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History of Flux Balance Laws

Orbits in Kerr characterized by three slowly evolving constants of motion
during inspiral: energy E, angular momentum L, Carter constant C

Leading-order balance laws for E , L derived [Gal'tsov '82]
I can evolve generic orbits in Schwarzschild
I equatorial and spherical orbits in Kerr

Leading-order evolution for C derived in terms of Teukolsky modes
I Complete, practical adiabatic waveform-generation scheme for Kerr

[Sago et al '06, Hughes et al '05, '17], following a breakthrough in
[Mino '03]

Goal: extend these results to post-adiabatic order!
I currently calculate more than is required, in Schwarzschild [Miller,

Pound, Warburton, Wardell '19]
I seek something more e�cient and streamlined

See Sec 6.1 of [Barack and Pound, '19] for details
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Second-Order Self-Force Theory

Expansion of metric

gµν = g (0)
µν + εh(1)µν + ε2h(2)µν + O(ε3)

Expansion of phase

φ =
1
ε

[φ(0) + ε(1/2)φ(1/2) + εφ(1) + ...]

φ(0): adiabatic order
φ(

1
2
): resonances (ignored in our analysis)

φ(1): post-adiabatic order

To compute φ(1/2) and φ(1), we need the time-averaged dissipative
part of the second-order self-force 〈Fα2,diss〉
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Two-Timescale Approximation Method

Orbital motion in terms of action-angle variables

dJA
dt̃

= fA(JB , ε) and
dψA

dt
= ωA(JB , ε)

where JA = {E , L,C , δM, δa}

Metric perturbation in two-timescale form

hnαβ =
∑
mpq

h̃
n,ωmpq

αβ (JA(t̃), r , θ, ϕ)e−i(pψr+qψθ+mψϕ)

h̃
n,ωmpq

αβ purely slow-time evolving quantity

Compute amplitudes and phases through post-adiabatic order

Ultimately, for a practical evolution scheme, want useful perturbative
expressions for dJA/dt̃
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Local Evolution Equations for E and L

Focus on just two of the JA variables: E = −Qξ(t) , L = Qξ(φ)
De�ne e�ective metric

ğαβ = g
(0)
αβ + hRαβ

More physically intuitive expressions for conserved charges

Q̆ξ = ğαβ ŭ
αξβ

Rate of change

dQ̆ξ
d τ̆

= ŭαŭγ∇̆γ(ğαβξ
β) =

1
2
ŭαŭβLξhRαβ

Goal: express in terms of asymptotic �uxes in t〈
dQ̆ξ
dt

〉
=

〈
1
2ŭt

ŭαŭβLξhRαβ
〉

Zeyd Sam second-order �ux balance 23rd Capra, UT Austin 5 / 12



Expressions in terms of the Radiative Field

Relate to asymptotic �uxes by �rst rewriting in terms of the radiative

�elds h(n)Radαβ

h
Rad(1)
αβ =

∫
V
dV ′ GRad

αβα′β′Tα′β′

h
Rad(2)
αβ =

∫
V
dV ′ GRad

αβα′β′S
α′β′

e�

GRad is the antisymmetric piece of G ret

Express balance laws in terms of these �elds by appealing to
symmetries of Green's functions
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Expressions in terms of the Radiative Field cont.

At �rst order, Tα′β′
has same structure as

〈
uαuβ

〉〈
1

ut
uαuβLξhR(1)

αβ

〉
=

〈
1

ut
uαuβLξhRad(1)αβ

〉
Second-order source has no such convenience, but a combination does (by
symmetry)

〈
1

ut
uαuβLξhR(2)

αβ

〉
=

(〈
1

ut
uαuβLξhR(2)

αβ

〉
+

1

16πµ

∫
dV ′Sα

′β′

(2)e�Lξ′h
(1)
α′β′

)
− 1

16πµ

∫
dV ′Sα

′β′

(2)e�Lξ′h
(1)
α′β′

In terms of the radiative �eld + volume term

〈
dQ̆ξ
dt

〉
=

〈
1

2ut
uαuβLξ

(
εh

Rad(1)
αβ + 2ε2h

Rad(2)
αβ

)〉
− ε2

16πµ

∫
dV ′Sα

′β′

(2)e�Lξ′h
(1)
α′β′

absorbed two hR(1) terms from the RHS into a re-de�nition of Q and t
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Contribution from hRad

Convert hRad contribution to asymptotic �uxes
I
〈
uuLhRad

〉
in terms of boundary integrals - as done historically at �rst

order [Gal'tsov and others]〈
1
2ut

uαuβLξh
(1)Rad
αβ

〉
=

1
8π

∫
∂V

dΣαδ
2Gαβ[h(1), h(1)]ξβ〈

1
ut

uαuβLξh
(2)Rad
αβ

〉
=

1
8π

∫
∂V

dΣα(δ2Gαβ[h(1), h(2)] + δ2Gαβ[h(2), h(1)])ξβ

This is the only place that h(2) appears in the �nal balance law
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Contribution from Volume Integral

Previously unresolved [J. Moxon previous Capras]

Volume term derived previously is a fairly simple geometric quantity in
a carefully de�ned metric g ∼ g (0) + h(1)

(
with no h(2)

)
Using Stoke's Theorem, we reduce volume integral to a boundary
integral at ∂V

∫
V
dV [g (0)]S

(2)αβ
e� Lξh

(1)
αβ = −2

[∫
V
dV [g]GαβLξgαβ

](3,0)
= −2

[∫
∂V

dΣ[g]αG
αβξβ

](3,0)
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Final Flux Balance Laws

Adding up the contributions, we get physical �ux across ∂V

〈
dQ̆ξ
dt

〉
∼
∫
∂V

dΣα[g]ξβ
(
Gαβ[g ]− δGαβ[h]

)
+ local terms in hR(1)

neglecting slow-time derivatives in �rst term
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Required Inputs from a Two-Timescale Expansion

What do we need to calculate as input into the balance law to drive
the evolution?

Calculate inputs from a two-timescale expansion of the �eld equations

Can get everything we need from
(a) �rst-order: the full �rst-order �eld
(b) second-order: mode amplitudes of the second-order Weyl scalar ψ4
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Summary and Outlook

First pertubative post-adiabatic balance laws for E and L
I key step: converting hR into hRad

I key step: converting
∫
V
into

∫
∂V

Directly relate dE/dt and dL/dt to quantities calculable from �eld
values at H+ and I+

These balance laws enable e�cient two-timescale evolution of
equatorial orbits using a second-order Teukolsky equation - avoid full
metric reconstruction
Highly general post-adiabatic derivation, but...

I need Carter constant for generic orbits

Thank you for listening!
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