
Developments at first-order

Discussion lead by Niels Warburton

23rd Capra Meeting University of Texas at Austin, Virtual

Discussion: overview

- What we need
- Status and challenges
- BHPToolkit update
- Slack

Three addition discussions:

- Faster GSF codes
- Covering the parameter space
- Fast waveforms

What we need at first order:

Adiabatic inspirals:

- Fluxes for point particle on generic bound orbit in Kerr
- Cover and interpolate parameter space

GSF inspirals:

- 1st-order GSF for point particle on generic bound orbit in Kerr
- Flux due to spin on the secondary for generic bound orbits in Kerr
- Cover and interpolate parameter space

What we need at first order:

For second-order:

- First-order metric perturbation everywhere in the spacetime for bound orbits in Kerr
- Derivative of the MP w.r.t. orbital elements everywhere in the spacetime, e.g., $\{\partial h/dp, \partial h/de\}$

Waveforms:

- waveform amplitudes for bound orbits in Kerr
- cover and interpolate parameter space

Computational framework that uses results from all the above

Adiabatic inspirals:

- Fluxes for point particle on generic bound orbit in Kerr
- Cover and interpolate parameter space

Fluxes:

- Can compute numerically
- Have analytic results via PN and near-NHEK expansion

Covering the parameter space:

- Need high precision interpolation (residuals $\ll 1/\epsilon$)
- Blend analytic and numerical results

GSF inspirals:

- 1st-order GSF for point particle on generic bound orbit in Kerr
- Flux due to spin on the secondary for generic bound orbits in Kerr
- Cover and interpolate parameter space

1st-order GSF:

- can numerically compute but very slowly (implementation and many more modes needed)
- No PN series as yet

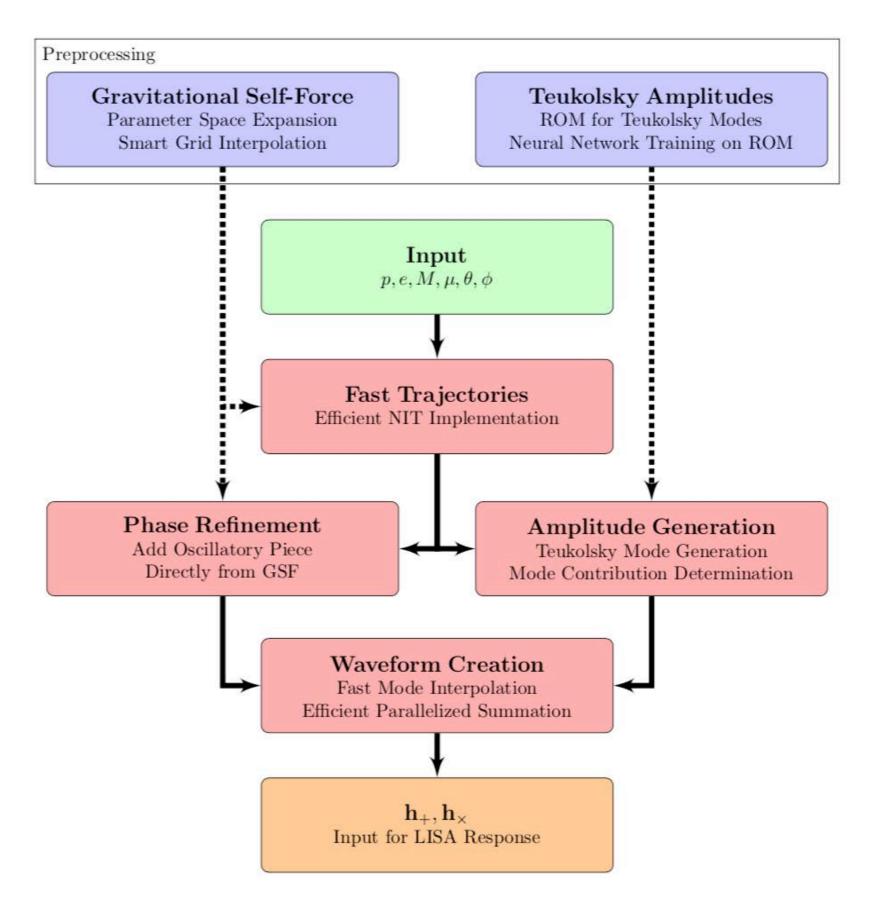
Spinning secondary:

