A view to second-order self-force for eccentric orbits 23rd Capra Meeting on Radiation Reaction in General Relativity

Benjamin Leather, Niels Warburton and Barry Wardell

University College Dublin, School of Mathematics and Statistics June 26, 2020

- Second-order self-force calculation of gravitational binding energy - Pound, Wardell, Warburton, and Miller (2019).
- Circular orbits in Schwarzschild spacetime (in progress). See Adam's talk...
- Aim: Astrophysically realistic scenario of noncircular orbits in Kerr spacetime.

Worldtube method for eccentric orbits with exponential convergence

Benjamin Leather

- Second-order self-force calculation of gravitational binding energy - Pound, Wardell, Warburton, and Miller (2019).
- Circular orbits in Schwarzschild spacetime (in progress). See Adam's talk...
- Aim: Astrophysically realistic scenario of noncircular orbits in Kerr spacetime.

Worldtube method for eccentric orbits with exponential convergence

Benjamin Leather

- Second-order self-force calculation of gravitational binding energy - Pound, Wardell, Warburton, and Miller (2019).
- Circular orbits in Schwarzschild spacetime (in progress). See Adam's talk...
- Aim: Astrophysically realistic scenario of noncircular orbits in Kerr spacetime.

Worldtube method for eccentric orbits with exponential convergence

Benjamin Leather

- Second-order self-force calculation of gravitational binding energy - Pound, Wardell, Warburton, and Miller (2019).
- Circular orbits in Schwarzschild spacetime (in progress). See Adam's talk...
- Aim: Astrophysically realistic scenario of noncircular orbits in Kerr spacetime.

Worldtube method for eccentric orbits with exponential convergence Effective source method for the Teukolsky equation (preliminary)

Benjamin Leather

- Second-order self-force calculation of gravitational binding energy - Pound, Wardell, Warburton, and Miller (2019).
- Circular orbits in Schwarzschild spacetime (in progress). See Adam's talk...
- Aim: Astrophysically realistic scenario of noncircular orbits in Kerr spacetime.

Worldtube method for eccentric orbits with exponential convergence

Effective source method for the Teukolsky equation (preliminary)

A view to second-order self-force for eccentric orbits

Benjamin Leather

$$G_{\mu\nu}[\mathbf{g}] = G_{\mu\nu}[g] + \epsilon \,\delta G_{\mu\nu}[h^{(1)}] + \epsilon^2 \left(\delta G_{\mu\nu}[h^{(2)}] + \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}]\right) + \mathcal{O}(\epsilon^3)$$

• Peform singular-regular split

$$h_{\mu\nu}^{(n)} = h_{\mu\nu}^{S(n)} + h_{\mu\nu}^{R(n)}$$

• Let's consider the first two orders in $\epsilon.$

$$\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu} ,$$

$$\delta G_{\mu\nu}[h^{\mathcal{R}(2)}] = \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] - \delta G_{\mu\nu}[h^{\mathcal{P}(2)}] .$$

$$G_{\mu\nu}[\mathbf{g}] = G_{\mu\nu}[g] + \epsilon \, \delta G_{\mu\nu}[h^{(1)}] + \epsilon^2 \left(\delta G_{\mu\nu}[h^{(2)}] + \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] \right) + \mathcal{O}(\epsilon^3)$$

• Peform singular-regular split

$$h_{\mu\nu}^{(n)} = h_{\mu\nu}^{S(n)} + h_{\mu\nu}^{R(n)}$$

• Let's consider the first two orders in $\epsilon.$

$$\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu} ,$$

$$\delta G_{\mu\nu}[h^{\mathcal{R}(2)}] = \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] - \delta G_{\mu\nu}[h^{\mathcal{P}(2)}].$$

$$G_{\mu\nu}[\mathbf{g}] = G_{\mu\nu}[g] + \epsilon \, \delta G_{\mu\nu}[h^{(1)}] + \epsilon^2 \left(\delta G_{\mu\nu}[h^{(2)}] + \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] \right) + \mathcal{O}(\epsilon^3)$$

