Fast Self-Forced Inspirals into a Rotating Black Hole

Philip Lynch, Maarten van de Meent, Niels Warburton

UCD School of Mathematics and Statistics

Self-Forced Inspirals

٠

Fast Self-Forced Inspirals

٠

Contents

- Motivation
- Osculating Geodesics
- Near Identity Transformations
- Application to Kerr Spacetime
- Results
- Future Work

Motivation

Motivation

Method	Description	Fast?	Accurate?	Application
Kludge Models	Variety of analytic and numeric approximate models	Yes, very!	Not quite adiabatic order	 Detection of loudest EMRI signals LISA mock data challenges
Flux Driven Inspirals	Balance local changes in E & L with fluxes at ∞	Yes!	Adiabatic order	EMRI signal detection
Self-Force	Compute the local force on the orbiting body due to its own gravitational field	Nope!	Post-Adiabatic (with 2 nd order)	 Accurate parameter extraction Strong tests of GR

Self-Force EMRI Waveforms in 3 "Easy" Steps

Philip Lynch

Osculating Geodesics

Equatorial Geodesic Motion in Kerr Spacetime

$$\frac{d^2 x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{dx^{\beta}}{d\tau} \frac{dx^{\gamma}}{d\tau} = 0$$

• Spin Parameter:
$$a = \frac{J}{M}$$

• Semilatus Rectum:
$$p = \frac{2r_1r_2}{r_1+r_2}$$

• Eccentricity:
$$e = \frac{r_1 - r_2}{r_1 + r_2}$$

Osculating Geodesics

- Each Geodesic can be identified with constants of motion:
- $P_j = \{p, e\}$
- And an initial phase $q_{i0} = \{\psi_{r0}\}$

•
$$I^A = \{P_j, q_{i0}\} \rightarrow I^A(\lambda) = \{P_j(\lambda), q_{i0}(\lambda)\}$$

• Extrinsic Quantities due to symmetries: $S_K = \{t, \phi\}$

Forced Motion in Kerr Spacetime

$$\dot{P}_j = 0 + \epsilon F_j^{(1)}(\vec{P}, \vec{q} : a^\alpha)$$

$$\dot{q}_i = \Omega_i(\vec{P}, \vec{q}) + \epsilon f_i^{(1)}(\vec{P}, \vec{q} : a^\alpha)$$

$$\dot{S}_k = s_k(\vec{P}, \vec{q})$$

- Equations found by Gair et al [arxiv.org/abs/1012.5111].
- Take minutes to hours due to small oscillations

Near Identity Transformations

Near Identity (Averaging) Transformations

Transform to new variables

$$\tilde{P}_{j} = P_{j} + \epsilon Y_{j}^{(1)}(\vec{P}, \vec{q}) + \epsilon^{2} Y_{j}^{(2)}(\vec{P}, \vec{q}) \mathcal{O}(\epsilon^{3}),$$
$$\tilde{q}_{i} = q_{i} + \epsilon X_{i}^{(1)}(\vec{P}, \vec{q}) + \epsilon^{2} X_{i}^{(2)}(\vec{P}, \vec{q}) \mathcal{O}(\epsilon^{3}),$$
$$\tilde{S}_{k} = S_{k} + Z_{k}^{(0)}(\vec{P}, \vec{q}) + \epsilon Z_{i}^{(1)}(\vec{P}, \vec{q}) \mathcal{O}(\epsilon^{2}).$$

To obtain equations of motion independent of
$$\vec{q}$$

$$\dot{\tilde{P}}_{j} = 0 + \epsilon \tilde{F}_{j}^{(1)}(\vec{\tilde{P}}) + \epsilon^{2} \tilde{F}_{j}^{(2)}(\vec{\tilde{P}})$$
$$\dot{\tilde{q}}_{i} = \Omega(\vec{\tilde{P}}) + \epsilon \tilde{f}_{i}^{(1)}(\vec{\tilde{P}}) + \epsilon^{2} \tilde{f}_{i}^{(2)}(\vec{\tilde{P}})$$
$$\dot{\tilde{S}}_{k} = \tilde{s}_{k}^{(0)}(\vec{\tilde{P}}) + \epsilon \tilde{s}_{k}^{(1)}(\vec{\tilde{P}})$$

