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Overview

1 Extending fist-order methods (the Teukolsky equation) to
second order

2 Why gauge at second order is more complicated

3 Gauge fixing a second-order quantity (to achieve gauge
invariance)
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Current Second-Order GSF Methods

Second-order GSF calculations have been made for quasicircular
orbits in Schwarzschild spacetime.

These methods use the Lorenz gauge, where the linearised
Einstein field equation is non-separable in Kerr spacetime.

Let’s return to first-order SF for inspiration on how to formalise a
second-order method in Kerr...
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Notation: ε expansion

gab =g(0)
ab + ε1h

(1)
ab + ε2h

(2)
ab +O(ε3),

⇒ gab =g(0)
ab + h

(1)
ab + h

(2)
ab +O(ε3).

ψ4 = ψ
(0)
4 + ψ

(1)
4 + ψ

(2)
4 +O(ε3).
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First-Order GSF in Kerr Spacetime

The Teukolsky equation:

Oψ(1)
4 = S[T (1)

ab ]

Unlike the linearised EFE in Kerr, the radial and angular
dependencies are separable.

CCK metric reconstruction: h(1)
ab

[
Φ[ψ(1)

4 ]
]
⇒ first-order self-force.

We want to extend these methods to second order so that
we can repeat this procedure to calculate the second-order GSF.
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The Second-Order Teukolsky Equation
Campanelli & Lousto derived a second-order Teukolsky equation:

Oψ(2)
4 = S[T (2)

ab ] + SLC [ψ(1)
2 , ψ

(1)
3 , ψ

(1)
4 , α(1), β(1), ..., τ (1)].

[Campanelli & Lousto. Phys. Rev. D, 59(12):124022, 1999.]

However, for GSF calculations this appears to be
non-integrable:

SLC [h(1)
ab , h

(1)
ab ] ∼ (∂r∂rh(1)

ab )(∂r∂rh(1)
ab ) ∼ r−6,

as h(1)
ab ∼ r−1, where r is distance from the worldline; hence,
∫ R

0
SLC [h(1)

ab , h
(1)
ab ]r2dΩdr ∼

∫ R

0
r−4dr =

[
− 1

3r3

]R
0
,
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A “New” Second-Order Teukolsky Equation
The Teukolsky equation gives the (spin −2) Wald identity:

Oψ(1)
4 = S[T (1)

ab ]
OT (h(1)

ab ) = SE(h(1)
ab ),

where T (h(1)
ab ) := ψ

(1)
4 (and E(h(1)

ab ) = T
(1)
ab ).

[Wald. PRL, 41(4):243, 1978.] [Green, Hollands & Zimmerman. CLASSICAL QUANT GRAV, 37(7):075001, 2020.]

Acting on h(2)
ab instead gives

OT (h(2)
ab ) = SE(h(2)

ab )
O(ψ(2)

4L ) = S
(
T

(2)
ab − δ2G(h(1)

ab , h
(1)
ab )

)
,

where ψ(2)
4L := T (h(2)

ab ) (and E(h(2)
ab ) + δ2G(h(1)

ab , h
(1)
ab ) = T

(2)
ab ).
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What is ψ(2)
4L?

[Campanelli & Lousto. Phys. Rev. D, 59(12):124022, 1999.]

ψ
(2)
4 = T [h(2)

ab ] + δ2ψ4[h(1)
ab h

(1)
ab ]

= ψ
(2)
4L + ψ

(2)
4Q;

i.e. ψ(2)
4L is the linear in h(2)

ab part of ψ(2)
4 .

[Campanelli & Lousto. Phys. Rev. D, 59(12):124022, 1999.]