• Peform singular-regular split

$$h_{\mu\nu}^{(n)} = h_{\mu\nu}^{S(n)} + h_{\mu\nu}^{R(n)}$$

• Let's consider the first two orders in $\epsilon.$

$$\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu} ,$$

$$\delta G_{\mu\nu}[h^{\mathcal{R}(2)}] = \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] - \delta G_{\mu\nu}[h^{\mathcal{P}(2)}].$$

$$G_{\mu\nu}[\mathbf{g}] = G_{\mu\nu}[g] + \epsilon \, \delta G_{\mu\nu}[h^{(1)}] + \epsilon^2 \left(\delta G_{\mu\nu}[h^{(2)}] + \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] \right) + \mathcal{O}(\epsilon^3)$$

• Peform singular-regular split

$$h_{\mu\nu}^{(n)} = h_{\mu\nu}^{S(n)} + h_{\mu\nu}^{R(n)}$$

• Let's consider the first two orders in ϵ .

Point particle source $T^{(1)}_{\mu\nu} = \mu \int_{\gamma} d\tau \ u_{\mu} u_{\nu} \frac{\delta^4 [x - z(\tau)]}{\sqrt{-g}},$

$$\delta G_{\mu\nu}[h^{\mathcal{R}(2)}] = \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] - \delta G_{\mu\nu}[h^{\mathcal{P}(2)}].$$

 $\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu} ,$

$$G_{\mu\nu}[\mathbf{g}] = G_{\mu\nu}[g] + \epsilon \, \delta G_{\mu\nu}[h^{(1)}] + \epsilon^2 \left(\delta G_{\mu\nu}[h^{(2)}] + \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] \right) + \mathcal{O}(\epsilon^3) +$$

• Peform singular-regular split

$$h_{\mu\nu}^{(n)} = h_{\mu\nu}^{S(n)} + h_{\mu\nu}^{R(n)}$$

• Let's consider the first two orders in ϵ .

$$\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu}, \qquad T^{(1)}_{\mu\nu} = \mu \int_{\gamma} d\tau \ u_{\mu} u_{\nu} \frac{\delta^4 [x - z(\tau)]}{\sqrt{-g}},$$

$$\delta G_{\mu\nu}[h^{\mathcal{R}(2)}] = \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] - \delta G_{\mu\nu}[h^{\mathcal{P}(2)}].$$

Non-compact. Sourced by first-order perturbation and diverges at the particle.

Point particle source

$$G_{\mu\nu}[\mathbf{g}] = G_{\mu\nu}[g] + \epsilon \, \delta G_{\mu\nu}[h^{(1)}] + \epsilon^2 \left(\delta G_{\mu\nu}[h^{(2)}] + \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] \right) + \mathcal{O}(\epsilon^3) +$$

• Peform singular-regular split

$$h_{\mu\nu}^{(n)} = h_{\mu\nu}^{S(n)} + h_{\mu\nu}^{R(n)}$$

• Let's consider the first two orders in
$$\epsilon$$
.
• $\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu}$,
• $\delta G_{\mu\nu}[h^{\mathcal{R}(2)}] = \delta^2 G_{\mu\nu}[h^{(1)}, h^{(1)}] - \delta G_{\mu\nu}[h^{\mathcal{P}(2)}].$
Linearized Einstein operator
 $\delta G_{\mu\nu}[\dots] = \partial_t^2 - \partial_{r_*}^2 + \dots$
Non-compact. Sourced by first-order perturbation
and diverges at the particle.

Benjamin Leather

- $\bullet\,$ Define a worldtube around the worldline
- Solve field equations for $h_{\mu\nu}^{(n)}$ outside worldtube
- Solve field equations for $h_{\mu\nu}^{\mathcal{R}(n)} \equiv h_{\mu\nu}^{(n)} - h_{\mu\nu}^{\mathcal{P}(n)} \sim h_{\mu\nu}^{\mathcal{R}(n)}$ inside worldtube
- At first-order we have

$$\delta G_{\mu\nu}[h^{\mathcal{R}(1)}] = 8\pi T^{(1)}_{\mu\nu} - \delta G_{\mu\nu}[h^{\mathcal{P}(1)}] \equiv S^{\text{eff}(1)}_{\mu\nu}$$

