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Post-Newtonian Self-Force
has it’s uses..

• Parameter space

e.g. fill in large- , low  fluxes [C. Munna]r e

• PN/PM/EOB

-porting information back and forth [A. Antonelli]

-cross validation 

• ‘Tool’

testing aspects of numerical codes 

e.g. regularisation, debugging 

• Hybrid codes?
part numeric, part PN

lower accuracy  
needed at 2SF

2nd order

FULL 5pn (6pn?) 
[Bini et al 2019/20]

…probably

e.g. this talk



What do we actually know at 1st order
-local 1st order field only

e.g. PN solutions to Teukolsky 

— ψPN
4 (r, ω) r ≫ M — ,  

   
ψPN

4 (r, ω) r0 ≫ M, r ∼ r0
ω ∼ r−3/2

0

1st order source , —> only need local solutions ∝ δ(r − r0)



What do we actually know at 1st order
-local 1st order field only

2nd order EFEs

δGμν[h2] = − δ2Gμν[h1, h1]

need solutions everywhere



2nd order scalar SF
Flat spacetime

Toy field equations

□ ϕ1 = − 4πϱ
□ ϕ2 = tαβ∂αϕ1∂βϕ1 ≡ S2[ϕ1, ϕ1]

, ϱ =
δ(xi − xi

0)
dt/dτ

uα = (t, xi) = ut(1,0,0,Ω)



2nd order scalar SF

Toy field equations-modes

□r ϕ1
lm = − 4πϱlm

□r ϕ2
lm = (tαβ∂αϕ1∂βϕ1)lm ≡ S2

lm[ϕ1, ϕ1]

ϕi = ∑
lm

e−imΩtϕi
lm(r)Ylm(θ, φ)

Homogeneous solutions ϕ±
lm

ϕi
lm = C+

lm(r)ϕ+
lm(r) + C−

lm(r)ϕ−
lm(r)

With e.g.

C+
lm =

1
W ∫

r

0
ϕ−

lm(r′�)Si
lm(r′�)dr′� 1st order: C±

lm(r) = C±
lm(r0)

2nd order: need  ‘everywhere’ϕ±
lm(r)



2nd order scalar SF

To do list:

Toy field equations-modes

□r ϕ1
lm = − 4πϱlm

□r ϕ2
lm = (tαβ∂αϕ1∂βϕ1)lm ≡ S2

lm[ϕ1, ϕ1]

ϕi = ∑
lm

e−imΩtϕi
lm(r)Ylm(θ, φ)

• Construct  ‘everywhere’ϕ±
lm

Split domain- asymptotic matching

• Local 2nd order source- only needs local 1st order PN



Second order source-local behaviour
Infinite mode coupling

Miller, Pound, Wardell arxiv:1608.06783  (MPW 2016)

S2[ϕ1, ϕ1] = tαβ∂αϕ1∂βϕ1

ϕ1 =
∞

∑
l=0

l

∑
m=−l

e−imΩtϕ1
lm(r)Ylm(θ, φ)

Each mode of the source involves

S2
lm[ϕ1, ϕ1] = ∮ tαβ∂α ∑

l1,m1

e−im1Ωtϕ1
l1m1

Yl1m1
∂β ∑

l2,m2

e−im2Ωtϕ1
l2m2

Yl2m2
Y*lm sin θ′�dθ′�dφ′ �

In practice, only up to 

some lmax

NEITHER sum converges well near , so given a finite number of modes, how do you 
compute ??

r0
S2

lm



Second order source
Infinite mode coupling
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FIG. 1. The source mode S00['
ret,'ret] as a function of

�r := r � r0, with an orbital radius r0 = 10, as computed
from the mode-coupling formula (31). To assess the conver-
gence of the sum in Eq. (31), we truncate the first-order field
modes 'lm at a maximum l value lmax, and we display the be-
havior of S00 for various values of lmax. The insets show that
far from the particle, the sum converges rapidly with lmax.
However, near the particle there is no evidence of numerical
convergence.

