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TEUKOLSKY (OR REGGE-WHEELER) EQUATION
(V¥ + ANV, + VIgy(r) = S

» Strongly hyperbolic PDE describing linear perturbations in Kerr (or Schwarzschild)
» Typically solved as ODE in frequency domain

» Used to compute GSF in radiation (or Regge-Wheeler) gauge
(Shah, Friedman, Whiting; Barack, Pound, Merlin; Kohen, Kegeles; Barack, Ori et al)

» For highly eccentric or unbound orbits, time-domain self-consistent evolution is ideal

» Time-domain Teukolsky solvers have been increasing in sofistication

(Burko, Khanna, Pullin, Hughes, Poisson, Lousto, Zenginoglu, Harms, Bernuzzi, Brigmann
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METHOD OF LINES

» Reduce to first-order in time
0,Uy = L*Up+ S5, Uy = (Van 1/70)

» Discretize U, L in space, evolved as coupled ODE system in time

dU
—=LU+S
dt

» L contains spatial differentiation matrices, which are typically valid only

for smooth methods
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TEUKOLSKY EQUATION WITH PARTICLE SOURCE

[(VE+ ARV, + Viyy(r) = Go(r = ¢(1) + Fo'(r — &(1))

» Approximate & as Gaussian pulse (Harms, Bernuzzi and BrUgmann)
» Construct finite-difference representation of & (Hughes et al)

> "Lagrangian" picture: Domain decomposition + time-dependent grid + jump
conditions across particle (Canizares and Sopuerta; Field, Hesthaven and Lau,

Diener et al).

» "Eulerian” picture: Discontinuous collocation method + fixed grid + jump

conditions across particle (Markakis, Barack et al).

C. Markakis and L. Barack [arXiv:1406.4865]
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DISCONTINUQUS COLLOCATION METHOD

» Jumps in solution Y and its derivatives across particle known a

priori from field equation
pEH) €N =0, k=012,

» Collocation (finite-difference and pseudo-spectral) methods are

based on Lagrange interpolation

» Construct discontinuous generalization to Lagrange interpolation

that uses {Ji} as input.
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LAGRANGE INTERPOLATION

» Nth order polynomial
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» Collocation conditions
px)=f, 1=0,1,..N

» Solution: Lagrange interpolating polynomial

N

S X — X
p(x) — Z];(X)ﬂ'](x), T, = H
j=0

k=0 "7~
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DISCONTINUOUS LAGRANGE INTERPOLATION

» Nth order piecewise polynomial
N

p(x) = ) [0(x = Ect + 0 — x)cj 1
» Collocation conditions J=0
px)=f, 1=0,1,...N

» Jump conditions

pPEH —pPE) =T, k=0,12,..

» Solution: interpolating piecewise polynomial

N
p(x) = ) L) + A — &x — O)]m(x)
=
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DISCONTINUOUS INTERPOLATION, DIFFERENTIATION, INTEGRATION

» Interpolation

N
p(x) = ) [f(0) + A — &x — O)]m(x)
j=0

» Differentiation

N
P (n)(xi) = Z Dé-n)[]j'(x) + A(xj — ¢ X% —¢)l, Dl§-n) — 7Tj(n)(xi)
=0

J
A — Ex— &) = [00x,— &) — 0(x;— E)] ) k—ﬁ(zc]- - &)k
~ !

» Integration...
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Chebyschev-Gauss-Lobatto nodes
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TIME INTEGRATION

» Explicit methods (e.g. Runge-Kutta) are not time-symmetric.

Energy not conserved. Conditionally stable (CFL Llimited).

» Implicit methods (e.g. trapezium rule, Hermite rule, Lotkin rule and their higher
compositions, Suzuki-Yoshida).

Energy conserved. Unconditionally stable (no CFL Llimit).
» For linear PDEs, implicit methods do not incur extra cost (matrix inversion).

» For GSF computations in the time domain, avoid RK. Opt for Crank-Nicolson and

higher order generalizations. Invert and store matrices to make scheme ‘explicit .

C. Markakis et al. [arXiv:1901.09967]
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CONCLUSIONS

» High accuracy for pseudospectral nodes

» ‘Eulerian’ picture. Grid fixed/stored, particle can move freely inside domain
» Avoids domain decomposition and coordinate mapping

» Can use a single hyperboloidal slice for the whole spacetime

» Efficient and easy to implement

» Must use relatively large number of jumps

» Must update A(xj-§;xi-§) as particle moves

» Solving Teukolsky equation for Hertz potential ¥ can be used to directly reconstruct GSF (Barack and Giudice)

» Self-consistent evolution under influence of GSF possible

C. Markakis and L. Barack [arXiv:1406.4865]
L. Barack and P. Giudice, rXiv:1702.04204
C. Markakis et al. [arXiv:1901.09967]