At I+: ψ(2)
4L = ψ

(2)
4 +O(r−2);

∼ dissipative piece of second-order self-force (Zeyd Sam’s
talk)

And (unlike ψ(2)
4 ) ψ(2)

4L is infinitesimal tetrad rotation invariant.
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Making the Source Regular
Implement a puncture scheme to handle T (2)

ab :

O[ψ(2)
4L ] = S

[
− δ2G[h(1)

ab , h
(1)
ab ]
]

∀ xα /∈ γ,

O[ψR(2)
4L ] = S

[
− δ2G[h(1)

ab , h
(1)
ab ]
]
−O[ψP(2)

4L ] ∀ xα,

The source is still very singular

S
[
− δ2G[h(1)

ab , h
(1)
ab ]
]
∼ ∂r∂rδ

2G[h(1)
ab , h

(1)
ab ] ∼ 1

r5 .

However, S is a linear operator and in the highly regular
gauge (Sam Upton’s talk) δ2G[h(1)

ab , h
(1)
ab ] is, at leading order, a

linear operator.
⇒ Integrable source (using distribution theory).
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A Second-order Gauge Invariant?
At first order life is easy:

ψ
′(1)
4 = ψ

(1)
4 + L~ξ(1)ψ

(0)
4 = ψ

(1)
4 ,

as ψ(0)
4 = 0. I.e. ψ(1)

4 is gauge invariant.

At second order life is terrible:

ψ
′(2)
4 =ψ(2)

4 + L~ξ(1)ψ
(1)
4 + L~ξ(2)ψ

(0)
4 + 1

2L~ξ(1)L~ξ(1)ψ
(0)
4

=ψ(2)
4 + L~ξ(1)ψ

(1)
4

6=ψ(2)
4 .

I.e. ψ(2)
4 is not gauge invariant (similar story for ψ(2)

4L ).
But gauge fixing requires only knowing ~ξ(1).
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Gauge Fixing Region by Region
• Campanelli & Lousto gave a method for gauge fixing, which

involves solving PDEs. [Campanelli & Lousto. Phys. Rev. D, 59(12):124022, 1999.]

• For each physically significant region we want a fully fixed good
gauge:
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The Bondi–Sachs Gauge

Source: [T. Mädler J. Winicour (2016). Bondi-Sachs Formalism. Scholarpedia, 11, 33528.]

• Gauge conditions: grr = grA = 0 and Det[fAB] = Det[qAB]
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Fully fixed Good Gauge at I+: Bondi–Sachs Gauge
Our method for transforming to the Bondi–Sachs gauge:

• Solve h′(1)
ab = h

(1)
ab + 2∇(aξ

(1)
b) for ξ(1)

b such that h′(1)
ab satisfies the

BS gauge conditions.
• We show this reduces to solving a (hierarchical) set of ODE’s

backwards from I+ along null rays.

However, the infinitely many freedoms mapping I+ to itself (the
BMS group) are still unfixed:
• Fix (algebraically, up to the time and axial rotational symmetries

of the Kerr background spacetime) by placing further constraints
on h′(1)

uu and h′(1)
uA .

⇒ Gauge fix the second-order Teukolsky equation
⇒ Gauge invariant results (ψ′(2)

4L )!
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Finding a regular h(1)
ab (ADVERTISEMENTS)

Current h(1)
ab calculations use CCK metric reconstruction which

produces pathological singularities in h(1)
ab .

[M Van De Meent. Physics Review D, 94(19):104033,2018]

Tomorrow 7:40 CDT, Stephen Green (with Hollands &
Zimmerman):
• Teukolsky formalism for nonlinear Kerr perturbations (an

extension of metric reconstruction to non-vacuum spacetime)
Tomorrow 8:00 CDT, Peter Zimmerman (with Green, Spiers &
Pound):
• Implementing the non-linear Teukolsky formalism for a point

particle in flat space (to ameliorate these singularities for
second-order calculations)
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Summary
• a “new” second-order Teukolsky equation, whose source is

easier to regularise
• A plan for gauge fixing the second-order Teukolsky equation in
three regions with good gauges
• A practical method for fixing to the Bondi–Sachs gauge and fixing

the BMS frame.

Thank you for listening

Please feel free to contact me (A.R.C.Spiers@soton.ac.uk)
and look out for our forthcoming paper on this work (Spiers,
Moxon & Pound)
Get hyped for Peter Zimmerman’s talk tomorrow at 8:00 CDT
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