erent morphologies by the behavior of �� during a precession cycle: oscillation about 0 (blue
region), circulation from �⇡ to ⇡ (green region), or oscillation about ⇡ (red region). The dashed boundaries between these
morphologies occur at values of ⇠ where the dotted curves cos ✓i = ±1 intersect the e↵ective-potential loop, as shown by the
empty circles. All three morphologies are present if one intersection occurs on ⇠+(S) and a second occurs on ⇠�(S) (left panel),
oscillation of �� about 0 is forbidden if two intersections occur on either ⇠+(S) or ⇠�(S) (middle panel), and only oscillations
about ⇡ are allowed if there are no such intersections (right panel).

FIG. 5. The (J, ⇠) parameter space for BBHs with di↵erent minimum allowed total angular momentum Jmin. BBH spin
morphology is shown with di↵erent colors, as indicated in the legend. The extrema ⇠min(J) and ⇠max(J) of the e↵ective
potentials constitute the edges of the allowed regions and are marked by solid blue (red) curves for �� = 0 (⇡). Dashed
lines mark the boundaries between the di↵erent morphologies. The parameters q, �1, �2 and r are chosen as in Fig. 4, whose
panels can be thought of as vertical (constant J) “sections” of this figure (where we suppress the S dependence). The lowest
allowed value of ⇠ occurs at J = |L � S1 � S2| in all three panels. Three phases are present for each vertical section with
J > |L� S1 � S2|. This condition may either cover the entire parameter space (left panel) or leave room for additional regions
where vertical sections include two di↵erent phases in which �� oscillates about ⇡ and a circulating phase in between (center
panel) or only a single phase where the spins librate about �� = ⇡ (right panel). An animated version of this figure evolving
on the radiation-reaction time tRR is available online [54].
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conservation of ⇠ restricts the BBH spins to precess along horizontal lines between the turning points S±. BBH spin precession
can be classified into three di↵erent morphologies by the behavior of �� during a precession cycle: oscillation about 0 (blue
region), circulation from �⇡ to ⇡ (green region), or oscillation about ⇡ (red region). The dashed boundaries between these
morphologies occur at values of ⇠ where the dotted curves cos ✓i = ±1 intersect the e↵ective-potential loop, as shown by the
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FIG. 5. The (J, ⇠) parameter space for BBHs with di↵erent minimum allowed total angular momentum Jmin. BBH spin
morphology is shown with di↵erent colors, as indicated in the legend. The extrema ⇠min(J) and ⇠max(J) of the e↵ective
potentials constitute the edges of the allowed regions and are marked by solid blue (red) curves for �� = 0 (⇡). Dashed
lines mark the boundaries between the di↵erent morphologies. The parameters q, �1, �2 and r are chosen as in Fig. 4, whose
panels can be thought of as vertical (constant J) “sections” of this figure (where we suppress the S dependence). The lowest
allowed value of ⇠ occurs at J = |L � S1 � S2| in all three panels. Three phases are present for each vertical section with
J > |L� S1 � S2|. This condition may either cover the entire parameter space (left panel) or leave room for additional regions
where vertical sections include two di↵erent phases in which �� oscillates about ⇡ and a circulating phase in between (center
panel) or only a single phase where the spins librate about �� = ⇡ (right panel). An animated version of this figure evolving
on the radiation-reaction time tRR is available online [54].

• Effective potentials allow a full classification of the parameter space 
• Using only geometry and constant of motions! 
• Extremely rich phenomenology!
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• Quasi-adiabatic approach 
• Only r and J vary on       . One single ODE.

Averaging the average

Let’s turn on GW emission

tRR

Usual orbit average
Some parameters for the dynamics 
(here     is Kepler’s true anomaly)

Orbital period

hXipre =
R
dS hXiorb dt/dSR

dS dt/dS

hXiorb =

R
d X dt/d R
d dt/d 

 

New precession average
Dynamics is now parametrized by S 

Precession period

Precession InspiralOrbit ⌧
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FIG. 7. Evolution of the total angular momentum magnitude
J during the inspiral. Three binary configurations are con-
sidered here: ⇠ = �0.5 (orange), 0 (purple) and 0.5 (green)
for q = 0.4, �1 = 0.9, �2 = 0.8. Eq. (38) is solved for several
di↵erent initial conditions (solid lines, sequential colors) as
the separation r and the angular momentum L = ⌘(rM3)1/2

decrease. Solutions are bounded at all separations by the
spin-orbit resonances (dotted lines) which extremize the al-
lowed value of J for fixed ⇠. Two of the binaries pictured
here cross one of the resonant conditions ↵ = 2⇡n (empty
circles) where changes in the direction Ĵ are expected. The
inset shows the same evolutions for a wider separation range.

to
⌧

dJ

dL

�

pre

=
1

2LJ
(J2 + L2

� hS2
ipre) , (38)

which reduces the computation of BBH spin precession
on the radiation-reaction timescale to solving a single
ODE [1]! Eq. (38) is independent of the details of spin
precession (which are encoded in hS2

ipre) and is also inde-
pendent of the PN expansion for hdLRR/dtiorb provided
this is parallel to L̂ and independent of S. As shown in
Eq. (36), both of these conditions are satisfied at 1.5PN
level but break down at higher PN order. We address the
range of validity of our approach in Sec. III C, where we
also perform extensive comparisons with full integrations
of the conventional orbit-averaged equations.