- Define a worldtube around the worldline
- Solve field equations for $h^{(n)}_{\mu\nu}$ outside worldtube
- Solve field equations for $h_{\mu\nu}^{\mathcal{R}(n)} \equiv h_{\mu\nu}^{(n)} - h_{\mu\nu}^{\mathcal{P}(n)} \sim h_{\mu\nu}^{\mathcal{R}(n)}$ inside worldtube
- At first-order we have

$$\delta G_{\mu\nu}[h^{\mathcal{R}(1)}] = 8\pi T^{(1)}_{\mu\nu} - \delta G_{\mu\nu}[h^{\mathcal{P}(1)}] \equiv S^{\text{eff}(1)}_{\mu\nu}$$

The challenge of eccentric orbits

- Discontinuity in the punctures is now time-dependant
- Need to take Fourier Transform for the new radial harmonic, n.
- At first-order, one can use Extended Homogeneous Solutions (EHS)
- Consider a compact source, spread across libration region

• "Toy model" scalar field, ψ

$$\Box_{\ell m n} \psi_{\ell m n}(r) = S_{\ell m n}(r)$$

• Solve with an auxiliary worldtube

Outside the worldtube $(r \leq r_{\min}, r \geq r_{\max})$

$$\Box_{\ell m n} \psi_{\ell m n}(r) = 0$$

- Retarded B.C. s
- Exponential convergence
- Integration over $S^{\text{eff}}_{\ell mn}(r)$

Inside the worldtube $(r_{\min} < r < r_{\max})$ $\Box_{\ell_{mn}} \psi^R_{\ell_{mn}}(r) = S^{\text{eff}}_{\ell_{mn}}(r)$

 $S_{\ell mn}^{\text{eff}}(r) \equiv S_{\ell mn}(r) - \Box_{\ell mn} \psi_{\ell mn}^{\mathcal{P}}(r)$

- FT of $S_{\ell m}^{\text{eff}}(t,r)$ not trivial
- Algebraic convergence
- Gibbs phenomenon

A view to second-order self-force for eccentric orbits

Benjamin Leather

• "Toy model" scalar field, ψ

$$\Box_{\ell m n} \psi_{\ell m n}(r) = S_{\ell m n}(r)$$

• Solve with an auxiliary worldtube

Outside the worldtube $(r \leq r_{\min}, r \geq r_{\max})$

$$\Box_{\ell m n} \psi_{\ell m n}(r) = 0$$

- Retarded B.C. s
- Exponential convergence
- Integration over $S^{\text{eff}}_{\ell mn}(r)$

Inside the worldtube $(r_{\min} < r < r_{\max})$

$$\Box_{\ell m n} \psi^R_{\ell m n}(r) = S^{\text{eff}}_{\ell m n}(r)$$
$$S^{\text{eff}}_{\ell m n}(r) \equiv S_{\ell m n}(r) - \Box_{\ell m n} \psi^{\mathcal{P}}_{\ell m n}(r)$$

- FT of $S_{\ell m}^{\text{eff}}(t,r)$ not trivial
- Algebraic convergence
- Gibbs phenomenon

A view to second-order self-force for eccentric orbits

Benjamin Leather

• "Toy model" scalar field, ψ

$$\Box_{\ell m n} \psi_{\ell m n}(r) = S_{\ell m n}(r)$$

• Solve with an auxiliary worldtube

Outside the worldtube $(r \leq r_{\min}, r \geq r_{\max})$

$$\Box_{\ell m n} \psi_{\ell m n}(r) = 0$$

- Retarded B.C. s
- Exponential convergence
- Integration over $S_{\ell mn}^{\text{eff}}(r)$

Benjamin Leather

Inside the worldtube $(r_{\min} < r < r_{\max})$ $\Box_{\ell m n} \psi^R_{\ell m n}(r) = S^{\text{eff}}_{\ell m n}(r)$

$$S_{\ell mn}^{\text{eff}}(r) \equiv S_{\ell mn}(r) - \Box_{\ell mn} \psi_{\ell mn}^{\mathcal{P}}(r)$$

- FT of $S_{\ell m}^{\text{eff}}(t,r)$ not trivial
- Algebraic convergence
- Gibbs phenomenon

