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History of Flux Balance Laws

Orbits in Kerr characterized by three slowly evolving constants of motion
during inspiral: energy E, angular momentum L, Carter constant C

o Leading-order balance laws for E, L derived [Gal'tsov '82]
» can evolve generic orbits in Schwarzschild
» equatorial and spherical orbits in Kerr
o Leading-order evolution for C derived in terms of Teukolsky modes
» Complete, practical adiabatic waveform-generation scheme for Kerr
[Sago et al '06, Hughes et al '05, '17], following a breakthrough in
[Mino '03]
@ Goal: extend these results to post-adiabatic order!

» currently calculate more than is required, in Schwarzschild [Miller,
Pound, Warburton, Wardell '19]
» seek something more efficient and streamlined

See Sec 6.1 of [Barack and Pound, '19] for details
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Second-Order Self-Force Theory

Expansion of metric
g = g +ehd) + h2) + 0(e®)
Expansion of phase

L6 4 125072 4 o 4]

¢ =
€

$(0): adiabatic order
¢(%): resonances (ignored in our analysis)
#(1): post-adiabatic order

o To compute ¢(1/2) and ¢(1), we need the time-averaged dissipative
part of the second-order self-force (F3';:.c)
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Two-Timescale Approximation Method

Orbital motion in terms of action-angle variables

d d
j{A = fa(Js,€) and % = wa(JB,€)

where o ={E,L,C,6M,da}

Metric perturbation in two-timescale form

g =3 B (Ta(E), r, 0, @)e (Prrtavotmie)
mpq

° EZ’EJ’""" purely slow-time evolving quantity
e Compute amplitudes and phases through post-adiabatic order

e Ultimately, for a practical evolution scheme, want useful perturbative
expressions for d 7a/dt
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Local Evolution Equations for E and L

Focus on just two of the J4 variables: E = —Qg(t), L= ng
Define effective metric

v 0
8ap = go(ég) + hgﬁ

More physically intuitive expressions for conserved charges

Qg /BU 56

@ Rate of change
dQe _
dr

uau 1
0V (Baps”) = 508 Lehiy

@ Goal: express in terms of asymptotic fluxes in t

dé§ _ 1 vaV,B
<dt> = <zut Ef”a6>

Zeyd Sam second-order flux balance 23rd Capra, UT Austin 5/12



Expressions in terms of the Radiative Field

o Relate to asymptotic fluxes by first rewriting in terms of the radiative
fields h(mRad
af
Dt / dv’ GRad, ,, To'8

Rad(2) !/ ~Rad o' B!
h /Vdv GRad, . 5%

o GRad is the antisymmetric piece of Gt

@ Express balance laws in terms of these fields by appealing to
symmetries of Green's functions
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Expressions in terms of the Radiative Field cont.

@ At first order, T®'#" has same structure as (u~u?)

1 1
3 - o B Rad(1)
<uu uLh >_<utu u"Leh,g >

@ Second-order source has no such convenience, but a combination does (by
symmetry)

1 R(2 1 R(2 1 o
(groroneetl ) = (oo e + gy [ v/ Siatentin )

1 N3
- 71671‘/1, /dV 5(2 effﬁ‘f/ /6/

@ In terms of the radiative field + volume term

dQ: 1 Rad(1) 2 Rad(2) e o'p
<dt> <2utu uﬁ£§<eh +2¢%h,, ) Tom dv's eff£§/ ,,8,

absorbed two AR terms from the RHS into a re-definition of @ and t
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Contribution from ARad

o Convert hR2d contribution to asymptotic fluxes

» (uulhR3) in terms of boundary integrals - as done historically at first
order [Gal'tsov and others]

1 1
a, B (1)Rad \ 2 ~aBri(1) R(1)
<2utu u Lghaﬁ >_8 /{W dX,0°G*’[h\Y h ]55

<u1tu“uﬁc§h&2md> oz [ dEa(P G, K]+ 26, K],
ov

s

o This is the only place that h(?) appears in the final balance law
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Contribution from Volume Integral

@ Previously unresolved [J. Moxon previous Capras]

@ Volume term derived previously is a fairly simple geometric quantity in
a carefully defined metric g ~ g(® + A(1) (with no h(?)

@ Using Stoke’s Theorem, we reduce volume integral to a boundary
integral at OV

(3.0)
/ aVig®sP P Lehl) = 2 [ / dV[g]@aﬁﬁggag]
14 Vv

(3,0)
= — aB
° [/av dxgla® SB]
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Final Flux Balance Laws

@ Adding up the contributions, we get physical flux across 0V

ov

neglecting slow-time derivatives in first term
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Required Inputs from a Two-Timescale Expansion

@ What do we need to calculate as input into the balance law to drive
the evolution?

o Calculate inputs from a two-timescale expansion of the field equations

e Can get everything we need from
(a) first-order: the full first-order field
(b) second-order: mode amplitudes of the second-order Weyl scalar 14
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Summary and Outlook

@ First pertubative post-adiabatic balance laws for E and L
» key step: converting h™® into hRad
> key step: converting [, into [,
@ Directly relate dE/dt and dL/dt to quantities calculable from field
values at H* and Z
@ These balance laws enable efficient two-timescale evolution of
equatorial orbits using a second-order Teukolsky equation - avoid full
metric reconstruction
@ Highly general post-adiabatic derivation, but...
» need Carter constant for generic orbits

Thank you for listening!
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