Examples of solutions to Eq. (38) are shown in Fig. 7,
where J is evolved from r = 109M to r = 10M . Solutions
J(r) are bounded at all separations by the spin-orbit res-
onances ⇠min and ⇠max which extremize the magnitude

J for each fixed ⇠ (cf. Sec. II C and Fig. 5). We per-
form ODE integrations using the lsoda algorithm [61] as
wrapped by the python module scipy [62]; integrations
of Eq. (38) are numerically feasible for arbitrary values
of q < 1, �1  1, �2  1, and arbitrarily large initial
separation.

Our solutions to the spin-precession equations also de-
pend on the direction Ĵ, since this defines the z-axis in
the orthonormal frame of Fig. 1. The precession-averaged
evolution of this direction is

*
dĴ

dt

+

pre

=
1

J

⌧⌧
dLRR

dt

�

orb

�
dJ

dt
Ĵ

�

pre

(39)

which is proportional to the precession average of the to-
tal angular momentum radiated perpendicular to Ĵ. Al-
though the vector given by the right-hand side of Eq. (39)
will generally not vanish over a single precession cycle, if
the angle ↵ given by Eq. (31) above is not an integer mul-
tiple of 2⇡ this vector will precess about Ĵ in an inertial
frame. This implies that Ĵ will precess in a narrow cone
in an inertial frame on the radiation-reaction timescale
remaining approximately constant [17, 63]. As shown for
some of the binaries of Fig. 7, the condition ↵ = 2⇡n for
integer n is indeed satisfied in generic inspirals at mean-
ingful separations. Preliminary results indicate that in-
teresting spin dynamics arises at these newly identified
resonances [64]. In this paper, we restrict our attention
to the relative orientations of the three angular momenta
as specified by the three angles in Eq. (20).

B. The large-separation limit

We can gain additional physical insight by examining
Eq. (38) in the large-separation limit L/M2

! 1. Let
us define

 ⌘
J2

� L2

2L
, (40)

such that Eq. (38) becomes

d

dL
= �

hS2
ipre

2L2
. (41)

The right-hand side vanishes at large separations where
S ⌧ L, implying that

1 ⌘ lim
r/M!1

 (42)

is constant. This implies that  provides a more con-
venient label for precessing BBHs at large separations
because it asymptotes to a constant while J diverges. At
large separations J evolves as

J =
p

L(2 + L) '

p
L (21 + L) , (43)

Precession-averaged inspiral

Result is very simple!
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this is parallel to L̂ and independent of S. As shown in
Eq. (36), both of these conditions are satisfied at 1.5PN
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wrapped by the python module scipy [62]; integrations
of Eq. (38) are numerically feasible for arbitrary values
of q < 1, �1  1, �2  1, and arbitrarily large initial
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the orthonormal frame of Fig. 1. The precession-averaged
evolution of this direction is

*
dĴ
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though the vector given by the right-hand side of Eq. (39)
will generally not vanish over a single precession cycle, if
the angle ↵ given by Eq. (31) above is not an integer mul-
tiple of 2⇡ this vector will precess about Ĵ in an inertial
frame. This implies that Ĵ will precess in a narrow cone
in an inertial frame on the radiation-reaction timescale
remaining approximately constant [17, 63]. As shown for
some of the binaries of Fig. 7, the condition ↵ = 2⇡n for
integer n is indeed satisfied in generic inspirals at mean-
ingful separations. Preliminary results indicate that in-
teresting spin dynamics arises at these newly identified
resonances [64]. In this paper, we restrict our attention
to the relative orientations of the three angular momenta
as specified by the three angles in Eq. (20).

B. The large-separation limit

We can gain additional physical insight by examining
Eq. (38) in the large-separation limit L/M2

! 1. Let
us define

 ⌘
J2

� L2

2L
, (40)

such that Eq. (38) becomes

d

dL
= �

hS2
ipre

2L2
. (41)

The right-hand side vanishes at large separations where
S ⌧ L, implying that

1 ⌘ lim
r/M!1

 (42)

is constant. This implies that  provides a more con-
venient label for precessing BBHs at large separations
because it asymptotes to a constant while J diverges. At
large separations J evolves as

J =
p

L(2 + L) '

p
L (21 + L) , (43)

