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State of the art

e Second-order self-force calculation of
gravitational binding energy - Pound,
Wardell, Warburton, and Miller (2019).

e Circular orbits in Schwarzschild
spacetime (in progress). See Adam’s
talk...

e Aim: Astrophysically realistic scenario
of noncircular orbits in Kerr spacetime.

Worldtube method for eccentric orbits Effective source method for the
with exponential convergence Teukolsky equation (preliminary)
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Field Equations

UCD RELATIVITY GROUP

G lel = G, lg] + €0G,, [V + € (5GW[h<2>] +06°G,,, [hY, h<1>]) +0(é)
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Field Equations

G lel = G, lg) + €0G,, [V + € (6Gw[h(2)] +6°G,,, [hY, h<1>]) +0(é)

o Peform singular-regular split
R — pSM) 4 hf(")

uv 1% v
e Let’s consider the first two orders in e. Point particle source
T(l) = ﬂ/ d'r U, U M
v 1t 4 ’
5G,, (W] | = | 8x TS <—|_ ' i V=9

R(2 _ P(2
G, [h @) = 682G, [hV, RW] |- 6G , [1 @),
A

]
Non-compact. Sourced by first-order perturbation

Linearized Einstein operator

6G,,[...]1=0; -2 +...

and diverges at the particle.
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Worldtube and effective source

e Define a worldtube around the worldline
e Solve field equations for hfﬁj) outside
worldtube

e Solve field equations for

hﬁu(n) = h,(ﬁ/) - hf,f“) ~ hffy(“) inside
worldtube

UCD RELATIVITY GROUP

Solve for regular
field A" inside
worldtube

Solve for retarded field hfﬁ)
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Worldtube and effective source

UCD RELATIVITY GROUP

e Define a worldtube around the worldline Solve for regular
field A" inside
(n)

worldtube
e Solve field equations for h,, outside
worldtube

e Solve field equations for

hﬁu(n) = h,(ﬁ/) - hf,f“) ~ hffy(“) inside
worldtube

Solve for retarded field hfﬁ)

e At first-order we have

R(1) 1 P(l) — (1
0G,,, [W*W] = 87T () —sG , [P V] = seIM)
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The challenge of eccentric orbits ‘

—— |

UCD RELATIVITY GROUP

e Discontinuity in the punctures is now
time-dependant

e Need to take Fourier Transform for the
new radial harmonic, n.

e At first-order, one can use Extended
Homogeneous Solutions (EHS)

e Consider a compact source, spread
across libration region

Tmax
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Scalar self-force (SSF) model

UCD RELATIVITY GROUP

e “Toy model” scalar field, ¥

OemnYemn (7') = Semn (7')
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e “Toy model” scalar field, v
Dfmn¢imn(r) = Sémn(r)

e Solve with an auxiliary worldtube
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Scalar self-force (SSF) model

UCD RELATIVITY GROUP

e “Toy model” scalar field, ¥

OermnYemn (T) =| Stmn (7')

Compact

e Solve with an auxiliary worldtube Source
Outside the worldtube

(7' < Pmins T = Tmax)

Dfmnwﬁmn(r) = Szgzn(r)

D mn mn r)= 0 ¢
emnVemn (1) SeE (1) = Stmn(r) — Oomntionn (1)

e Retarded B.C. s o FT of S (¢,7) not trivial
e Exponential convergence e Algebraic convergence
e Integration over Sg (r) e Gibbs phenomenon



A Naive Approach

UCD RELATIVITY GROUP

o BT of effective source is found numerically

I . .
Stmn(r) = 7 ; St r)eemtdt = S(t,r) = Y SEE (r)eiemnt
r

n=—oo
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A Naive Approach

FT of effective source is found numerically

1 Tr _.
Simn(r) = 77 | Sin(tr)eemtat = Si = > s e
T

n=—oo

Computationally difficult (slow)

In practise this leads to poor convergence

ngn(t, r) is CY differentiable — Gibbs ringing

Acausal homogeneous solutions excited
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Gibbs Phenomenon «

UCD RELATIVITY GROUP

e Similar to EHS by Barack, Ori, and Sago (2008)
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Excited Homogeneous Solutions

UCD RELATIVITY GROUP

¢ Extended Particular Solutions originally formulated by Hopper and Evans (2013)

.10710
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Extended Particular Solutions

—§

UCD RELATIVITY GROUP

Ot (r) = S (7)
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Extended Particular Solutions

Subtract v, to remove acausality,

=Y N

VVVV VY

Winn T

~ e

Dlmnwlﬁmn (r)= S;rfrfzn (r)
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Extended Particular Solutions

Z N
UCD RELATIVITY GROUP

~ gimnTs

Subtract ¢} to remove acausality,

= g - wtu

Dlmnwlﬁmn (r)= S;rfrfzn (r)
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Extended Particular Solutions

UCD RELATIVITY GROUP

Acausal outgoing /\/\/\/\/

homogeneous solution, ;.
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Extended Particular Solutions 11