• "Toy model" scalar field, ψ

$$\Box_{\ell m n} \psi_{\ell m n}(r) = S_{\ell m n}(r)$$

• Solve with an auxiliary worldtube

Outside the worldtube $(r \leq r_{\min}, r \geq r_{\max})$

$$\Box_{\ell m n} \psi_{\ell m n}(r) = 0$$

- Retarded B.C. s
- Exponential convergence
- Integration over $S_{\ell mn}^{\text{eff}}(r)$

Benjamin Leather

Inside the worldtube $(r_{\min} < r < r_{\max})$ $\Box_{\ell m n} \psi^R_{\ell m n}(r) = S^{\text{eff}}_{\ell m n}(r)$ $S^{\text{eff}}_{\ell m n}(r) \equiv S_{\ell m n}(r) - \Box_{\ell m n} \psi^{\mathcal{P}}_{\ell m n}(r)$

- FT of $S_{\ell m}^{\text{eff}}(t,r)$ not trivial
- Algebraic convergence
- Gibbs phenomenon

• "Toy model" scalar field, ψ

$$J_{\ell m n} \psi_{\ell m n}(r) = S_{\ell m n}(r)$$

• Solve with an auxiliary worldtube Outside the worldtube $(r \leq r_{\min}, r \geq r_{\max})$

$$\Box_{\ell m n} \psi_{\ell m n}(r) = 0$$

- Retarded B.C. s
- Exponential convergence
- Integration over $S^{\text{eff}}_{\ell mn}(r)$

Benjamin Leather

Compact

Source

$$S_{\ell m n}^{\text{eff}}(r) \equiv S_{\ell m n}(r) - \Box_{\ell m n} \psi_{\ell m n}^{\mathcal{P}}(r)$$

- FT of $S_{\ell m}^{\text{eff}}(t,r)$ not trivial
- Algebraic convergence
- Gibbs phenomenon

A Naive Approach

• FT of effective source is found numerically

$$S_{\ell m n}^{\text{eff}}(r) = \frac{1}{T_r} \int_0^{T_r} S_{\ell m}^{\text{eff}}(t, r) e^{i\omega_{mn}t} dt \implies S_{\ell m}^{\text{eff}}(t, r) = \sum_{n=-\infty}^{\infty} S_{\ell m n}^{\text{eff}}(r) e^{-i\omega_{mn}t} dt$$

- Computationally difficult (slow)
- In practise this leads to poor convergence
- $S_{\ell mn}^{\text{eff}}(t,r)$ is C^0 differentiable \mapsto Gibbs ringing
- Acausal homogeneous solutions excited

A Naive Approach

• FT of effective source is found numerically

$$S_{\ell mn}^{\rm eff}(r) = \frac{1}{T_r} \int_0^{T_r} S_{\ell m}^{\rm eff}(t,r) e^{i\omega_{mn}t} dt \implies S_{\ell m}^{\rm eff}(t,r) = \sum_{n=-\infty}^{\infty} S_{\ell mn}^{\rm eff}(r) e^{-i\omega_{mn}t} dt$$

- Computationally difficult (slow)
- In practise this leads to poor convergence
- $S_{\ell mn}^{\text{eff}}(t,r)$ is C^0 differentiable \mapsto Gibbs ringing
- Acausal homogeneous solutions excited

Gibbs Phenomenon

• Similar to EHS by Barack, Ori, and Sago (2008)

Excited Homogeneous Solutions

• Extended Particular Solutions originally formulated by Hopper and Evans (2013)

Benjamin Leather

- Form two smooth functions: $\hat{S}_{\ell m}^{\text{eff},+}(t,r)$ and $\hat{S}_{\ell m}^{\text{eff},-}(t,r)$
- In the FD

$$\hat{S}_{\ell m n}^{\text{eff},\pm}(r) = \frac{1}{T_r} \int_0^{T_r} \hat{S}_{\ell m}^{\text{eff},\pm}(t,r) e^{i\omega_{mn}t} dt.$$

• We postulate, as $N \longrightarrow \infty$ in the partial sums

$$\lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},+}(t,r) = \lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},-}(t,r)$$