• PN evolution is reduced to 
solving one single ODE 

• Computationally, very easy  
• Domain can be compactified 

to integrate from 
• Precession-timescale 

quantities are then resampled

DG+ 2015a

r/M = 1



Morphological phase transitions

• Discontinuities in the evolution of  
• At large separations, circulation  
• At small separations: libration                    or 
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FIG. 1. Reference frames used in this paper to study BBH
spin precession. The angles ✓1, ✓2, ��, and ✓12 are defined
is a frame aligned with the orbital angular momentum L (left
panel). The binary dynamics can also be studied in a frame
aligned with the total angular momentum J (right panel).
Once L is taken to lie in the xz-plane, its direction is spec-
ified by S through the angle ✓L. The angle '0 corresponds
to rotations of S1 and S2 about the total spin S. The two
frames pictured here are not inertial because the direction of
L changes together with the spins to conserve J. These angles
are defined in Eqs. (2), (4) and (9).

of these parameters, greatly reducing the number of de-
grees of freedom. At the PN order considered here, the
magnitudes of both spins are conserved throughout the
inspiral, reducing the number of degrees of freedom from
nine to seven. The magnitude of the orbital angular mo-
mentum is conserved on the precession time (although
it shrinks on the radiation-reaction time), further reduc-
ing the number of degrees of freedom from seven to six.
The total angular momentum J = L + S1 + S2 is also
conserved on the precession time, reducing the number
of degrees of freedom from six to three. As described
in greater detail in the next subsection, the projected
e↵ective spin ⇠ [55, 56] is also conserved by both the
orbit-averaged spin-precession equations at 2PN and ra-
diation reaction at 2.5 PN, providing a final constraint
that reduces the system to just two degrees of freedom.
In an appropriately chosen non-inertial reference frame
precessing about J, precessional motion associated with
one of these degrees of freedom can be suppressed, im-
plying that the relative orientations of the three angu-
lar momenta L, S1 and S2 can be specified by just a
single coordinate! We will provide an explicit analytic
construction of this procedure in this and the following
subsection.

We begin by introducing two alternative reference
frames in which the relative orientations of the three an-
gular momenta can be specified explicitly. As shown in
the left panel of Fig. 1, one may choose the z0-axis to lie
along L, the x0-axis such that S1 lies in the x0z0-plane,
and the y0-axis to complete the orthonormal triad. In

this frame only three independent coordinates are needed
to describe the relative orientations of the angular mo-
menta; we choose them to be the angles

cos ✓1 = Ŝ1 · L̂ , (2a)

cos ✓2 = Ŝ2 · L̂ , (2b)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·

Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (2c)

where the sign of �� is given by (cf. Fig. 1)

sgn �� = sgn{L · [(S1 ⇥ L) ⇥ (S2 ⇥ L)]}. (2d)

The relative orientations of the three angular momenta
can alternatively be specified in a frame aligned with the
total angular momentum J. For fixed values of L, S1,
and S2, the allowed range for J = |J| is

Jmin  J  Jmax (3a)

where

Jmin = max(0, L � S1 � S2, |S1 � S2| � L) , (3b)

Jmax = L + S1 + S2 . (3c)

As shown in the right panel of Fig. 1, one can choose the
z-axis parallel to J and the x-axis such that L lies in the
xz-plane:

J = J ẑ and L = L sin ✓Lx̂ + L cos ✓Lẑ . (4)

The third unit vector ŷ = ẑ ⇥ x̂ completes the orthonor-
mal triad. The total spin S = S1 + S2 = J � L will also
lie in the xz-plane:

S = �L sin ✓Lx̂ + (J � L cos ✓L)ẑ , (5)

implying

cos ✓L =
J2 + L2

� S2

2JL
. (6)

We can also define a unit vector

Ŝ? =
(J � L cos ✓L)x̂ + L sin ✓Lẑ

S
(7)

which also lies in the xz-plane but is orthogonal to Ŝ.
While the magnitudes L and J of the orbital and to-

tal angular momenta are conserved on the precession
timescale, the same is not true for the total-spin mag-
nitude S, which oscillates within the range

Smin  S  Smax , (8a)

where

Smin = max(|J � L|, |S1 � S2|) , (8b)

Smax = min(J + L, S1 + S2) . (8c)

Phase transitions:
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FIG. 1. Reference frames used in this paper to study BBH
spin precession. The angles ✓1, ✓2, ��, and ✓12 are defined
is a frame aligned with the orbital angular momentum L (left
panel). The binary dynamics can also be studied in a frame
aligned with the total angular momentum J (right panel).
Once L is taken to lie in the xz-plane, its direction is spec-
ified by S through the angle ✓L. The angle '0 corresponds
to rotations of S1 and S2 about the total spin S. The two
frames pictured here are not inertial because the direction of
L changes together with the spins to conserve J. These angles
are defined in Eqs. (2), (4) and (9).

of these parameters, greatly reducing the number of de-
grees of freedom. At the PN order considered here, the
magnitudes of both spins are conserved throughout the
inspiral, reducing the number of degrees of freedom from
nine to seven. The magnitude of the orbital angular mo-
mentum is conserved on the precession time (although
it shrinks on the radiation-reaction time), further reduc-
ing the number of degrees of freedom from seven to six.
The total angular momentum J = L + S1 + S2 is also
conserved on the precession time, reducing the number
of degrees of freedom from six to three. As described
in greater detail in the next subsection, the projected
e↵ective spin ⇠ [55, 56] is also conserved by both the
orbit-averaged spin-precession equations at 2PN and ra-
diation reaction at 2.5 PN, providing a final constraint
that reduces the system to just two degrees of freedom.
In an appropriately chosen non-inertial reference frame
precessing about J, precessional motion associated with
one of these degrees of freedom can be suppressed, im-
plying that the relative orientations of the three angu-
lar momenta L, S1 and S2 can be specified by just a
single coordinate! We will provide an explicit analytic
construction of this procedure in this and the following
subsection.

