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State of the art

• Second-order self-force calculation of
gravitational binding energy - Pound,
Wardell, Warburton, and Miller (2019).

• Circular orbits in Schwarzschild
spacetime (in progress). See Adam’s
talk...

• Aim: Astrophysically realistic scenario
of noncircular orbits in Kerr spacetime.

Worldtube method for eccentric orbits
with exponential convergence

Effective source method for the
Teukolsky equation (preliminary)
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Field Equations

Gµν [g] = Gµν [g] + ε δGµν [h(1)] + ε2
(
δGµν [h(2)] + δ2Gµν [h(1), h(1)]

)
+O(ε3)

• Peform singular-regular split
h(n)
µν = hS(n)

µν + hR(n)
µν

• Let’s consider the first two orders in ε.

δGµν [h(1)] = 8πT
(1)
µν ,

δGµν [hR(2)] = δ2Gµν [h(1), h(1)] − δGµν [hP(2)].

Point particle source

T (1)
µν = µ

∫

γ

dτ uµuν
δ4[x− z(τ)]√−g ,

Non-compact. Sourced by first-order perturbation

and diverges at the particle.

Linearized Einstein operator

δGµν [. . . ] = ∂2t − ∂2r∗ + . . .
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Worldtube and effective source

• Define a worldtube around the worldline

• Solve field equations for h
(n)
µν outside

worldtube

• Solve field equations for

h
R(n)
µν ≡ h(n)

µν − hP(n)
µν ∼ hR(n)

µν inside
worldtube

• At first-order we have

δGµν [hR(1)] = 8πT (1)
µν −δGµν [hP(1)] ≡ Seff(1)

µν

Solve for regular

field h
R(n)
µν inside

worldtube

Solve for retarded field h
(n)
µν
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The challenge of eccentric orbits

• Discontinuity in the punctures is now
time-dependant

• Need to take Fourier Transform for the
new radial harmonic, n.

• At first-order, one can use Extended
Homogeneous Solutions (EHS)

• Consider a compact source, spread
across libration region

M
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Scalar self-force (SSF) model

• “Toy model” scalar field, ψ

�`mnψ`mn(r) = S`mn(r)

• Solve with an auxiliary worldtube

Outside the worldtube
(r ≤ rmin, r ≥ rmax)

�`mnψ`mn(r) = 0

• Retarded B.C. s

• Exponential convergence

• Integration over Seff
`mn(r)

Inside the worldtube
(rmin < r < rmax)

�`mnψ
R
`mn(r) = Seff

`mn(r)

Seff
`mn(r) ≡ S`mn(r)−�`mnψ

P
`mn(r)

• FT of Seff
`m(t, r) not trivial

• Algebraic convergence

• Gibbs phenomenon

Compact
Source
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A Naive Approach

• FT of effective source is found numerically

Seff
`mn(r) =

1

Tr

∫ Tr

0
Seff
`m(t, r)eiωmntdt =⇒ Seff

`m(t, r) =
∞∑

n=−∞
Seff
`mn(r)e−iωmnt

• Computationally difficult (slow)

• In practise this leads to poor convergence

• Seff
`mn(t, r) is C0 differentiable 7−→ Gibbs ringing

• Acausal homogeneous solutions excited

Benjamin Leather A view to second-order self-force for eccentric orbits
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Gibbs Phenomenon

• Similar to EHS by Barack, Ori, and Sago (2008)
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Excited Homogeneous Solutions

• Extended Particular Solutions originally formulated by Hopper and Evans (2013)
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Extended Particular Solutions

�`mnψ
R
`mn(r) = Seff

`mn(r)

∼ e−iωmnr∗

∼ eiωmnr∗∼ eiωmnr∗

∼ e−iωmnr∗

ψHpψ∞p

Acausal ingoing
homogeneous solution, ψ−h .

Subtract ψ−h to remove acausality,

ψstd
p ≡ ψHp − λ−ψ−h

Acausal outgoing
homogeneous solution, ψ+

h .

Subtract ψ+
h to remove acausality,

ψstd
p ≡ ψ∞p − κ+ψ+

h

Find κ+ and λ−

ψ∞p − κ+ψ+
h = ψHp − λ−ψ−h ,

dψ∞p
dr
− κ+dψ

+
h

dr
=
dψHp
dr
− λ−dψ

−
h

dr
.
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Extended Particular Solutions II
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Extended Effective Sources (EES)

• Form two smooth functions: Ŝeff,+
`m (t, r)

and Ŝeff,−
`m (t, r)

• In the FD

Ŝeff,±
`mn (r) =

1

Tr

∫ Tr

0
Ŝeff,±
`m (t, r)eiωmntdt.