A view to second-order self-force for eccentric orbits

Benjamin Leather

- Form two smooth functions: $\hat{S}_{\ell m}^{\text{eff},+}(t,r)$ and $\hat{S}_{\ell m}^{\text{eff},-}(t,r)$
- In the FD

$$\hat{S}_{\ell m n}^{\mathrm{eff},\pm}(r) = \frac{1}{T_r} \int_0^{T_r} \hat{S}_{\ell m}^{\mathrm{eff},\pm}(t,r) e^{i\omega_{mn}t} dt.$$

• We postulate, as $N \longrightarrow \infty$ in the partial sums

$$\lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},+}(t,r) = \lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},-}(t,r)$$

A view to second-order self-force for eccentric orbits

- Form two smooth functions: $\hat{S}_{\ell m}^{\text{eff},+}(t,r)$ and $\hat{S}_{\ell m}^{\text{eff},-}(t,r)$
- In the FD

$$\hat{S}_{\ell m n}^{\text{eff},\pm}(r) = \frac{1}{T_r} \int_0^{T_r} \hat{S}_{\ell m}^{\text{eff},\pm}(t,r) e^{i\omega_{mn}t} dt.$$

• We postulate, as $N \longrightarrow \infty$ in the partial sums

$$\lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},+}(t,r) = \lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},-}(t,r)$$

A view to second-order self-force for eccentric orbits

Benjamin Leather

• Form two smooth functions: $\hat{S}_{\ell m}^{\text{eff},+}(t,r)$ and $\hat{S}_{\ell m}^{\text{eff},-}(t,r)$

• In the FD

$$\hat{S}_{\ell m n}^{\text{eff},\pm}(r) = \frac{1}{T_r} \int_0^{T_r} \hat{S}_{\ell m}^{\text{eff},\pm}(t,r) e^{i\omega_{mn}t} dt.$$

• We postulate, as $N \longrightarrow \infty$ in the partial sums

$$\lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},+}(t,r) = \lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},-}(t,r)$$

A view to second-order self-force for eccentric orbits

Benjamin Leather

A view to second-order self-force for eccentric orbits

Extended Effective Sources (EES)

- Form two smooth functions: $\hat{S}_{\ell m}^{\text{eff},+}(t,r)$ and $\hat{S}_{\ell m}^{\text{eff},-}(t,r)$
- In the FD

$$\hat{S}^{\mathrm{eff},\pm}_{\ell mn}(r) = \frac{1}{T_r} \int_0^{T_r} \hat{S}^{\mathrm{eff},\pm}_{\ell m}(t,r) e^{i\omega_{mn}t} dt.$$

• We postulate, as $N \longrightarrow \infty$ in the partial sums

$$\lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},+}(t,r) = \lim_{r \to r_p(t)} \hat{S}_{\ell m}^{\text{eff},-}(t,r)$$

• By extension, for any t and r,

$$S_{\ell m}^{\text{eff}}(t,r) = \hat{S}_{\ell m}^{\text{eff},+}(t,r)\Theta[r-r_p(t)] + \hat{S}_{\ell m}^{\text{eff},-}(t,r)\Theta[r_p(t)-r]$$

Benjamin Leather

A view to second-order self-force for eccentric orbits

 $\psi^R_{\ell m n}(r)$

 $r_{\rm min}$

$$\psi^+ \equiv \psi^-_p - \kappa^+ \psi^-_h,$$

 $\tilde{\psi}^- \equiv \hat{\psi}^-_p - \lambda^- \psi^-_h.$

 $\tilde{\psi}^{\pm}_{\ell m}(r,t) \equiv \sum \tilde{\psi}^{\pm}_{\ell m n}(r) e^{-i\omega_{mn}t}$

 $\tilde{i} + \hat{i} + + i +$

• We define the FD EPS (with EES) to be $\hat{\psi}_n^{\pm}$

$$\bigwedge$$
 \bigwedge

 $r_{\rm max}$

A view to second-order self-force for eccentric orbits

•

 $\tilde{\psi}^{\pm}_{\ell m}(r,t) \equiv \sum \tilde{\psi}^{\pm}_{\ell m n}(r) e^{-i\omega_{mn}t}$