We begin by introducing two alternative reference
frames in which the relative orientations of the three an-
gular momenta can be specified explicitly. As shown in
the left panel of Fig. 1, one may choose the z0-axis to lie
along L, the x0-axis such that S1 lies in the x0z0-plane,
and the y0-axis to complete the orthonormal triad. In

this frame only three independent coordinates are needed
to describe the relative orientations of the angular mo-
menta; we choose them to be the angles

cos ✓1 = Ŝ1 · L̂ , (2a)

cos ✓2 = Ŝ2 · L̂ , (2b)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·

Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (2c)

where the sign of �� is given by (cf. Fig. 1)

sgn �� = sgn{L · [(S1 ⇥ L) ⇥ (S2 ⇥ L)]}. (2d)

The relative orientations of the three angular momenta
can alternatively be specified in a frame aligned with the
total angular momentum J. For fixed values of L, S1,
and S2, the allowed range for J = |J| is

Jmin  J  Jmax (3a)

where

Jmin = max(0, L � S1 � S2, |S1 � S2| � L) , (3b)

Jmax = L + S1 + S2 . (3c)

As shown in the right panel of Fig. 1, one can choose the
z-axis parallel to J and the x-axis such that L lies in the
xz-plane:

J = J ẑ and L = L sin ✓Lx̂ + L cos ✓Lẑ . (4)

The third unit vector ŷ = ẑ ⇥ x̂ completes the orthonor-
mal triad. The total spin S = S1 + S2 = J � L will also
lie in the xz-plane:

S = �L sin ✓Lx̂ + (J � L cos ✓L)ẑ , (5)

implying

cos ✓L =
J2 + L2

� S2

2JL
. (6)

We can also define a unit vector

Ŝ? =
(J � L cos ✓L)x̂ + L sin ✓Lẑ

S
(7)

which also lies in the xz-plane but is orthogonal to Ŝ.
While the magnitudes L and J of the orbital and to-

tal angular momenta are conserved on the precession
timescale, the same is not true for the total-spin mag-
nitude S, which oscillates within the range

Smin  S  Smax , (8a)

where

Smin = max(|J � L|, |S1 � S2|) , (8b)

Smax = min(J + L, S1 + S2) . (8c)

• The range grows fatter 
• “Bounce” at the 

alignment configuration… 
• … and sharp transition
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FIG. 4. E↵ective potentials ⇠±(S) of Eq. (14) for values of L, J , S1, and S2 leading to three di↵erent sets of spin morphologies.
The loop formed by the two curves encloses all allowed configurations for the constants listed in the legends. As in the left panel
of Fig. 2, empty squares mark the extrema of S (Smin and Smax), empty triangles mark the extrema of ⇠ (⇠min and ⇠max), and
conservation of ⇠ restricts the BBH spins to precess along horizontal lines between the turning points S±. BBH spin precession
can be classified into three di↵erent morphologies by the behavior of �� during a precession cycle: oscillation about 0 (blue
region), circulation from �⇡ to ⇡ (green region), or oscillation about ⇡ (red region). The dashed boundaries between these
morphologies occur at values of ⇠ where the dotted curves cos ✓i = ±1 intersect the e↵ective-potential loop, as shown by the
empty circles. All three morphologies are present if one intersection occurs on ⇠+(S) and a second occurs on ⇠�(S) (left panel),
oscillation of �� about 0 is forbidden if two intersections occur on either ⇠+(S) or ⇠�(S) (middle panel), and only oscillations
about ⇡ are allowed if there are no such intersections (right panel).