- have results for circular orbits (numerical + PN)
- No eccentric orbit results

Cover parameter space:

- Only done in Schwarzschild (by gridding)
- Don't need such high accuracy

Waveforms:


- waveform amplitudes for bound orbits in Kerr
- cover and interpolate parameter space

Waveform amplitudes:

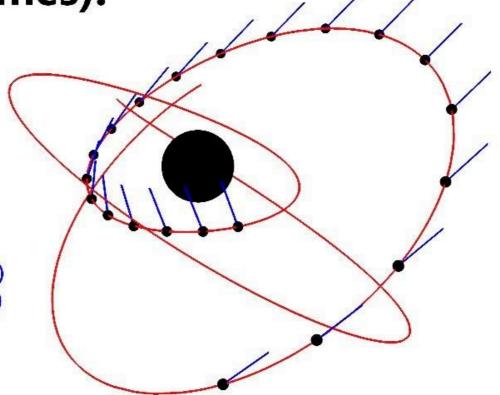
- have numerical and PN results
- Don't need high precision (error does not accumulate)

Cover and interpolate the parameter space - similar challenges to GSF

- Key to overcoming those challenges (and others) will be sharing code and data within the community
- Until recently there were no public Regge-Wheeler/Teukolsky codes
- The BHPToolkit is addressing this

Black Hole Perturbation Toolkit Open tools for black hole perturbation theory Introduction Toolkit and Data Repository Status and Documentation Contributors and Users

https://bhptoolkit.org


In the Toolkit you will find:

- Spin-weighted spheroidal harmonics
- Geodesics
- QNMs codes
- ReggeWheeler codes
- Teukolsky codes
- Inspiral codes (NIT)
- Waveform codes (Kludges, snapshots, surrogates)
- Self-force codes
- Data (numerical and analytic)

- We recently held a (virtual) workshop
- Attendance: ~110 on Zoom, ~20 on YouTube

BHPToolkit Spring 2020 workshop Monday sessions (CEST times):

12:00-12:05 - Local introduction (Vojtech Witzany and Georgios Lukes-Gerakopoulos) 12:05-12:45 - Introduction to the BHPToolkit (Barry Wardell) 12:45-13:15 - SpinWeighedSpheroidalHarmonics (Niels Warburton) 13:15-14:00 - kerrgeodesic_gw (Eric Gourgoulhon) 14:00-14:30 - Coffee break 14:30-15:15 - GeneralRelativityTensors (Seth Hopper) 15:15-16:00 - KerrGeodesics (Maarten van de Meent) 16:00-16:30 - Coffee break 16:30-17:15 - EMRI Surrogate (Scott Field) 17:15-18:00 - Quasinormal modes with qnm (in Python, Leo Stein)