Extended Effective Sources (EES) I

- We define the FD EPS (with EES) to be $\hat{\psi}_n^{\pm}$
- We then define

$$\begin{split} \tilde{\psi}^+ &\equiv \hat{\psi}_p^+ - \kappa^+ \psi_h^+, \\ \tilde{\psi}^- &\equiv \hat{\psi}_p^- - \lambda^- \psi_h^-. \end{split}$$

$$r_{\min}$$
 $\psi^{R}_{row}(r)$ $\tilde{\psi}^{+}(r)$ r_{\max}

A view to second-order self-force for eccentric orbits

 $\psi^R_{\ell m n}(r)$

 $r_{\rm min}$

- •
- $\tilde{\psi}^{\pm}_{\ell m}(r,t) \equiv \sum \tilde{\psi}^{\pm}_{\ell m n}(r) e^{-i\omega_{mn}t}$

Extended Effective Sources (EES) I

$$\begin{split} \tilde{\psi}^+ &\equiv \hat{\psi}_p^+ - \kappa^+ \psi_h^+, \\ \tilde{\psi}^- &\equiv \hat{\psi}_p^- - \lambda^- \psi_h^-. \end{split}$$

• We define the FD EPS (with EES) to be $\hat{\psi}^{\pm}$

$$\tilde{\psi}^- \equiv \hat{\psi}_p^- - \lambda^- \psi_h^-.$$

 $r_{\rm max}$

 $\tilde{\psi}^+(r)$

TD

- •

 $n = -\infty$

• The FD EPS can then be transferred to the $\tilde{\psi}^{\pm}_{\ell m}(r,t) \equiv \sum_{\ell=1}^{\infty} \tilde{\psi}^{\pm}_{\ell m n}(r) e^{-i\omega_{mn}t}$

We define the FD EPS (with EES) to be
$$\hat{\psi}_p^{\pm}$$

We then define

Extended Effective Sources (EES) I

$$\begin{split} \psi^+ &\equiv \psi^+_p - \kappa^+ \psi^+_h, \\ \tilde{\psi}^- &\equiv \hat{\psi}^-_p - \lambda^- \psi^-_h. \end{split}$$

$$r_{\min}$$
 $\tilde{\psi}^-(r)$ $\psi^R_{tom}(r)$ $\tilde{\psi}^+(r)$ r_{\max}

• We then define

A view to second-order self-force for eccentric orbits

$$\psi_{\ell m}^R(t,r) = \tilde{\psi}_{\ell m}^+(t,r)\Theta[r-r_p(t)] + \tilde{\psi}_{\ell m}^-(t,r)\Theta[r_p(t)-r]$$

$$\tilde{\psi}^{\pm}_{lm}(r,t) \equiv \sum_{h=0}^{\infty} \tilde{\psi}^{\pm}_{lmn}(r) e^{-i\omega_{mn}t}$$

 $\tilde{\psi}^+ \equiv \hat{\psi}_p^+ - \kappa^+ \psi_h^+,$

 $n = -\infty$

Extended Effective Sources (EES) I

• We define the FD EPS (with EES) to be $\hat{\psi}_n^{\pm}$

$$\psi^{-} \equiv \psi_{p}^{-} - \lambda^{-} \psi_{h}^{-}.$$

D EPS can then be transferred to the

$$\tilde{\psi}^- \equiv \hat{\psi}_p^- - \lambda^- \psi_h^-.$$

Restoring Exponential Convergence with EES

Restoring Exponential Convergence with EES

Benjamin Leather

- Need Teukolsky formalism for second-order SF in Kerr. See Andrew's talk...
- Require quick sampling over libration region
- Use Hyperboloidal slicing based on the framework by Zenginoglu (2011)

$${}_sR^{\pm}_{\ell m\omega}(r) = r^{-(2s+1)}f(r)^{-s}e^{i\omega h}\,{}_s\Re^{\pm}_{\ell m\omega}(r)$$