FIG. 5. The (J, ⇠) parameter space for BBHs with di↵erent minimum allowed total angular momentum Jmin. BBH spin
morphology is shown with di↵erent colors, as indicated in the legend. The extrema ⇠min(J) and ⇠max(J) of the e↵ective
potentials constitute the edges of the allowed regions and are marked by solid blue (red) curves for �� = 0 (⇡). Dashed
lines mark the boundaries between the di↵erent morphologies. The parameters q, �1, �2 and r are chosen as in Fig. 4, whose
panels can be thought of as vertical (constant J) “sections” of this figure (where we suppress the S dependence). The lowest
allowed value of ⇠ occurs at J = |L � S1 � S2| in all three panels. Three phases are present for each vertical section with
J > |L� S1 � S2|. This condition may either cover the entire parameter space (left panel) or leave room for additional regions
where vertical sections include two di↵erent phases in which �� oscillates about ⇡ and a circulating phase in between (center
panel) or only a single phase where the spins librate about �� = ⇡ (right panel). An animated version of this figure evolving
on the radiation-reaction time tRR is available online [54].
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FIG. 11. Evolution of the spin morphology and the allowed ranges of the spin angles ✓i over a precession cycle as functions of
the binary separation r. Each panel shows the range of cos ✓1 (purple/darker) and cos ✓2 (orange/lighter) for di↵erent initial
conditions cos ✓i1. The current morphology is tracked by the horizontal bar above each panel. Morphologies are indicated as
C (green) for circulating, L0 (blue) for �� librating about 0, and L⇡ (red) for �� librating about ⇡. The morphology changes
whenever cos ✓i = ±1 (vertical dashed lines). BBHs in the leftmost column do not undergo any transitions in the PN regime;
one transition into a librating morphology occurs for BBHs in the center columns; two transitions (circulating to librating,
librating to circulating) occur for BBHs in the rightmost column. The mass ratio and spin magnitudes are q = 0.95, �1 = 0.5,
and �2 = 1 in all panels.
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one transition into a librating morphology occurs for BBHs in the center columns; two transitions (circulating to librating,
librating to circulating) occur for BBHs in the rightmost column. The mass ratio and spin magnitudes are q = 0.95, �1 = 0.5,
and �2 = 1 in all panels.
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A predictive statement
The final morphology encodes 

the initial spin orientation:  
how BHs form! 

• Morphology: feature of spin precession that 
does not vary on the precessional time! 

• The final spin orientations are scattered around,          
but back in the days…

At formation
At detection

DG 2017



New predictions

Morphologies can be distinguished
DG+ 2014; Trifiro’,DG+ 2016, Afle+2018

of the inspiral slows down the evolution of !" when the
components of the spin orthogonal to the orbital angular
momentum are also orthogonal to each other, causing
binaries that are not locked into resonance to pile up at
!" ¼ "90#.

Let us stress again that the statistical effect of resonances
is clearly visible at fGW ¼ 20 Hz, i.e., when BH binaries
enter the Advanced LIGO/Virgo band. GW measurements
of !" can therefore be used to constrain uncertainties in
BH binary-formation scenarios. The inclusion of resonant
effects in population-synthesis models (combined with a
statistically significant sample of GW measurements of
!") has the potential to constrain various aspects of the
models, such as the efficiency of tides, stable mass transfer,
common-envelope (CE) evolution, SN kick velocities, and
the metallicity of BH progenitors.

B. Outline of the paper

The rest of the paper provides details of our astrophys-
ical model and a more detailed discussion of the results. In
Sec. II we introduce our fiducial BH binary-formation
channels, which are based on detailed population-synthesis
models, as described in much greater length in
Appendix A. In order to focus on spin effects, we fix the
component masses to two representative values. We assume

that SN kicks follow a Maxwellian distribution in
magnitude. We also assume that the kicks are distributed
in a double cone of opening angle !b about the spin of
the exploding star and, to bracket uncertainties, we consider
two extreme scenarios: isotropic (!b ¼ 90#) or polar
(!b ¼ 10#) kicks.
Section III summarizes the results of evolving these BH

binaries under the effect of gravitational radiation down to
a final separation of 10GM=c2. We demonstrate that spin-
orbit resonances have a significant impact on the observ-
able properties of our fiducial BH binaries. Although we
have only explored a handful of evolutionary channels and
component masses, in Sec. IV we argue that the scenarios
described in Fig. 1 are broadly applicable: kicks, tides, and
the mass-ratio distribution control spin alignment. We ex-
plore the sensitivity of these three features (and hence of
the observable distribution of resonantly locked binaries)
to several poorly constrained physical inputs to binary-
evolution models, and we argue that GW observations of
precession angles could provide significant constraints on
binary-formation channels. Finally, in Sec. V we describe
the implications of our results for future efforts in binary-
evolution modeling and GW detection.
To complement and justify the simple astrophysical

model proposed in Sec. II, in Appendix A we describe
in detail the rationale underlying the model and its
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FIG. 2 (color online). Left: probability distribution of the angle between the projections of the spins on the orbital plane !". As the
binaries inspiral, the GW frequency fGW increases from 0.01 Hz (dotted blue lines) to 1 Hz (dashed red lines) and later 20 Hz (solid
black lines). Under the effect of tides the PN evolution brings the spins in the same plane (!" ! 0#,"180#), both in a reversed mass
ratio (top panel) and in a standard mass ratio (middle panel) scenario. When tidal effects are removed (bottom panel, where we show
both RMR and SMR binaries) the spins precess freely and pile up at !" ¼ "90#. Right: probability distribution of the angle between
the two spins !12. In the RMR scenario (top panel) the spins end up almost completely aligned with each other, i.e., most binaries have
!12 ’ 0#. In the SMR scenario (middle panel) and in the absence of tides (bottom panel, where again we show both RMR and SMR
binaries) a long tail at large values of !12 remains even in the late inspiral. All simulations shown in this figure assume that kick
directions are isotropically distributed. Error bars are computed assuming statistical Poisson noise.
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FIG. 5. A comparison between numerical integration of the
resonant term in Eq. (30) for the nutational resonance de-
picted in Fig. 4 and our analytical approximation given by
Eq. (38). The agreement is excellent; the symmetric Euler
spiral shown by the dashed orange curve nearly perfectly de-
scribes the numerical integration shown by the solid green
curve despite the significant changes in L and J as the binary
inspirals from r = 700M to r = 270M .

