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Motivation

« Exact post-Minkowskian calculations [Damour ’19; Bini, Damour, Geralico ’20)|
* 15¢ order self-force exactly determines 2 body Hamiltonian up to 4PM
o 2nd order self-force exactly determines 2 body Hamiltonian up to 6PM

 Comparison with scatter amplitude calculations

e Strong-field benchmarking exact at O(n) (no PN or PM expansions)
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Scatter geodesics in Schwarzschild
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Scatter angle: geodesic case

Definition




First order self-force correction to the scatter angle

Expansion of scatter angle
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Solve 1%t order self-force equations of motion at fixed v, and b
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F,, is the conservative part of the self-force



Self-force calculation method

* Time-domain metric reconstruction in a radiation gauge from Hertz potential,
with mode sum regularization |Barack & Giudice ’17|

* Main hurdle is the formulation of jump conditions for the Hertz potential

* Implementation using a 1-+1 evolution in Eddington-Finkelstein coordinates

In the rest of this talk:
* Formulation of jump conditions for Hertz potential
* Implementation of jump conditions — instabilities and resolutions
* Evolution of Teukolsky equation: problem of divergent modes
* Resolution via transformation to a Regge-Wheeler-like equation



Brief review of metric reconstruction

Vacuum case

Teukolsky equation
Osthy =0
‘Inversion’ relation
Digs =1y
Hertz potential obeys adjoint Teukolsky
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Metric reconstruction
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Brief review of metric reconstruction

Particle case
Sourced Teukolsky equation

@iwi =Ty x d(r —rp)
Point particle solutions for ¢ and h,g




Reduction of 1-+1 inversion relation to 15t order

Inversion relation [schematic|
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1+1 mode decomposed Teukolsky equation
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Jumps in the Hertz potential

Jump in a field
[®] := lim [<I>+(7‘, rp(7)+€) — @ (7, rp(7) — e)}

e—0
Proper time derivatives of jump

[¢] = Up [¢,v] + up [¢,u]
= d1|¢,0] + d2[¢] + [o] terms

(6] = €10 .00] + €2[0.u0] + €s]d.0] + ea[d] + e5[d] + [1ho] terms

= f1[¢.o] + f2[d] + f3]0] + [o] terms

Eliminate [¢v]
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Jumps in the Hertz potential

Problem
Asymptotic homogeneous solution
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Resolution
Convert to hierarchy of 1st order ODEs
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Asymptotic solutions of homogeneous ODEs
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Teukolsky evolution code




Problem of divergent modes
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There exist non-physical asymptotic solutions:
b+ ~ Cr(u) exp(v s/4M) + C2(v) hrs ~ Ot ™20
Non-physical terms usually removed by physical boundary conditions

Both terms originate from the ¢ ; term of the Teukolsky equation
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How to avoid the divergent modes?

Other Teukolsky codes:

* Impose boundary conditions (Khanna ‘04)

» Hyperboloidal slicing (Harms et al ‘15)

In Schwarzschild, eliminate ¢t term



Transtormation to Regge-Wheeler form

Time-domain Chandrasekhar 10°

transformation -
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Use similar method to inversion relation to 0"
obtain ODE for jumps in the Regge- o 0 e e

Wheeler Field ‘
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Regge-Wheeler and Teukolsky circular point particle solutions
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Scatter Regge-Wheeler evolution code
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Conclusion

» Self-force scattering is needed to give information for exact PM calculations,
comparison with scattering amplitudes and benchmarking in the strong field
regime

e The 4t order inversion relation in 1+1 can be written as a 2" order ODE or
18t order PDE

* The Teukolsky equation is numerically unstable without boundary conditions

* Transforming to Regge-Wheeler removes the numerical instability

 Work plan:
e Full evolution of Hertz potential
« Evaluation of self-force

* Correction to scatter angle
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