- Need Teukolsky formalism for second-order SF in Kerr. See Andrew's talk...
- Require quick sampling over libration region
- Use Hyperboloidal slicing based on the framework by Zenginoglu (2011)

$${}_sR^{\pm}_{\ell m\omega}(r) = r^{-(2s+1)}f(r)^{-s}e^{i\omega h}\,{}_s\Re^{\pm}_{\ell m\omega}(r)$$

- Need Teukolsky formalism for second-order SF in Kerr. See Andrew's talk...
- Require quick sampling over libration region
- Use Hyperboloidal slicing based on the framework by Zenginoglu (2011)

$${}_sR^{\pm}_{\ell m\omega}(r)=r^{-(2s+1)}f(r)^{-s}e^{i\omega h}\,{}_s\Re^{\pm}_{\ell m\omega}(r)$$

- Hyperboloidal technique already used for second-order calculations
- Agreement with flux data for circular and eccentric orbits $\sim 10^{-12}$
- Code soon to be available on the Black Hole Perturbation Toolkit 🧷
- Use the (high-order) Lorenz-gauge punctures to compute gauge-invariant $\psi_4^{\mathcal{P}\ell m}$ Wardell and Warburton (2015)
- Currently only for circular orbits in Schwarzschild

$$\psi_{4}^{\mathcal{P}\ell m} = -\frac{\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}}{16r^{3}} \left[h_{\ell m}^{(1)\mathcal{P}} + h_{\ell m}^{(2)\mathcal{P}} \right] + \left(\frac{-f'\partial_{t} - f^{2}\partial_{rr} + 2f\partial_{tr} - \partial_{tt}}{16r\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}} \right) \times \left[h_{\ell m}^{(7)\mathcal{P}} - ih_{\ell m}^{(10)\mathcal{P}} \right] + \frac{\sqrt{(\ell-1)(\ell+2)}}{4r^{2}f^{2}\sqrt{\ell(1+\ell)}} \left(-f' + f\partial_{r} + \partial_{t} \right) \left[h_{\ell m}^{(4)\mathcal{P}} - h_{\ell m}^{(5)\mathcal{P}} + i\left(h_{\ell m}^{(8)\mathcal{P}} - h_{\ell m}^{(9)\mathcal{P}} \right) \right]$$

- Hyperboloidal technique already used for second-order calculations
- Agreement with flux data for circular and eccentric orbits $\sim 10^{-12}$
- Code soon to be available on the Black Hole Perturbation Toolkit 🧷
- Use the (high-order) Lorenz-gauge punctures to compute gauge-invariant $\psi_4^{\mathcal{P}\ell m}$ Wardell and Warburton (2015)
- Currently only for circular orbits in Schwarzschild

$$\psi_{4}^{\mathcal{P}\,\ell m} = -\frac{\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}}{16r^{3}} \left[h_{\ell m}^{(1)\mathcal{P}} + h_{\ell m}^{(2)\mathcal{P}} \right] + \left(\frac{-f'\partial_{t} - f^{2}\partial_{rr} + 2f\partial_{tr} - \partial_{tt}}{16r\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}} \right) \times \\ \left[h_{\ell m}^{(7)\mathcal{P}} - ih_{\ell m}^{(10)\mathcal{P}} \right] + \frac{\sqrt{(\ell-1)(\ell+2)}}{4r^{2}f^{2}\sqrt{\ell(1+\ell)}} \left(-f' + f\partial_{r} + \partial_{t} \right) \left[h_{\ell m}^{(4)\mathcal{P}} - h_{\ell m}^{(5)\mathcal{P}} + i\left(h_{\ell m}^{(8)\mathcal{P}} - h_{\ell m}^{(9)\mathcal{P}} \right) \right]$$