Eq. (38) indicates that the resonant term J?n can be
approximated as an Euler spiral. We compare this Euler
spiral to a numerical integration of the resonant term in
Eq. (30) in Fig. 5.

The Fresnel integrals have limiting values

lim
x!±1

C(x), S(x) = ±
p

⇡/8 (40)

which allow us to estimate the total shift

�J?n ⌘ J?n(1) � J?n(�1) (41)

in the precession-averaged total angular momentum rel-
ative to its direction at resonance as a binary passes
through a nutational resonance. This in turn implies
that J tilts by an angle

✓tilt =
|�J?n|

J
=

(2⇡)1/2

JD

dL

dt
✓Ln

/
✓

tpre
tRR

◆1/2

✓Ln /
⇣ r

M

⌘�5/4
. (42)

For the nutational resonance shown in Fig. 5, the total
shift �J?n predicted by Eq. (41) agrees with the nu-
merical result obtained by integrating Eq. (30) to better
than 1%. This justifies our use of Eq. (42) in the next
section to estimate how the precession-averaged total an-
gular momentum hJi tilts as BBHs encounter nutational
resonances during their inspirals.

V. DISTRIBUTION OF NUTATIONAL

RESONANCES

In this section, we investigate how often BBHs en-
counter nutational resonances as they inspiral towards

merger from the large separations at which they form.
As the condition ↵ = 2⇡n for integer n defines a nu-
tational resonance, we begin by calculating ↵ according
to Eq. (13). Although the parameter space of all BBHs
with given masses, spin magnitudes, and binary separa-
tion is four dimensional (corresponding to the two BBH
spin directions), two of these dimensions can be speci-
fied by a global rotation of the system about J and the
precessional phase, neither of which a↵ect ↵ which varies
on the radiation-reaction timescale. For these BBHs (for
which L is fixed), ↵ is purely function of J and ⇠ for
allowed values of these parameters. We show a contour
plot of ↵ for these allowed values in Fig. 6, where the con-
tour lines ↵ = 2⇡n identify nutational resonances. The
largest allowed value of the magnitude of the total angu-
lar momentum J is Jmax = L + S1 + S2 and occurs for
the “up-up” configuration in which both spins S1 and
S2 are aligned with the orbital angular momentum L.
Since L > S1 + S2 for these BBH masses and spins,
the smallest allowed value of J is Jmin = L � S1 � S2

and occurs for the “down-down” configuration in which
S1 and S2 are anti-aligned with L. The boundaries of
the allowed region in the J � ⇠ plane are defined by two
paths connecting the “up-up” and “down-down” config-
urations. The first of these paths, ⇠max(J), connects the
maxima of the e↵ective potential ⇠+(S) given by Eq. (6).
This path includes the “down-up” configuration in which
the spin S1 of the more massive black hole is anti-aligned
with L while the spin S2 of the less massive black hole is
aligned. The second path ⇠min(J) connects the minima
of the e↵ective potential ⇠�(S). The allowed region in
Fig. 6 consists of those BBHs for which Jmin  J  Jmax

and ⇠min(J)  ⇠  ⇠max(J).

The n = 1 and n = 2 contours in Fig. 6 connect
points on the ⇠min(J) and ⇠max(J) curves that consti-
tute the boundaries of the allowed region. Because these
boundaries correspond to extrema of the e↵ective poten-
tial ⇠±(S) (what Schnittman [24] described as spin-orbit
resonances), S does not oscillate, ⌦z(S) given by Eq. (14)
is a constant on the precession timescale, and the coef-
ficients ✓Ln given by Eq. (27) vanish for n 6= 0. The
tilt angle ✓tilt given by Eq. (42) is proportional to ✓Ln

and thus must similarly vanish for n 6= 0. The n = 1
and n = 2 contours in Fig. 6 are monotonic functions
of both J and ⇠, so either of these quantities can be
used to parametrize the curves. We show ✓tilt(J) and
✓tilt(⇠) in the top and right panels of Fig. 6. As ex-
pected, ✓tilt vanishes at the endpoints of these curves (the
Schnittman spin-orbit resonances) for both nutational
resonances. The curves ✓tilt(J) and ✓tilt(⇠) are smooth
functions for the n = 1 resonance, reaching a maximum
✓tilt ' 7 ⇥ 10�4 somewhere in the interior of the allowed
region. The corresponding curves for the n = 2 reso-
nance show two sharp spikes where the tilt angle appears
to diverge. These spikes are artifacts of the approxima-
tions used in Section IV and occur where d↵/dL and
thus D given by Eq. (35) vanish. Since D appears in
the denominator of Eq. (42) for ✓tilt, the tilt angle cor-
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Ref. [37] – diverges logarithmically as this amplitude ap-
proaches zero. This is an unstable response: the time it
takes for a zero-energy particle with dx/dt < 0 to travel
from finite x0 to �x in the unstable potential V = � 1