~ | N\
UCD RELATIVITY GROUP
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Extended Effective Sources (EES)
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Extended Effective Sources (EES)

UCD RELATIVITY GROUP

e Form two smooth functions: S’EEL’JF (t,r)
and gggl’_(t, T)

Seft(t,7)

'
.

rp(t)
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Extended Effective Sources (EES)

e Form two smooth functions: S’Eff (t,r)
and ,SA’EE{_(t, T)

rp(t)
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Extended Effective Sources (EES)

UCD RELATIVITY GROUP

e Form two smooth functions: S’ZfoL’JF (t,r)
and S’;gf(t, T)

'
-~

rp(t)
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Extended Effective Sources (EES)

\
UCD RELATIVITY GROUP

e Form two smooth functions: S’EE{JF (t,r)
and ,SA’ES{_(t, T)
e In the FD

SeE=(1, 1)
tn

gty = L /O SR (4 p)comntdy,

Imn
r

e We postulate, as N — oo in the partial
sums

L _ ____ __ _ W

lim SSF(r) = lim ST (¢, )

r—rp(t) r—rp(t)

rp(t)
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Extended Effective Sources (EES) 4

UCD RELATIVITY GROUP

e By extension, for any ¢t and r,

Sim(tsr) = Spu (8,1)8[r — ryp(1)] + S (,7)O[rp(t) — 71,
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Extended Effective Sources (EES) I

e We define the FD EPS (with EES) to be ¢
e We then define
Gt =gk — sty

V=, =AY,

(]
UCD RELATIVITY GROUP

T'min

R () Tmax
ik (r)
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Extended Effective Sources (EES) I

e We define the FD EPS (with EES) to be ¢
e We then define

P = wp EARUAS
P = % — ATy,
e The FD EPS can then be transferred to the

TD
w@m Ty t E Z Q'bfmn _lwmnt

n=—oo

~ | N\
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Extended Effective Sources (EES) I
e We define the FD EPS (with EES) to be ¢
e We then define

UCD RELATIVITY GROUP

= - R g
b= dy - Ay ;
e The FD EPS can then be transferred to the
TD
w@m T t E Z wlmn _lwmnt i i

e The solution for the regular field is then i UFn(r) gy

given by the weak solution,
R 7 T
wfm(ta T) = w;m(t, T>@[T - Tp(t)] + wfm(ta T)G)[Tp(t) - 7’]
_ A view to second-order self-force for eccentric orbits



Restoring Exponential Convergence with EES

@ 1072 N
“T """ N=6 T
w1074 E
= 106} N=11 i
z =
£ 1 & w0y ]
@ 1 & omop ]
ED i .ioﬂ 10—12 I ]
85 9 95 10 105 11 115 12 125 85 9 95 10 105 11 15 12 125
r T



Restoring Exponential Convergence with EES

UCD RELATIVITY GROUP
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Effective Source Method for Teukolsky

UCD RELATIVITY GROUP

Singularity i+

e Need Teukolsky formalism for
second-order SF in Kerr. See Andrew’s
talk...
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Effective Source Method for Teukolsky

e Need Teukolsky formalism for
second-order SF in Kerr. See Andrew’s
talk...

e Require quick sampling over libration
region

e Use Hyperboloidal slicing based on the
framework by Zenginoglu (2011)

R (1) = 17V ()7 RE(r)

Imw




Effective Source Method for Teukolsky

UCD RELATIVITY GROUP

e Hyperboloidal technique already used for second-order calculations
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Effective Source Method for Teukolsky

¢ Hyperboloidal technique already used for second-order calculations
e Agreement with flux data for circular and eccentric orbits ~ 10712
e Code soon to be available on the Black Hole Perturbation Toolkit @
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Effective Source Method for Teukolsky

Hyperboloidal technique already used for second-order calculations
e Agreement with flux data for circular and eccentric orbits ~ 10712
Code soon to be available on the Black Hole Perturbation Toolkit @

Use the (high-order) Lorenz-gauge punctures to compute gauge-invariant 1} " -
Wardell and Warburton (2015)

Currently only for circular orbits in Schwarzschild
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Regularized Weyl Scalar

UCD RELATIVITY GROUP

e We have
—20eme (_2RZ)’M) = Tomw ——2 Deme (—2Rfmw) = Tomw ——2 Utmw (7“4,(1[);71357““’) )
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Regularized Weyl Scalar

UCD RELATIVITY GROUP

e We have
—20emw (_QRZROJ) = Tomw ——2 Domw (—QRszw) = Tomw ——2 Uomw (szfém‘v) )

Bardeen-Press-Teukolsky

differential operator, s = —2
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Future Research
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Future Research

Worldtube method for eccentric orbits Effective source method for the
with exponential convergence Teukolsky equation (preliminary)
e Resolve bottleneck in calculation of k™ e Begin implementing second-order
and A\~ calculation
e Extend to gravitational perturbations e Extend to eccentric orbits
e Lorenz Gauge eccentric formulation... o Compute gauge invariant quantities, e.g.

speciality index

Challenging
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