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TEUKOLSKY (OR REGGE-WHEELER) EQUATION

▸ Strongly hyperbolic PDE describing linear perturbations in Kerr (or Schwarzschild) 

▸ Typically solved as ODE in frequency domain 

▸ Used to compute GSF in radiation (or Regge-Wheeler) gauge 
(Shah, Friedman, Whiting; Barack, Pound, Merlin; Kohen, Kegeles; Barack, Ori et al) 

▸ For highly eccentric or unbound orbits, time-domain self-consistent evolution is ideal 

▸ Time-domain Teukolsky solvers have been increasing in sofistication 
(Burko, Khanna, Pullin, Hughes, Poisson, Lousto, Zenginoglu, Harms, Bernuzzi, Brügmann
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[(∇μ + Aμ)∇μ + V]ψ0(r) = S



METHOD OF LINES

▸ Reduce to first-order in time 

▸ Discretize U, L in space, evolved as coupled ODE system in time 

▸ L contains spatial differentiation matrices, which are typically valid only 
for smooth methods

dU
dt

= LU + S

∂tUA = LABUB + SB, UA = (ψ0, ·ψ0)
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TEUKOLSKY EQUATION WITH PARTICLE SOURCE

▸ Approximate δ as Gaussian pulse (Harms, Bernuzzi and Brügmann) 

▸ Construct finite-difference representation of δ (Hughes et al) 

▸ "Lagrangian" picture: Domain decomposition + time-dependent grid + jump 
conditions across particle (Canizares and Sopuerta; Field, Hesthaven and Lau, 
Diener et al).  

▸ "Eulerian" picture: Discontinuous collocation method + fixed grid + jump 
conditions across particle (Markakis, Barack et al). 
 
C. Markakis and L. Barack [arXiv:1406.4865]
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[(∇μ + Aμ)∇μ + V]ψ0(r) = Gδ(r − ξ(t)) + Fδ′ (r − ξ(t))



DISCONTINUOUS COLLOCATION METHOD

▸ Jumps in solution ψ and its derivatives across particle known a 
priori from field equation 

▸ Collocation (finite-difference and pseudo-spectral) methods are 
based on Lagrange interpolation 

▸ Construct discontinuous generalization to Lagrange interpolation 
that uses {Ji} as input.
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ψ(k)(ξ+) − ψ(k)(ξ−) = Jk, k = 0,1,2,...



LAGRANGE INTERPOLATION

▸ Nth order polynomial 

▸ Collocation conditions 

▸ Solution: Lagrange interpolating polynomial 
 

                                                             Austin, June 25, 2020

p(x) =
N

∑
j=0

cjxj

p(x) = fi, i = 0,1,...,N

p(x) =
N

∑
j=0

fj(x)πj(x), πj =
N

∏
k=0

x − xk

xj − xk



DISCONTINUOUS LAGRANGE INTERPOLATION

▸ Nth order piecewise polynomial 

▸ Collocation conditions 

▸ Jump conditions 

▸ Solution: interpolating piecewise polynomial 
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p(x) =
N

∑
j=0

[θ(x − ξ)c+
j + θ(ξ − x)c−

j ]xj

p(x) = fi, i = 0,1,...,N

p(x) =
N

∑
j=0

[ fj(x) + Δ(xj − ξ; x − ξ)]πj(x)

p(k)(ξ+) − p(k)(ξ−) = Jk, k = 0,1,2,...



DISCONTINUOUS INTERPOLATION, DIFFERENTIATION, INTEGRATION

▸ Interpolation 

▸ Differentiation 
 
 
 

▸ Integration... 
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p(x) =
N

∑
j=0

[ fj(x) + Δ(xj − ξ; x − ξ)]πj(x)

p(n)(xi) =
N

∑
j=0

D(n)
ij [ fj(x) + Δ(xj − ξ; xi − ξ)], D(n)

ij = π(n)
j (xi)

Δ(xj − ξ; xi − ξ) = [θ(xi − ξ) − θ(xj − ξ)]∑
k

Jk

k!
(xj − ξ)k



SELF-FORCE ON STATIC SCALAR PARTICLE (SCHWARZSCHILD)
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Equidistant nodes



SELF-FORCE ON STATIC SCALAR PARTICLE (SCHWARZSCHILD)
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Chebyschev-Gauss-Lobatto nodes



SELF-FORCE ON STATIC SCALAR PARTICLE (SCHWARZSCHILD)
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Chebyschev-Gauss-Lobatto nodes



TIME INTEGRATION
▸ Explicit methods (e.g. Runge-Kutta) are not time-symmetric. 
Energy not conserved. Conditionally stable (CFL limited).  

▸ Implicit methods (e.g. trapezium rule, Hermite rule, Lotkin rule and their higher 
compositions, Suzuki-Yoshida). 
Energy conserved. Unconditionally stable (no CFL limit). 

▸ For linear PDEs, implicit methods do not incur extra cost (matrix inversion). 

▸ For GSF computations in the time domain, avoid RK. Opt for Crank-Nicolson and 
higher order generalizations. Invert and store matrices to make scheme 'explicit'. 
 
C. Markakis et al. [arXiv:1901.09967] 
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CONCLUSIONS
▸ High accuracy for pseudospectral nodes 

▸ 'Eulerian' picture. Grid fixed/stored, particle can move freely inside domain 

▸ Avoids domain decomposition and coordinate mapping 

▸ Can use a single hyperboloidal slice for the whole spacetime 

▸ Efficient and easy to implement 

▸ Must use relatively large number of jumps 

▸ Must update Δ(xj-ξ;xi-ξ) as particle moves 

▸ Solving Teukolsky equation for Hertz potential Ψ can be used to directly reconstruct GSF (Barack and Giudice) 

▸ Self-consistent evolution under influence of GSF possible 
 
C. Markakis and L. Barack [arXiv:1406.4865] 
L. Barack and P. Giudice, rXiv:1702.04204 
C. Markakis et al. [arXiv:1901.09967] 
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