2kx
2

similarly diverges logarithmically with �x.
A perturbative analysis of nearly aligned configura-

tions [41] can identify that perturbations can oscillate
at complex frequencies (indicating an instability) in the
same region rud� < r < rud+ found here, but such analy-
sis cannot predict the amplitude of these perturbations or
their response to precession-averaged radiation reaction.
Radiation reaction. – We have shown that for
rud� < r < rud+, spin configurations with J and ⇠ in-
finitesimally close to the up-down configuration can expe-
rience finite-amplitude oscillations in S and the angles ✓1,
✓2, and ��. We now investigate how these configurations
evolve on the longer radiation-reaction time tRR. Since ⇠
is conserved throughout the inspiral and L monotonically
decreases at 2.5PN order, the only challenge is to evolve
J . In Refs. [36, 37] we derived a precession-averaged ex-
pression for dJ/dL, a contour plot of which is shown in
Fig. 3. The shaded region shows the allowed values of J
and ⇠ for this mass ratio, spin magnitudes, and binary
separation. The spin-orbit resonances, being extrema of
⇠±(S), constitute the boundaries of this region. The up-
up, down-down, and down-up configurations, being spin-
orbit resonances, lie on these boundaries. At rud+, the
up-down configuration detaches from the right bound-
ary of this region [it stops being a minimum of ⇠±(S)]
and begins to migrate leftwards through the allowed re-
gion, eventually reattaching to the left boundary at rud�
[where it becomes a maximum of ⇠±(S)]. This is just an
alternative visualization of the four panels of Fig. 1.

For all four aligned configurations, J and L are aligned
so dJ/dL = 1 is maximized. However, the nature of
these maxima is very di↵erent for the stable and un-
stable configurations. For the stable configurations, the
partial derivatives of dJ/dL with respect to J and ⇠ re-
main finite, implying that neighboring points separated
by (�J, �⇠) slowly drift away at a rate that scales linearly
with these infinitesimal quantities. The unstable config-
uration however is a cusp where these partial derivatives
approach ±1, depending on whether this point in the J⇠
plane is approached from below or above. Neighboring
points (experiencing large-amplitude oscillations in S, as
seen in the middle panels of Fig. 1) rapidly deviate from
the up-down configuration as it sweeps across the allowed
region. This is an essential point: even if the stability of
the up-down configuration is restored in the PN regime
(rud� > 10M), radiation reaction during the inspiral be-
tween rud± will drive BHs initially in this configuration
to large misalignments prior to merger. The migration
of the up-down configuration through the J⇠ plane also
reconciles the instability with the empirical result that
isotropic spin distributions remain isotropic during the
inspiral [19, 20]: although nearby binaries may indeed
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FIG. 4. Normalized GW Fourier amplitude h̃ (cf. Ref. [41])
as a function of orbital frequency f and binary separation r
during the inspiral of BHs with q = 0.75 and �1 = �2 = 0.9.
At the initial separation r = 1000M , the spins are nearly
in the up-down configuration, but this configuration becomes
unstable below rud+ ' 157M , after which large precession-
induced modulations occur at frequencies accessible to GW
detectors.

be left behind, the unstable configuration will always en-
counter a fresh supply, until it is restored to stability at
the left edge of the allowed region.
GW astronomy. – Binaries with separations in the un-
stable region between rud± emit GWs with frequencies in
the range fud± ' 6.4⇥104Hz(M/M�)�1(1�q)3/(