• We postulate, as N −→∞ in the partial
sums

lim
r→rp(t)

Ŝeff,+
`m (t, r) = lim

r→rp(t)
Ŝeff,−
`m (t, r)

rmin rmax

Ŝeff,+
`m (t, r)

Ŝeff,−
`m (t, r)

rp(t)

Seff
`m(t, r)
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Ŝeff,+
`m (t, r) = lim

r→rp(t)
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Extended Effective Sources (EES)

• By extension, for any t and r,

Seff
`m(t, r) = Ŝeff,+

`m (t, r)Θ[r − rp(t)] + Ŝeff,−
`m (t, r)Θ[rp(t)− r].
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UCD RELATIVITY GROUP

Extended Effective Sources (EES) I

• We define the FD EPS (with EES) to be ψ̂±p
• We then define

ψ̃+ ≡ ψ̂+
p − κ+ψ+

h ,

ψ̃− ≡ ψ̂−p − λ−ψ−h .
• The FD EPS can then be transferred to the

TD

ψ̃±`m(r, t) ≡
∞∑

n=−∞
ψ̃±`mn(r)e−iωmnt

• The solution for the regular field is then
given by the weak solution,

rmin rmaxψR`mn(r) ψ̃+(r)ψ̃−(r)

ψR`m(t, r) = ψ̃+
`m(t, r)Θ[r − rp(t)] + ψ̃−`m(t, r)Θ[rp(t)− r]
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UCD RELATIVITY GROUP

Restoring Exponential Convergence with EES
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UCD RELATIVITY GROUP

Restoring Exponential Convergence with EES
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UCD RELATIVITY GROUP

Effective Source Method for Teukolsky

• Need Teukolsky formalism for
second-order SF in Kerr. See Andrew’s
talk...

• Require quick sampling over libration
region

• Use Hyperboloidal slicing based on the
framework by Zenginoglu (2011)

sR
±
`mω(r) = r−(2s+1)f(r)−seiωh sR

±
`mω(r)

i+

H+ I +

i0B0

H− I −

i−

Singularity

Benjamin Leather A view to second-order self-force for eccentric orbits



UCD RELATIVITY GROUP

Effective Source Method for Teukolsky

• Need Teukolsky formalism for
second-order SF in Kerr. See Andrew’s
talk...

• Require quick sampling over libration
region

• Use Hyperboloidal slicing based on the
framework by Zenginoglu (2011)

sR
±
`mω(r) = r−(2s+1)f(r)−seiωh sR

±
`mω(r)

i+

H+ I +

i0B0

H− I −

i−

Singularity

Benjamin Leather A view to second-order self-force for eccentric orbits



UCD RELATIVITY GROUP

Effective Source Method for Teukolsky

• Need Teukolsky formalism for
second-order SF in Kerr. See Andrew’s
talk...

• Require quick sampling over libration
region

• Use Hyperboloidal slicing based on the
framework by Zenginoglu (2011)

sR
±
`mω(r) = r−(2s+1)f(r)−seiωh sR

±
`mω(r)

i+

H+ I +

i0B0

H− I −

i−

Singularity

Benjamin Leather A view to second-order self-force for eccentric orbits



UCD RELATIVITY GROUP

Effective Source Method for Teukolsky

• Hyperboloidal technique already used for second-order calculations

• Agreement with flux data for circular and eccentric orbits ∼ 10−12

• Code soon to be available on the Black Hole Perturbation Toolkit

• Use the (high-order) Lorenz-gauge punctures to compute gauge-invariant ψP `m4 -
Wardell and Warburton (2015)

• Currently only for circular orbits in Schwarzschild

ψP `m
4 = −

√
(`− 1)`(`+ 1)(`+ 2)

16r3

[
h
(1)P
`m + h

(2)P
`m

]
+

(−f ′∂t − f2∂rr + 2f∂tr − ∂tt
16r
√

(`− 1)`(`+ 1)(`+ 2)

)
×

[
h
(7)P
`m − ih(10)P`m

]
+

√
(`− 1)(`+ 2)

4r2f2
√
`(1 + `)

(
− f ′ + f∂r + ∂t

)[
h
(4)P
`m − h(5)P`m + i

(
h
(8)P
`m − h(9)P`m

)]
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UCD RELATIVITY GROUP

Regularized Weyl Scalar

• We have
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UCD RELATIVITY GROUP

Future Research

Worldtube method for eccentric orbits
with exponential convergence

Effective source method for the
Teukolsky equation (preliminary)

• Resolve bottleneck in calculation of κ+

and λ−

• Extend to gravitational perturbations

• Lorenz Gauge eccentric formulation...

• Challenging

• Begin implementing second-order
calculation

• Extend to eccentric orbits

• Compute gauge invariant quantities, e.g.
speciality index
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