Eq. (31); for su�ciently smooth 'R, the convergence will
be su�ciently rapid. The problem of slow convergence is
then isolated in the third term, Slm['P ,'P ]. This term
cannot be accurately computed from the modes of 'P .
However, S['P ,'P ] can be computed in 4D using the 4D
expression for 'P . Its modes Slm['P ,'P ] can then be
computed directly, without utilizing the mode-coupling
formula (31), simply by integrating the 4D expression
against a scalar harmonic.

Our strategy is hence summarized as follows:

1. compute the modes 'P
lm by direct integration of the

4D expression (40). From the result, and Eqs. (17)–
(18), compute the modes 'R

lm = 'ret
lm � 'P

lm

2. evaluate Slm['R,'R] and Slm['R,'P ] using the
mode-coupling formula (31)

3. evaluate S['P ,'P ] in 4D, using Eq. (40), and ob-
tain its modes Slm['P ,'P ] by direct integration

4. combine these results in Eq. (10).

This strategy is to be applied in some region around r =
r0; outside that region, one may simply use the retarded
modes in Eq. (31) without di�culty.

Figure 2 displays a successful implementation of this
strategy. The true source mode S00, as computed via our
strategy, is shown in thick solid blue. The same mode S00

as computed via mode coupling from 'ret
lm, with a finite

lmax, is shown in thin solid grey. As we can see, the
two results agree far from the particle, where the source
mode as computed via mode coupling has converged. But
near the particle, the results di↵er by an arbitrarily large
amount; the true source correctly diverges at r = r0, due
to the singularity in the first-order field, while the source
computed via mode coupling remains finite due to the
truncation at finite lmax.
In the remaining sections, we describe the technical de-

tails of our strategy, as well as the challenges that arise in
implementing it. Section II summarizes the various rele-
vant fields—retarded and advanced, singular and regular,
puncture and residual. Section III derives the coupling
formula that expresses a second-order source mode Slm

as a sum over first-order field modes. Section IV de-
tails the computation of Slm['R,'R] and Slm['R,'P ];
Sec. V, the computation of Slm['P ,'P ]. In Sec. VI, we
reiterate the outline of our strategy as it applies to the
gravitational case; the successful application to gravity,
recently reported in Ref. [36], will be detailed in a future
paper.

To avoid repetition, we state in advance that all plots
are for a particle at radius r0 = 10.

II. FIRST-ORDER FIELDS

A. Retarded and advanced solutions

To begin, we work in spherical polar coordinates
(t, r, ✓A), where ✓A := (✓,�). We place the particle on
the equatorial circular orbit xµ

p (t) = (t, r0,⇡/2,⌦t) with

normalized four-velocity uµ = (1 � r20⌦
2)�1/2(1, 0, 0,⌦),

and we adopt a Keplerian frequency ⌦ =
p

1/r30. The
point source (9) can then be expanded in spherical and
frequency harmonics by rewriting it as

% =
�(r � rp)

r2ut

X

lm

Y ⇤
lm(✓Ap )Ylm(✓A) (11)

and using Y ⇤
lm(✓Ap ) = e�im⌦tYlm(⇡/2, 0). Here ut = dt

d⌧ =

(1� r20⌦
2)�1/2.

Most of the fields we are interested in can be con-
structed by integrating this source against a Green’s
function. The retarded and advanced Green’s functions
satisfying ⇤G(x, x0) = �4⇡�4(x� x0) are given by

Gret/adv(x, x0) =
�(t� t0 ⌥ |~x� ~x0

|)

|~x� ~x0|
, (12)

where ~x is a Cartesian three-vector. The Fourier trans-
forms, Gret/adv

! =
R
ei!(t�t0)Gret/adv(x, x0)dt, are

Gret/adv
! =

e±i!|~x�~x0|

|~x� ~x0|
, (13)

