

GPU-Accelerated Techniques for Generating Fast EMRI Waveforms

Michael Katz (with Alvin Chua, Niels Warburton, Scott Hughes)

> **Capra Meeting** June 2020

A Modular Framework

- Interchangeable pieces
- Advancements easily added
- User options for particular situations

Module Options

Trajectory

- Adiabatic
- •w/ or w/o upsampling (cubic spline)
- •GSF 1st-order / NIT / Two-timescale (future)
- Different integrators
- Affects sparsity

$$h(t) = \frac{1}{r} \sum_{lmn} A_{lmn}(t) e^{-i\Phi_{mn}(t)} V_{lm}(\theta, \phi)$$

Northwestern University

З

Module Options

Amplitude Determination

- •ROM + NN (ROMAN; Chua+2019)
- Direct 2D spline interpolation per mode (p, e)

$$h(t) = \frac{1}{r} \sum_{lmn} A_{lmn}(t) e^{-i\Phi_{mn}(t)} V_{lm}(\theta, \phi)$$

Module Options

Waveform Creation

- Direct summation
- Interpolated summation (cubic spline)

$$h(t) = \frac{1}{r} \sum_{lmn} A_{lmn}(t) e^{-i\Phi_{mn}(t)} V_{lm}(\theta, \phi)$$

INTERDISCIPLINARY EXPLORATION ESEARCH IN ASTROPHYSICS

Module Options

Utilities

- Mode filtering
- Spin-weighted spherical harmonics
- Overlap calculation

$$h(t) = \frac{1}{r} \sum_{lmn} A_{lmn}(t) e^{-i\Phi_{mn}(t)} V_{lm}(\theta, \phi)$$

Mismatch Analysis

- Normalized correlation
- ~year long inspirals
- Bias analysis in PE (future)

mismatch
$$\rightarrow \epsilon(a \mid b) = 1 - \frac{\rho_{a,b}}{\sqrt{\rho_{a,a} \rho_{b,b}}}$$

 $\rho \rightarrow cross-correlation$

NTERDISCIPLINARY EXPLORATION

Computationally Efficient Waveforms

- Goal for PE: ~10s of ms
- GPU implementation
- PE: billions of waveforms

(Time (ms. 10²) Time (ms. 10²)

Accelerating GW Computations

Northwestern University

The main goal is to accelerate calculations necessary to move our science forward.

INTERDISCIPLINARY EXPLORATION CENTER AND RESEARCH IN ASTROPHYSICS

Accelerating GW Computations

Massive black hole analysis with LISA (Katz+ 2020)

Accelerating GW Computations

Northwestern University

White dwarf binary search in EM surveys (Katz+ 2020)

Accelerating GW Computations

Population inference for ground-based observations (Talbot+2019, Kimball+2020)

Northwestern University

Accelerating GW Computations

Accelerating EMRI kludge waveforms for use in data analysis

Accelerating GW Computations

- Scale Mathematica codes
- Accelerate parallelizable regions
- Further EMRI science!

Northwestern University

Your code?

e.g. McKennon, Forrester, & Khanna (2012)

Summary

- Our framework is built to be modular and amenable to improvements.
- The observed mismatch and speed are already sufficient or close to sufficient for data analysis.
- Different computational improvements can strongly advance our science capabilities.

References

A. J. K. Chua, M. L. Katz, N. Warburton & S. A. Hughes, Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for LISA data analysis, in prep. A. J. K. Chua, C. R. Galley & M. Vallisneri, Reduced-order modeling with artificial neurons for gravitational-wave inference, Phys. Rev. Lett. 122, 211101 (2019). M. van de Meent & N. Warburton, Fast self-forced inspirals, Class. Quantum. Grav. 35, 144003 (2018).

