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Motivation

Method Description Fast? Accurate? Application

Kludge Models
Variety of analytic and 
numeric approximate 
models

Yes, very! Not quite 
adiabatic order

• Detection of loudest 
EMRI signals

• LISA mock data 
challenges

Flux Driven 
Inspirals

Balance local changes in E 
& L with fluxes at ∞ Yes! Adiabatic order • EMRI signal detection

Self-Force
Compute the local force on 
the orbiting body due to its 
own gravitational field

Nope! Post-Adiabatic
(with 2nd order)

• Accurate parameter 
extraction

• Strong tests of GR

Philip Lynch 6



Self-Force EMRI Waveforms in 3 “Easy” Steps
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1. Gravitational Self Force

• 𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷
1 + 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

1

• Interpolate over 
Parameter Space

2. Trajectory

• Two-Timescale EoM

• Osculating Geodesics

3. Waveform

• Quadrupole Formula

• Teukolsky–Based Methods

Can be sped up using NITs

Goal: Extend NITs to Rotating Black Holes



Osculating Geodesics
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Equatorial Geodesic Motion in Kerr Spacetime
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• Spin Parameter: 𝑎𝑎 = 𝐽𝐽
𝑀𝑀

• Semilatus Rectum: 𝑝𝑝 = 2𝑟𝑟1𝑟𝑟2
𝑟𝑟1+𝑟𝑟2

• Eccentricity: 𝑒𝑒 = 𝑟𝑟1− 𝑟𝑟2
𝑟𝑟1+𝑟𝑟2

r1 r2



Osculating Geodesics

• Each Geodesic can be identified with constants of motion:

• 𝑃𝑃𝑗𝑗 = 𝑝𝑝, 𝑒𝑒

• And an initial phase 𝑞𝑞𝑖𝑖𝑖 = 𝜓𝜓𝑟𝑟𝑟

• 𝐼𝐼𝐴𝐴 = {𝑃𝑃𝑗𝑗 , 𝑞𝑞𝑖𝑖𝑖} 𝐼𝐼𝐴𝐴(𝜆𝜆) = {𝑃𝑃𝑗𝑗(𝜆𝜆), 𝑞𝑞𝑖𝑖𝑖(𝜆𝜆)}

• Extrinsic Quantities due to symmetries: 𝑆𝑆𝐾𝐾 = {𝑡𝑡,𝜙𝜙}
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Forced Motion in Kerr Spacetime

• Equations found by Gair et 
al [arxiv.org/abs/1012.5111].

• Take minutes to hours due 
to small oscillations
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Near Identity 
Transformations
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Near Identity (Averaging) Transformations

Transform to new variables
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To obtain equations of 
motion independent of 𝑞⃗𝑞



Order 𝜖𝜖 Example: Solving for 𝑌𝑌𝑗𝑗
(1)

• Use EoM and NIT

• Split into avg and osc

• Cancel osc pieces

• Full details in van de 
Meent & Warburton 
[arxiv.org/abs/1802.05281]
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NITs Cont’d
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Independent of 𝑞⃗𝑞



Application to Kerr 
Spacetime
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Osculating Geodesics in Kerr Spacetime

• Differentiation w.r.t Mino Time 𝜆𝜆
• 𝑃𝑃 = {ℰ,ℒ,𝒦𝒦}
• 𝑞⃗𝑞 = {𝜓𝜓𝑟𝑟 ,𝜓𝜓𝑧𝑧}
• 𝑆𝑆 = {𝑡𝑡,𝜙𝜙}
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Problem

• Ω𝑖𝑖 depend on 𝑞⃗𝑞

• NIT’d EoM would 

still depend on 𝑞⃗𝑞



New Equations of Motion
• Replace phases with action 

angles 𝑞𝑞𝑟𝑟 and 𝑞𝑞𝑧𝑧

• Where Υi is the Mino time 
fundamental frequency 

• 𝑟𝑟(𝑞𝑞𝑟𝑟) and 𝑧𝑧(𝑞𝑞𝑧𝑧) are known 
for geodesics
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NIT’d Equatorial Kerr Equations

• Differentiation w.r.t 𝜆𝜆
• 𝑃𝑃 = {𝑝𝑝, 𝑒𝑒}, 
• 𝑞⃗𝑞 = {𝑞𝑞𝑟𝑟}, 
• Ω = Υ𝑟𝑟
• 𝑆𝑆 = {𝑡𝑡,𝜙𝜙}
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Steps Involved in Applying the NIT

Offline Steps
• Use fast Fourier transforms to find 

modes of 𝐹𝐹𝑗𝑗 ,𝑓𝑓𝑖𝑖 , 𝑠𝑠𝑘𝑘 + derivatives at a 
given (a,p,e,x)

• Combine these modes to find 
�𝐹𝐹𝑗𝑗
1 , �𝐹𝐹𝑗𝑗

2 ,𝑓𝑓𝑖𝑖
1 , 𝑠̃𝑠𝑘𝑘

0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠̃𝑠𝑘𝑘
1

• Repeat across the parameter space
• Interpolate the points using cubic 

splines
• Save the interpolants
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Online Steps

• Load interpolants

• Set initial conditions

• Numerically solve EoM



Results
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Schwarzschild GSF Model

• First order dissipative and conservative force

• 𝑎𝑎(1)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟 = ∑𝑛𝑛=0�𝑛𝑛 𝐴𝐴𝑛𝑛 𝑝𝑝, 𝑒𝑒 cos(𝑛𝑛 𝜓𝜓𝑟𝑟)

• 𝐴𝐴𝑛𝑛 𝑝𝑝, 𝑒𝑒 = p−2 ∑𝑗𝑗=𝑛𝑛
𝚥̅𝚥 ∑𝑘𝑘=0

�𝑘𝑘 𝑎𝑎𝑗𝑗𝑗𝑗𝑛𝑛 𝑒𝑒𝑗𝑗𝑝𝑝−𝑘𝑘

• Only valid from 6 ≤ 𝑝𝑝 ≤ 12 and 0 ≤ 𝑒𝑒 ≤ 0.2

• Set spin parameter a to 0.1
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Schwarzschild GSF Results
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Interpolated Equatorial Kerr GSF Model

Philip Lynch 24

• Prograde Equatorial Data for a = 0.9
• 𝑦𝑦 = 𝑝𝑝 − 1.75 𝑒𝑒 : 2.5 to 14.5
• 𝑒𝑒: 0 to 0.5

• Cubic spline interpolation



Kerr GSF Model (a = 0.9)
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Runtime
Mass Ratio Osculating 

Geodesics
NIT Relative Speed 

Up

10−2 52s 4.4s ~ × 12
10−3 4mins 45s 2.9s ~ × 98
10−4 35mins 5.3s ~ × 392
10−5 4.25hrs 2.9s ~ × 5280
10−6 ??? 3.9s ???
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Future Work
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To Do

• Better Kerr GSF Model

• Generate waveforms → Calculate Mismatch 

• Generic model and Effect of Transient Resonance

• Two Timescale Expansions
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Questions

Philip Lynch 29
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