Order ϵ Example: Solving for $Y_i^{(1)}$

- Use EoM and NIT $\tilde{F}_{j}^{(1)} = \frac{1}{\epsilon} \dot{\tilde{P}}_{j} = \frac{1}{\epsilon} \left(\dot{P}_{j} + \epsilon \dot{Y}_{j} \right) = F_{j}^{(1)} + \frac{dY_{j}}{da_{i}} \Omega_{i}$
- Split into avg and osc
- Cancel osc pieces

$$A(\tilde{P}, \tilde{q}) = \langle A \rangle \, (\tilde{P}) + \sum_{\vec{\kappa} \neq \vec{0}} A_{\vec{\kappa}} (\tilde{P}) e^{i\vec{\kappa} \cdot \vec{\tilde{q}}}$$
$$\tilde{F}_{j}^{(1)} = \left\langle F_{j}^{(1)} \right\rangle + \breve{F}_{j}^{(1)} + i(\vec{\kappa} \cdot \vec{\Omega}) \breve{Y}_{j}.$$

$$Y_j^{(1)} \equiv \sum_{\vec{\kappa} \neq \vec{0}} \frac{i}{\vec{\kappa} \cdot \vec{\Omega}} F_{j,\vec{\kappa}}^{(1)} e^{i\vec{\kappa} \cdot \vec{q}}.$$

NITs Cont'd

$$\begin{aligned} \dot{\tilde{P}}_{j} &= 0 + \epsilon \tilde{F}_{j}^{(1)}(\vec{\tilde{P}}) + \epsilon^{2} \tilde{F}_{j}^{(2)}(\vec{\tilde{P}}) \\ \dot{\tilde{q}}_{i} &= \Omega(\vec{\tilde{P}}) + \epsilon \tilde{f}_{i}^{(1)}(\vec{\tilde{P}}) + \epsilon^{2} \tilde{f}_{i}^{(2)}(\vec{\tilde{P}}) \\ \dot{\tilde{S}}_{k} &= \tilde{s}_{k}^{(0)}(\vec{\tilde{P}}) + \epsilon \tilde{s}_{k}^{(1)}(\vec{\tilde{P}}) \end{aligned}$$

$$\begin{split} \tilde{F}_{j}^{(1)} &= \left\langle F_{j}^{(1)} \right\rangle, \tilde{f}_{i}^{(1)} = \left\langle f_{i}^{(1)} \right\rangle, \tilde{s}_{k}^{(0)} = \left\langle s_{k}^{(0)} \right\rangle, \\ \tilde{F}_{j}^{(2)} &= \left\langle F_{j}^{(2)} \right\rangle + \left\langle \frac{\partial \breve{Y}_{j}^{(1)}}{\partial \tilde{q}_{i}} \breve{f}_{i}^{(1)} \right\rangle + \left\langle \frac{\partial \breve{Y}_{j}^{(1)}}{\partial \tilde{P}_{k}} \breve{F}_{k}^{(1)} \right\rangle \\ \tilde{f}_{i}^{(2)} &= 0, \text{ and} \\ \tilde{s}_{k}^{(1)} &= \left\langle s_{k}^{(1)} \right\rangle - \left\langle \frac{\partial \breve{s}_{k}^{(0)}}{\partial \tilde{P}_{j}} \breve{Y}_{j}^{(1)} \right\rangle - \left\langle \frac{\partial \breve{s}_{k}^{(0)}}{\partial \tilde{q}_{i}} \breve{X}_{i}^{(1)} \right\rangle. \end{split}$$

Independent of \vec{q}

,

Application to Kerr Spacetime

Osculating Geodesics in Kerr Spacetime

$$\dot{P}_j = \epsilon F_j^{(1)}(\vec{P}, \vec{q} : a^{\alpha})$$
$$\dot{q}_i = \Omega_i(\vec{P}, \vec{q}) + \epsilon f_i^{(1)}(\vec{P}, \vec{q} : a^{\alpha})$$
$$\dot{S}_k = s_k(\vec{P}, \vec{q})$$

- Differentiation w.r.t Mino Time λ
- $\vec{P} = \{\mathcal{E}, \mathcal{L}, \mathcal{K}\}$
- $\vec{q} = \{\psi_r, \psi_z\}$
- $\vec{S} = \{t, \phi\}$

Problem

- Ω_i depend on $ec{q}$
- NIT'd EoM would
 - still depend on $ec{q}$

New Equations of Motion

• Replace phases with action angles q_r and q_z

$$\frac{dq_i}{d\lambda} = \Upsilon_i(\vec{P})$$

• Where Υ_i is the Mino time fundamental frequency

$$\dot{P}_j = \epsilon F_j^{(1)}(\vec{P}, \vec{q} : a^{\alpha})$$
$$\dot{q}_i = \Upsilon_i(\vec{P}) + \epsilon f_i^{(1)}(\vec{P}, \vec{q} : a^{\alpha})$$
$$\dot{S}_k = s_k(\vec{P}, \vec{q})$$