Figure 1 of MPW 2016



Numerical solution: puncture method

S2[ϕ1, ϕ1] = S2[ϕ1,ℛ, ϕ1,ℛ] + 2S2[ϕ1,ℛ, ϕ1,𝒫] + S2[ϕ1,𝒫, ϕ1,𝒫]

Convergent  sumsl
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FIG. 2. The source mode S00['
ret,'ret] and its two con-

tributions as functions of �r, as computed with the strategy
outlined in the text. The dot-dashed red curve shows the con-
tribution from S00['

R,'R] + 2S00['
R,'P ], the dashed black

curve shows the contribution from S00['
P ,'P ], and the thick

solid blue curve shows their sum S00['
ret,'ret], which diverges

at �r = 0. On the scale of the main plot, S00['
P ,'P ] is in-

distinguishable from S00['
ret,'ret]; the insets show that they

di↵er by a small, but distinguishable amount, which is made
up by S00['

R,'R] + 2S00['
R,'P ]. For comparison, the thin

grey curve displays the result for S00['
ret,'ret] as computed

from the mode-coupling formula (31), which agrees with the
correct result far from the particle but di↵ers strongly from
it near the particle. All curves were generated with r0 = 10,
all four orders in the puncture (23), and lmax = 20.

which can be expanded in spherical harmonics as

Gret/adv
! = ⌥i

X

lm

!jl(!r<)h
(1,2)
l (!r>)Y

⇤
lm(✓A

0
)Ylm(✓A).

(14)

Here the upper sign and h(1)
l correspond to the retarded

solution, and the lower sign and h(2)
l to the advanced.

h(1)
l and h(2)

l are the spherical Hankel functions of the
first and second kind, jl is the spherical Bessel function
of the first kind, and when used in the Green’s function,
r7 := min/max(r, r0). In the static limit ! ! 0, the
retarded and advanced Green’s functions both reduce to

Gret/adv =
1

|~x� ~x0|
=

X

lm

1

2l + 1

rl<
rl+1
>

Y ⇤
lm(✓A

0
)Ylm(✓A).

(15)
Integrating against these Green’s functions, we find the

retarded and advanced solutions

'ret/adv =
X

lm

'ret/adv
lm (r)e�im⌦tYlm(✓A), (16)

where

'ret/adv
lm = ±

4⇡i

ut
Nlmm⌦jl(m⌦r<)h

(1,2)
l (m⌦r>) (17)

for m 6= 0, and

'ret/adv
l0 =

4⇡

ut

Nl0

2l + 1

rl<
rl+1
>

(18)

for m = 0. Here Nlm := Ylm(⇡/2, 0), and we have re-
verted to the previous notation r7 := min/max(r, r0).

As discussed in the introduction, the large-l behavior
of these fields is the source of the infinite-coupling prob-
lem. Noting that Nl0 ⇠ l0, we see that the stationary

modes in Eq. (18) behave as 'l0 ⇠
1
l

rl<
rl+1
>

. Hence, 'l0 de-

cays exponentially with l at points far from r = r0, still
exponentially but more slowly at points close to r = r0,
and as l�1 at r = r0. The oscillatory, m 6= 0 modes
exhibit similar behavior, although it is not obvious from
Eq. (17). After summing 'lmYlm over m, the large-l be-
havior becomes ⇠ l0 on the particle, with an exponential
but arbitrarily weak suppression at points slightly o↵ the
particle. The quantitative consequences of this, already
displayed in Fig. 1, will be spelled out in later sections.

