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Why should we consider a spinning secondary in EMRIs?

e Secondary spin enters at 1-post-adiabatic order in the GW phase.

dew = g 1CO 4+ g0 4 oM 4 0(q)
| I —] | I

adiabatic resonances post-1-adiabatic

with ¢ = /M. C1) contains self force plus secondary spin effects
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Why should we consider a spinning secondary in EMRIs?

e Secondary spin enters at 1-post-adiabatic order in the GW phase.

dew = g 1CO 4+ g0 4 oM 4 0(q)
| I —] | I

adiabatic resonances post-1-adiabatic

with ¢ = /M. C1) contains self force plus secondary spin effects
e Measuring S might provide insights on the small object nature

In units uM
S S . :
o=—=—qg=Xxq with g < 0 < 1 in EMRIs
uM 2

Some examples:

|X‘Earth ~ 1401 ’X|fastest white dwarf =~ 10 and |X‘fastest pulsar ~ 0.3
For Kerr BHs |x| < 1 (Kerr bound)
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Mathisson-Papapetrou-Dixon (MPD) equations of motion

@ For a small enough secondary, its T#” can be expanded in multipoles

g dA v4 4 v o(w, v - -
™= \/?g{‘S(X—Z()\))P( v =V, [S7y )5(X—Z(>\))]}
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Mathisson-Papapetrou-Dixon (MPD) equations of motion

@ For a small enough secondary, its T#” can be expanded in multipoles

g dA v4 4 v o(w, v - -
™= \/?g{‘S(X—Z()\))P( v =V, [S7y )5(X—Z(>\))]}

e TH., =0 gives the MPD equations for a spinning body
Vypt = —ER” 5v”5°‘5 Vi SH = 2p[”v”] v = —
v 2 vo v d)\

where S# = — SV u? = —p’p, 25 = 5"S,,
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Mathisson-Papapetrou-Dixon (MPD) equations of motion

@ For a small enough secondary, its T#” can be expanded in multipoles

g dA v =1 vV o(w, v > =
™= \/?g{‘S(X—Z()\))P( v =V, [S7y )5(X—Z(>\))]}

e TH., =0 gives the MPD equations for a spinning body

1
VVPN = _ER'LLVaﬂVVSO[B VVS‘LW = 2p['LLVU] v = ﬁ

where S# = — SV u? = —p’p, 25 = 5"S,,
@ Tulczyjew-Dixon (TD) supplementary spin condition (SSC)

puS" =0 = p? =cost and S = cost
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Mathisson-Papapetrou-Dixon (MPD) equations of motion

@ For a small enough secondary, its T#” can be expanded in multipoles

dA
wo— [ 22 Is(z— 3 (myv) _ o(n§(%— 7
T ﬁ{&(x Z(N))pvY) — pV, [STHVIS (X z()\))]}
e TH., =0 gives the MPD equations for a spinning body
1 dz*
pH — _ T RH vgaB _GHY _ o pli V] o
Vip 2R vagV’S VS 2ptty v Y

where S# = — SV u? = —p’p, 25 = 5"S,,
@ Tulczyjew-Dixon (TD) supplementary spin condition (SSC)
p,S" =0 = p? = cost and S = cost

@ For a Kerr space-time, the first integrals E and J, are:

1 1
E=—p:+ Egtu,uswj Jz = py — Egdm,usw
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Circular equatorial orbits (CEQO) with spin (anti)aligned

e Primary spin a aligned to positive z-axis
o Given €,,,53 the Levi-Civita tensor, the spin vector is defined as

1

SMEQ/L

euuaﬁpysaﬁ

Spin vector parallel to a when S# = 4 S?

S* is aligned (S > 0) or anti-aligned (S < 0) to the primary spin.
e For the ISCO we used the effective potential !

Vo(r) = S (an B2 — 28,E + )

r4

Only stable (%h:m < 0), prograde orbits were considered .

1 Jefremov et al, 2015
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Radiation reaction effects and balance laws

o At first order in the secondary spin 2

dE _dE dJ, _d4;

dt Jow  dt dt Jon  dt

@ There are no equations for S** radiation reaction evolution based
on asymptotic fluxes

e We neglected radiation reaction on S** and assumed S = cost
e Therefore, for a spin (anti)aligned CEO

OE (0J,\ * dE dJ,
Q_E(8r> RFTRRLET:

e Still to prove that “circular remains circular” for a spinning body 3

2Akcay et al, 2019
3Kennefick, 1998
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A few words about the numerical routines

To calculate the Teukolsky fluxes, we employed the Mathematica

packages of the Black Hole Perturbation Toolkit (BHPToolkit ©)
https://bhptoolkit.org/
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A few words about the numerical routines