• $r(q_r)$ and $z(q_z)$ are known for geodesics

NIT'd Equatorial Kerr Equations

$$\dot{\tilde{P}}_{j} = 0 + \epsilon \tilde{F}_{j}^{(1)}(\vec{\tilde{P}}) + \epsilon^{2} \tilde{F}_{j}^{(2)}(\vec{\tilde{P}})$$
$$\dot{\tilde{q}}_{i} = \Omega(\vec{\tilde{P}}) + \epsilon \tilde{f}_{i}^{(1)}(\vec{\tilde{P}})$$
$$\dot{\tilde{S}}_{k} = \tilde{s}_{k}^{(0)}(\vec{\tilde{P}}) + \epsilon \tilde{s}_{k}^{(1)}(\vec{\tilde{P}})$$

$$\tilde{F}_{j}^{(1)} = \left\langle F_{j}^{(1)} \right\rangle, \tilde{f}_{i}^{(1)} = \left\langle f_{i}^{(1)} \right\rangle, \tilde{s}_{k}^{(0)} = \left\langle s_{k}^{(0)} \right\rangle$$

• Differentiation w.r.t
$$\lambda$$

•
$$\vec{P} = \{p, e\},$$

•
$$\vec{q} = \{q_r\},$$

•
$$\vec{\Omega} = \{\Upsilon_r\}$$

•
$$\vec{S} = \{t, \phi\}$$

$$\tilde{F}_{j}^{(2)} = \sum_{n \neq 0} \frac{i}{n \Upsilon_{r}} \left[\left(\frac{\partial F_{j,n}^{(1)}}{\partial \tilde{P}_{k}} - \frac{\partial \Upsilon_{r}}{\partial \tilde{P}_{k}} \frac{F_{j,n}^{(1)}}{\Upsilon_{r}} \right) F_{k,-n}^{(1)} + inF_{j,n}f_{r,-n,-m}^{(1)} \right]$$

$$\tilde{s}_k^{(1)} = \sum_{n \neq 0} \frac{-i}{n \Upsilon_r} \left[\frac{\partial s_{k,n}^{(0)}}{\partial \tilde{P}_j} F_{j,-n}^{(1)} + s_{k,n}^{(0)} \left(in f_{r,-n,-m}^{(1)} + \frac{\partial \Upsilon_r}{\partial \tilde{P}_j} \frac{F_{j,-n}^{(1)}}{\Upsilon_r} \right) \right]$$

Steps Involved in Applying the NIT

Offline Steps

- Use fast Fourier transforms to find modes of F_j, f_i, s_k + derivatives at a given (a,p,e,x)
- Combine these modes to find $\tilde{F}_{j}^{(1)}$, $\tilde{F}_{j}^{(2)}$, $\tilde{f}_{i}^{(1)}$, $\tilde{s}_{k}^{(0)}$ and $\tilde{s}_{k}^{(1)}$
- Repeat across the parameter space
- Interpolate the points using cubic splines
- Save the interpolants

Online Steps

- Load interpolants
- Set initial conditions
- Numerically solve EoM

Results

Schwarzschild GSF Model

First order dissipative and conservative force

•
$$a^{(1)}_{cons}^r = \sum_{n=0}^{\overline{n}} A_n(p, e) \cos(n \psi_r)$$

•
$$A_n(p, e) = p^{-2} \sum_{j=n}^{\overline{J}} \sum_{k=0}^{\overline{k}} a_{jk}^n e^j p^{-k}$$

- Only valid from $6 \le p \le 12$ and $0 \le e \le 0.2$
- Set spin parameter a to 0.1

Schwarzschild GSF Results

Interpolated Equatorial Kerr GSF Model

- Prograde Equatorial Data for a = 0.9
- y = p 1.75 e : 2.5 to 14.5
- e: 0 to 0.5
- Cubic spline interpolation

Kerr GSF Model (a = 0.9)

Runtime

Mass Ratio	Osculating Geodesics	NIT	Relative Speed Up
10^{-2}	52s	4.4s	~ × 12
10^{-3}	4mins 45s	2.9s	~ × 98
10^{-4}	35mins	5.3s	~ × 392
10^{-5}	4.25hrs	2.9s	~ × 5280
10^{-6}	???	3.9s	???

Future Work

To Do

- Better Kerr GSF Model
- Generate waveforms → Calculate Mismatch
- Generic model and Effect of Transient Resonance
- Two Timescale Expansions

Questions

•

