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Motivation
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Motivation

Description

Fast?

Accurate?

Application

Kludge Models

Flux Driven
Inspirals

Self-Force

Variety of analytic and
numeric approximate
models

Balance local changes in E
& L with fluxes at oo

Compute the local force on
the orbiting body due to its
own gravitational field

Yes, very!

Yes!

Nope!

Philip Lynch

Not quite
adiabatic order

Adiabatic order

Post-Adiabatic
(with 2" order)

Detection of loudest
EMRI signals

LISA mock data
challenges

EMRI signal detection

Accurate parameter
extraction
Strong tests of GR



Selt-Force EMRI Waveforms in 3 “Easy” Steps

‘ Can be sped up using NITs

1. Gravitational Self Force 2. Trajectory 3. Waveform

(1) (1) :
apis + Ap s e Two-Timescale EoM e Quadrupole Formula

e |nterpolate over

e Osculating Geodesics e Teukolsky—Based Methods
Parameter Space

t Goal: Extend NITs to Rotating Black Holes
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Osculating Geodesics
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Equatorial Geodesic Motion in Kerr Spacetime

d?x® dxP dx?

e —
dT2 t 18y dr dt %

Spin Parameter: a = ﬁ

2 r17>

rl r2 .
Semilatus Rectum: p
' 7"1+T'2

rhi—"nm

Eccentricity: e =
— r1+72




Osculating Geodesics

Each Geodesic can be identified with constants of motion:

P; ={p, e}

And an initial phase g;o = {10}

I = {P, qi0} 2> I (D) = {P;(D), qio(D)}

Extrinsic Quantities due to symmetries: Sy = {t, ¢}




Forced Motion in Kerr Spacetime

Kerr Osculating Geodesics Inspiral (a =09, € = 10‘4]

0.30 F

Pj :0—|—6Fj(1)(15,cj’:ao‘) |
qi = Qz(ﬁacf) =+ Ef@-(l)(ﬁaffi a™) .;.zai
Sk — Sk(ﬁ,@

e/ M

Equations found by Gair et
al [arxiv.org/abs/1012.5111].

Take minutes to hours due .
to small oscillations 010

=
—
[ag]

—— Self-Forced Trajectory |
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Near Identity
Transformations
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Near ldentity (Averaging) Transformations

To obtain equations of

Transform to new variables . S
motion independent of g

Bi= P+ NP0+ VPE.00),  p 4 FO(B) + 2FP (P)
G = qi + <X\ (P,q) + X (P, O(), i = UP) + e f OV (P) + EF2(P)

. a ~(0) ~(1)
S = S + 2O (B, 7) + 2V (B, 0(e?). Sp = 50(P) + e (P)




Order € Example: Solving for Y.(l)
dy;
dq;

~ 1 = 1
Use EoM and NIT Fj(l) = EP = - (P —I—EY) Fj(l) -

Q;

Splitinto avgand osc  A(p, &) = (A) (P) + ) Aq(P)eiRd

R#£0
Cancel osc pieces Y = <Fj(1)> + B 1+ i(RAD)Y;.
(1) _ L (1) iR-q
Full details in van de YJ — Z Z. Q'Fj,ﬁe :
Meent & Warburton K#0

larxiv.org/abs/1802.05281]




NITs Cont’d

FO = <F(1>> o = <f(1)>,§§€0):<5§30>>’

f%::0+eﬁON~)+-?ﬁ@%P) 57 (1 9y ()

; ) PO = (F@Y 4 (Do) (B ),
g = QP )+€f (P ) e f; 7 (P ) 0q *° 0P |
S, = 50 (P) + eV (P) % =0, and

4@ um)
@ 0 = (s By [ g
7 g g oP; ’ 0qi '

Independent of q
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Application to Kerr
Spacetime
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Osculating Geodesics in Kerr Spacetime

. N2 o
szeFj()(P,q:a )

G =/ (P.q) + ef;V (P, a®) Problem

Sk = si(P, q) (); depend on g
Differentiation w.r.t Mino Time A NIT’d EoM would
P={& L K} , >
G= ) still depend on g

S=1{t ¢}




New Equations of Motion

Replace phases with action
angles g,- and g,

dqi —
= Y, (P
= (P)

Where Y; is the Mino time
fundamental frequency

r(q,) and z(q,) are known
for geodesics




NIT'd Equatorial Kerr Equations

< ~ (1 = ~ (9 =
P; =0+ eF\V(P) + F Y (P)

G = UP) +¢f, (P) O — (FY), 7O = (50)
Sk = ’"(0) (P) + esg)(P)

Izlfferentlatlon w.rt A 50 _ 3 i [ 8Fz(,];3 _ oY, P BV inFy, fY
P = {p) e}l ! n7#0 nY, 0Py, 0Py L v J
q = {a} [Pk
(1) _ — [ Pk p(1) 4 (0) ( W
= S — =~ F—n+8kn Z?'Lfr,«_n—m
= {1} 2o Lom,
S = {t, ¢}
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Steps Involved in Applying the NIT

Offline Steps Online Steps
Use fast Fourier transforms to find
modes of F}, f;, sy, + derivatives at a Load interpolants

given (a,p,e,x)

Combine these modes to find Set initial conditions

(1) ~(2) £(1) ~(0 ~(1
FOF® 7O 50 g 50

Repeat across the parameter space

Numerically solve EoM

Interpolate the points using cubic
splines
Save the interpolants




Results
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Schwarzschild GSF Model

First order dissipative and conservative force

- _
a(l)cons = Xn=04n(p,e)cos(n ;)

An(p,e) =p2Y)_ Tk oalk elp7*
Onlyvalidfrom6 < p<12and0<e < 0.2

Set spin parameterato 0.1




Schwarzschild GSF Results
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Interpolated Equatorial Kerr GSF Model

Prograde Data Points

* Prograde Equatorial Data for a = 0.9
cy=p —1.75e:25t014.5
°e:0t00.5

a!h

* Cubic spline interpolation
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Kerr GSF Model (a =0.9)

[ ]
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Runtime

Mass Ratio Osculating Relative Speed
Geodesics Up

102 4.4s ~ X 12
1073 Amins 45s 2.95s ~ X 98
10~* 35mins 5.3s ~ X 392
107> 4.25hrs 2.9s ~ X 5280

107 277 3.9s 27?7
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Future Work
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To Do

Better Kerr GSF Model
Generate waveforms — Calculate Mismatch

Generic model and Effect of Transient Resonance

Two Timescale Expansions




Questions

Philip Lynch
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