- UCD RELATIVITY GROUP
- Hyperboloidal technique already used for second-order calculations
- Agreement with flux data for circular and eccentric orbits $\sim 10^{-12}$
- Code soon to be available on the Black Hole Perturbation Toolkit 🕜
- Use the (high-order) Lorenz-gauge punctures to compute gauge-invariant $\psi_4^{\mathcal{P}\ell m}$ Wardell and Warburton (2015)
- Currently only for circular orbits in Schwarzschild

$$\psi_{4}^{\mathcal{P}\ell m} = -\frac{\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}}{16r^{3}} \left[h_{\ell m}^{(1)\mathcal{P}} + h_{\ell m}^{(2)\mathcal{P}} \right] + \left(\frac{-f'\partial_{t} - f^{2}\partial_{rr} + 2f\partial_{tr} - \partial_{tt}}{16r\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}} \right) \times \left[h_{\ell m}^{(7)\mathcal{P}} - ih_{\ell m}^{(10)\mathcal{P}} \right] + \frac{\sqrt{(\ell-1)(\ell+2)}}{4r^{2}f^{2}\sqrt{\ell(1+\ell)}} \left(-f' + f\partial_{r} + \partial_{t} \right) \left[h_{\ell m}^{(4)\mathcal{P}} - h_{\ell m}^{(5)\mathcal{P}} + i\left(h_{\ell m}^{(8)\mathcal{P}} - h_{\ell m}^{(9)\mathcal{P}} \right) \right]$$

- Hyperboloidal technique already used for second-order calculations
- Agreement with flux data for circular and eccentric orbits $\sim 10^{-12}$
- Code soon to be available on the Black Hole Perturbation Toolkit 🕜
- Use the (high-order) Lorenz-gauge punctures to compute gauge-invariant $\psi_4^{\mathcal{P}\ell m}$ Wardell and Warburton (2015)
- Currently only for circular orbits in Schwarzschild

$$\psi_{4}^{\mathcal{P}\,\ell m} = -\frac{\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}}{16r^{3}} \left[h_{\ell m}^{(1)\mathcal{P}} + h_{\ell m}^{(2)\mathcal{P}} \right] + \left(\frac{-f'\partial_{t} - f^{2}\partial_{rr} + 2f\partial_{tr} - \partial_{tt}}{16r\sqrt{(\ell-1)\ell(\ell+1)(\ell+2)}} \right) \times \\ \left[h_{\ell m}^{(7)\mathcal{P}} - ih_{\ell m}^{(10)\mathcal{P}} \right] + \frac{\sqrt{(\ell-1)(\ell+2)}}{4r^{2}f^{2}\sqrt{\ell(1+\ell)}} \left(-f' + f\partial_{r} + \partial_{t} \right) \left[h_{\ell m}^{(4)\mathcal{P}} - h_{\ell m}^{(5)\mathcal{P}} + i\left(h_{\ell m}^{(8)\mathcal{P}} - h_{\ell m}^{(9)\mathcal{P}} \right) \right]$$

Regularized Weyl Scalar

• We have

$${}_{-2}\tilde{\Box}_{\ell m\omega} \left({}_{-2}R^{\mathcal{R}}_{\ell m\omega} \right) = T_{\ell m\omega} - {}_{-2}\tilde{\Box}_{\ell m\omega} \left({}_{-2}R^{\mathcal{P}}_{\ell m\omega} \right) = T_{\ell m\omega} - {}_{-2}\tilde{\Box}_{\ell m\omega} \left(r^4 \psi^{\mathcal{P}\,\ell m\omega}_4 \right),$$

Regularized Weyl Scalar

- Resolve bottleneck in calculation of κ^+ and λ^-
- Extend to gravitational perturbations
- Lorenz Gauge eccentric formulation...
- Challenging

- Begin implementing second-order calculation
- Extend to eccentric orbits
- Compute gauge invariant quantities, e.g. speciality index

- Resolve bottleneck in calculation of κ^+ and λ^-
- Extend to gravitational perturbations
- Lorenz Gauge eccentric formulation...
- Challenging

- Begin implementing second-order calculation
- Extend to eccentric orbits
- Compute gauge invariant quantities, e.g. speciality index

- Resolve bottleneck in calculation of κ^+ and λ^-
- Extend to gravitational perturbations
- Lorenz Gauge eccentric formulation...
- Challenging

- Begin implementing second-order calculation
- Extend to eccentric orbits
- Compute gauge invariant quantities, e.g. speciality index

- Resolve bottleneck in calculation of κ^+ and λ^-
- Extend to gravitational perturbations
- Lorenz Gauge eccentric formulation...
- Challenging

- Begin implementing second-order calculation
- Extend to eccentric orbits
- Compute gauge invariant quantities, e.g. speciality index