B. Singular and regular fields

In flat space, the Detweiler-Whiting singular field is
simply 'S := 1

2 ('
ret + 'adv). Its four-dimensional form

can be written as

'S =
1

2

Z
[Gret(x, x0) +Gadv(x, x0)]%(x0)d4x0. (19)

Its modes are more easily found directly from Eqs. (17)
and (18). For m 6= 0,

'S
lm =

4⇡

ut
Nlmm⌦jl(m⌦r<)yl(m⌦r>), (20)

where yl is the spherical Bessel function of the second

kind. For m = 0, 'S
l0 = 'ret/adv

l0 .
Correspondingly, in flat space the regular field is 'R =

'ret
�'S = 1

2 ('
ret

�'adv). Its four-dimensional form can
be written as an integral analogous to (19). Its modes
can be found straightforwardly from Eqs. (17) and (18).
For m 6= 0,

'R
lm =

4⇡i

ut
Nlmm⌦jl(m⌦r<)jl(m⌦r>), (21)

and for m = 0, 'R
l0 = 0.

C. Puncture and residual fields

The puncture field 'P is obtained in 4D by perform-
ing a local expansion of the integral representation (19)

Figure 2 of MPW 2016

- by far the most expensive 
part of current 2nd order 
codes

ϕ1 = ϕ1,ℛ + ϕ1,𝒫

Know full  time domain form— integrate against  directly4D Ylm

2 ‘mode-coupling’ sums + numerical integral
each  mode:lm



Numerical solution: PN method

Miller, Pound, Wardell arxiv:1608.06783

S2[ϕ1, ϕ1] = tαβ∂αϕ1∂βϕ1

ϕ1 =
∞

∑
l=0

l

∑
m=−l

e−imΩtϕ1
lm(r)Ylm(θ, φ)

In practice, only up to 

some lmax

In PN, know all . e.g.l

ϕ+
lm = (rωη)l+1 1 + ( r2ω2

2(2l − 1)
+

l + 1
r ) η2 + …



Numerical solution: PN method

S2
lm[ϕ1, ϕ1] = ∮ tαβ∂α ∑

l1,m1

e−im1Ωtϕ1
l1m1

Yl1m1
∂β ∑

l2,m2

e−im2Ωtϕ1
l2m2

Yl2m2
Y*lm sin θ′�dθ′ �dφ′�

∮ Yl1m1
Yl2m2

Y*lmdΩ = Clm
l1m1l2m2 | l − l1 | ≤ l2 ≤ l + l1

• Evaluate  as a function of S2
lm l1

S2,l1
00 =

2 π(l1 + 1)
r4

0(ut)2
ϵ2l1+4η8 + …

• sum to , at each PN order ∞

S2
00 =

2 πϵ4

r4
0(ut)2(ϵ2 − 1)2 η8 +

2 πΩ2ϵ4

r2
0(ut)2(ϵ2 − 1)2 η10 −

πΩ4 (ϵ4 − 62ϵ2 + 25)
16(ut)2(ϵ2 − 1)2 +

πΩ4 (ϵ2 + 25) tanh−1(ϵ)
16(ut)2ϵ

η12…

ϵ = r0/r,  - PN order countingη



Numerical solution: PN method
r0 = 10

Puncture

PN

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Δr

S
00
[ϕ
,ϕ
]

Acknowledge: Barry Wardell



Numerical solution: PN method
r0 = 4

Acknowledge: Barry Wardell

Puncture

PN

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Δr

S
00
[ϕ
,ϕ
]



Numerical solution: PN method

Puncture

PN

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Δr

S
00
[ϕ
,ϕ
]

Infinite mode coupling:

not a problem for PN

Idea:

Compute  using high order 1SFS2,PN

Use it as the source for the full 2nd order numerical code



Future

Local  in curved space   -PN convergence?S2
lm

Computing  for Teukolsky?

• radiation gauge PN solutions as a testing ground for HRG? [Spiers, Upton talks yesterday] 

S2
lm

Implement asymptotic matching   (flat + Schwarzschild)→ ϕ2
lm

Toy models

GSF

…Next Capra

Lorenz gauge MST? [Durkan talk monday]

• Will PN be accurate enough to completely replace the source!



Schwarzschild scalar source 

Puncture

PN

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Δr

S
00
[ϕ
,ϕ
]

r0 = 10M, 2PN