To calculate the Teukolsky fluxes, we employed the Mathematica

packages of the Black Hole Perturbation Toolkit (BHPToolkit ©)
https://bhptoolkit.org/

e Spin-weighted spheroidal harmonics calculated with the
© package “SWSH"

e Homogeneous radial solutions calculated with two routines:
1) MST method of the © package “Teukolsky”

Faster and more accurate at low frequency

2) Sasaki-Nakamura (SN) method, using new boundary conditions
Faster and more accurate at high frequency

Gabriel Andres Piovano
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Source term for the radial Teukoulsky equation

o Teukolsky source term for radial equation reads #

(B3[T*]+ By [ T*])
pp°

nmw = 4/dtd0 sin qub Sa;(e)e—i(m¢+wt)

4
Tanaka et al, 1996
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Source term for the radial Teukoulsky equation

o Teukolsky source term for radial equation reads #

By [T ]+ By"[ T*])
pp°

Temw = 4/dtd0 sin 0d¢ ( Sa;(e)e—"(m¢+wf)

@ The amplitudes ZZ;ZO become

i

3
00 . d )
Hyoo _ ~H,00 I —m in,u
Zémd) - Cémw/ dte (wt=me{t)) § :Aidri Rﬁmwp
—o© i=0

with A; = A;j(0(t), r(t), S, p*, v#) and A3 =0 for 0 =0

4
Tanaka et al, 1996
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Source term for the radial Teukoulsky equation

o Teukolsky source term for radial equation reads #

BL[T*] + BL*[ THv .
Temw = 4/dtd0 sin Hdgb( 2 T"] ;:05 2| ])725;;(0)e—l(m¢+wt)

@ The amplitudes ZZ;ZO become

£mo Imw Imw

zMee = c”°°/ dt e/ (wt=mo(1) ZA R'"“P

with A; = A;j(0(t), r(t), S, p*, v#) and A3 =0 for 0 =0
@ For a spin aligned CEO

zH

Emw

= §(w — mQ)2x /> ZA (ro,7/2, 5) RimuP

mw Emw

4
Tanaka et al, 1996
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Orbital evolution and GW phase

e Prototype binary: g =3 x 107> (with p = 30M, M = 10°M,).
All fluxes were calculated up to / = 20.

@ Orbital evolution given by

~1
To-ero(S) S-aeo)

At t =0, (0) = 0 while r(0) such that Q(0) is the same for all o.
Crosscheck analysis:
e for g =1, fluxes F agrees with Harms et al, 2016 (time domain)
o fluxes for o = 0 agree with BHPToolkit © data

@ linear spin corrections of the fluxes in Schwarzschild agree with Akcay
et al, 2019
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Linear spin corrections to the fluxes

Linear spin corrections 6 F° were obtained by interpolating

F(r,Q) — Fr,Q) = 06 F(r,Q) + O(c?)

FO are the fluxes for o = 0.
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Linear spin corrections to the GW phase

GW phase is ®gw = 29 for dominant mode.
Sow(t) — OQw(t) = (9/9)60Ew(t) + O(0?/q)
®2,, is the GW phase for o = 0.
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Spin resolution and Kerr bound test

Minimum Ay = xg — xa leading to a phase difference of arrad is:

1Ax|

10°

10°

10?

107k

1072

10°L

a
A 50 e
T 8
iy % e With a =1 rad, for
T N a/M=07 |Ay|>0.1
g - a/M=09  |Ax|>0.05
mesre] e For x & a/M =~ 0.7, |Ax/x| ~ 15%
;j_t I ———— * @ Spin x of a secondary BH might be
L T T T T measured with great accuracy
E L
e e e e
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Conclusions and future work

Summary:

e Calculated the GW fluxes for a spinning secondary in spin-aligned
CEO orbits in Kerr

e Computed GW phase for spinning objects during adiabatic inspiral

e LISA might discriminate between a fast spinning BH or a slowly
rotating NS secondary

Future work:
e More sophisticated statistical analysis (see Huerta and Gair, 2011)

e Include conservative first order in g self force and spin evolution
into the dynamics

e Consider noncircular orbits and spin precession

Include the secondary quadrupole moment?
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Final notes and acknowledgments

o code and data are available at the GitHub repository
https://web.uniromal.it/gmunu/resources

o this work was made possible thanks to the Mathematica
packages of the BHPToolkit © https://bhptoolkit.org/

e all tensors computation were performed with the
Mathematica package “xAct” www.xact.es

o Feel free to contact me at gabriel.piovano@uniromal.it
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Thank you for you attention!

Gabriel Andres Piovano Extreme mass ratio inspirals with spinning secondary