p
�1 ±p

q�2)6, within or below the sensitivity band of existing
and planned GW detectors [8–15]. In Fig. 4, we show the
waveform of one such binary initially near the up-down
configuration before entering the unstable region. Once
the binary crosses the threshold at rud+, its waveform
develops large-amplitude precessional modulation on the
precession time tpre. The amplitude of this modulation
is independent of the initial deviation from the up-down
configuration: it is set by the finite-amplitude oscilla-
tions in S seen in the middle panels of Fig. 1. Modula-
tion occurs on two distinct time scales associated with
the precession of L in a frame aligned with J. In this
frame the direction of L is specified by the polar angle
cos ✓L = L̂ · Ĵ and the azimuthal angle �L in the plane
perpendicular to J. The longer of these time scales is ⌧
(the period of oscillations in ✓L), while the shorter time
scale is (2⇡/↵)⌧ (the precession-averaged time for �L to
change by 2⇡) [36, 37]. Measuring this modulation could
yield insights into the astrophysical origins of binary BHs
[18, 37]. Spin precession could also a↵ect the electro-
magnetic counterparts to BH mergers [42, 43] and the
probability of ejecting a supermassive BH from its host
galaxy [30–32, 44]. We look forward to confronting these
predictions with observations in the dawning age of GW
astronomy.
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angles ✓1, ✓2, and �� at several intermediate separa-
tions. An animated version of this figure can be found
online [54]. The isotropic sample remains isotropic, as
found previously using the orbit-averaged equations [73].
A greater fraction of the BBHs in the distribution with
one aligned BH undergo a phase transition from a circu-
lating to a librating morphology, as described in Sec. IV
below and also found in previous studies with the orbit-
averaged equations [40]. If the angles ✓i initially have
Gaussian distributions, these Gaussians will spread out
as the inspiral proceeds.

We use the BBH inspirals from ri = 1000M to rf =
10M shown in Fig. 8 to compare the e�ciency of our
new precession-averaged approach to integration of the
standard – i.e., orbit-averaged – PN equations. In the
standard approach, one must numerically integrate 10
coupled ODEs specifying the directions of the three an-
gular momenta and the magnitude of the orbital velocity;
we use the PN equations quoted by Refs. [35, 36]. We
implement the same 2PN spin-precession equations given
by Eq. (25) but include radiation reaction up to 3.5PN
order, as in Eq. (2.6) of [36]. Integrations are performed
using the same algorithm specified above [61, 62]. The
agreement between the two approaches is seen to be ex-
cellent up to r ⇠ 50M , and minor discrepancies emerge
at smaller separations.

Two approximations made in the precession-averaged
approach may explain these discrepancies. While ⇠ is
held constant throughout the inspiral in the precession-
averaged approach (consistent with 2.5PN radiation re-
action), conservation of ⇠ is not enforced in the orbit-
averaged approach, which employs 3.5 PN radiation re-
action. The largest deviations �⇠ in the latter approach
are of the order 10�10; ⇠ is e↵ectively constant in the PN
regime (r & 10M). Numerical-relativity simulations may
be used to test conservation of ⇠ at smaller separations.

The second and less reliable approximation involves
the timescale hierarchy itself. The precession time tpre ⇠

(r/M)5/2 and radiation-reaction time tRR ⇠ (r/M)4 be-
come more comparable at lower separations, reducing
the e↵ectiveness of our quasi-adiabatic approach. The
precession-averaging procedure defined in Eq. (33) as-
sumes that quantities like L and J varying on tRR remain
constant over a full precession cycle ⌧ , but this assump-
tion will break down as the timescale hierarchy becomes
invalid.

Fig. 8 shows that di↵erences between the two ap-
proaches are most pronounced in pr(��). This variable
is the most sensitive to the precessional dynamics; pre-
dictions for the angles ✓1 and ✓2 remain reasonably ac-
curate even at r ⇠ 10M . The di↵erences seem to aver-
age out for wider distributions (top panels) but become
more evident for more compact initial distributions (bot-
tom panels). Averaging over the precessional dynamics
prevents us from tracking the precession phase, implying
that the two approaches will make di↵erent predictions
for quantities (like S and ��) varying on the precession
timescale when the initial separation is su�ciently small
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FIG. 9. CPU time needed to evolve BBHs from an initial
separation ri to a final separation rf = 10M using our new
precession-averaged approach (purple circles) and the stan-
dard orbit-averaged approach (orange triangles). Each CPU
time is averaged over N = 100 executions with isotropic initial
spin orientation (flat distributions in cos ✓1, cos ✓2 and ��).

Dashed lines show the expected scalings: t / r3/2i for the
orbit-averaged approach and t / log ri for our new precession-
averaged approach. These computations have been performed
on a single core of a 2013 Intel i5-3470 3.20GHz CPU.

that memory of the initial phases has not been fully for-
gotten. Predictions of physical quantities varying on the
radiation-reaction timescale (like J and the precession
morphology) will remain robust down to small separa-
tions, as explored in Secs. IVB and IV C below.

We compare the computational e�ciency of the
precession- and orbit-averaged approaches in Fig. 9.
Isotropic samples of 100 BBHs are transferred from large
initial separations ri to a final separation rf = 10M .
The CPU time required by the two approaches scales dif-
ferently with the initial separation. The orbit-averaged
(OA) equations must be integrated with a time step
shorter than the precession time, implying that the total
number of time steps scales as

NOA /

Z ri

rf

dr

ṙGW tpre

⇠ r3/2

i , (47)

where ṙGW / r�3 as given by the quadrupole formula
[19, 20]. The ratio tRR/tpre / r3/2 increases dramatically
at large separations leading to a corresponding increase in
the computational cost. In the precession-averaged (PA)
approach, integration of dJ/dL in Eq. (38) only requires

DG+ 2015a
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