All talks recorded on YouTube. See https://bhptoolkit.org/workshops.html

Monday

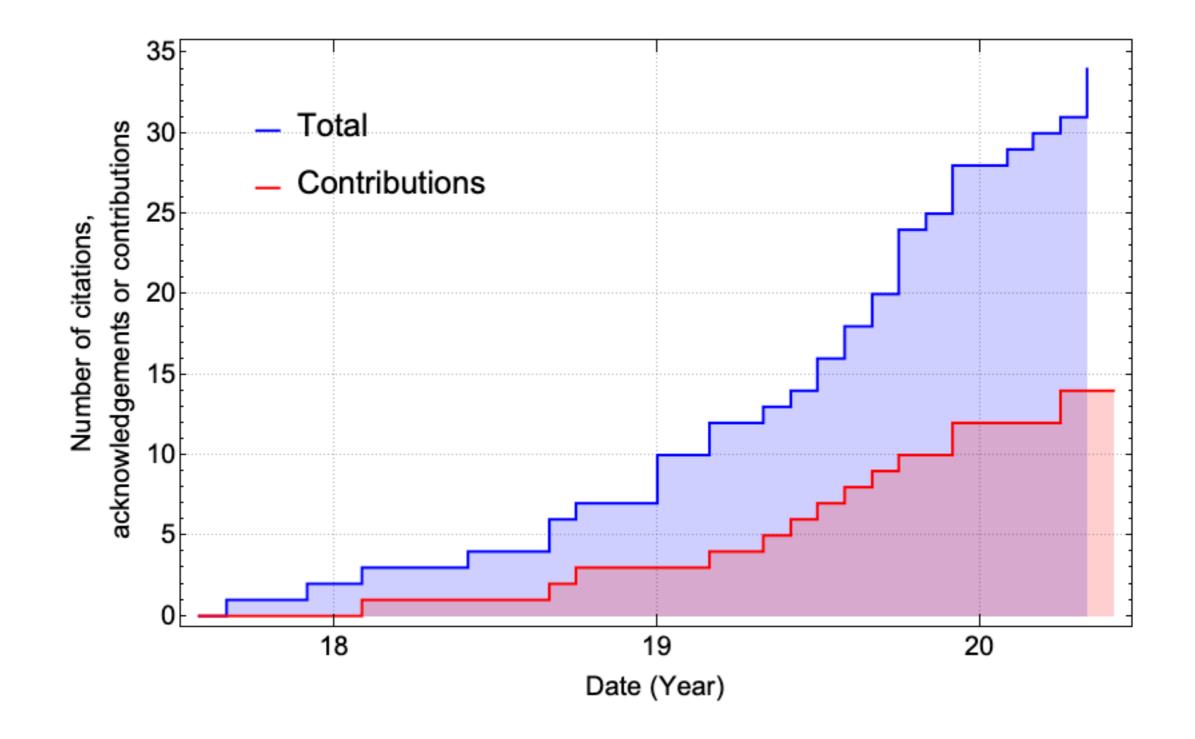
Time (CDT)	Speaker	Institute	Title
6:50			Welcome
7:00	Theo Torres	University of Sheffield	Electromagnetic self-force of a charged particle on Kerr spacetime: equatorial circular orbits Read Abstract
7:20	Leanne Durkan	University College Dublin (UCD)	On Calculating the Lorenz Gauge Metric Perturbation Read Abstract
7:40	Philip Lynch	University College Dublin	Fast Self-Forced Inspirals into a Kerr Black Hole Read Abstract
8:00	Zach Nasipak	University of North Carolina at Chapel Hill	Calculating the scalar self-force experienced during ð 'Ÿð œf-resonances Read Abstract
8:20			Coffee
8:40	Huan Yang	Guelph University	Relativistic Mean Motion Resonance Read Abstract
9:00	Georgios Lukes- Gerakopoulos	Astronomical Institute, Czech Academy of Sciences	Impact of Resonances and Chaos on Extreme Mass Ratio Inspirals Read Abstract
9:20	Alvin Chua	Jet Propulsion Laboratory	Rapid generation of fully relativistic EMRI waveforms for data analysis Read Abstract
9:40	Michael Katz	Northwestern University	GPU-Accelerated Techniques for Generating Fast EMRI Waveforms Read Abstract

Tuesday

Time (CDT)	Speaker	Institute	Title	
7:00	Adam Pound	University of Southampton	Progress toward post-adiabatic waveforms Read Abstract	Ø

9:00	Benjamin Leather	University College Dublin	A view to second-order self-force calculations for eccentric orbits Read Abstract	Ø
------	---------------------	---------------------------	--	---

Wednesday


9:20	Christopher Munna	UNC Chapel Hill	Analytically expanding black hole perturbation theory quantities to high PN order Read Abstract	Pr
10:00	Oliver Long	University of Southampton	Towards a self-force calculation of the scatter angle in hyperbolic encounters Read Abstract	\bigcirc

Thursday

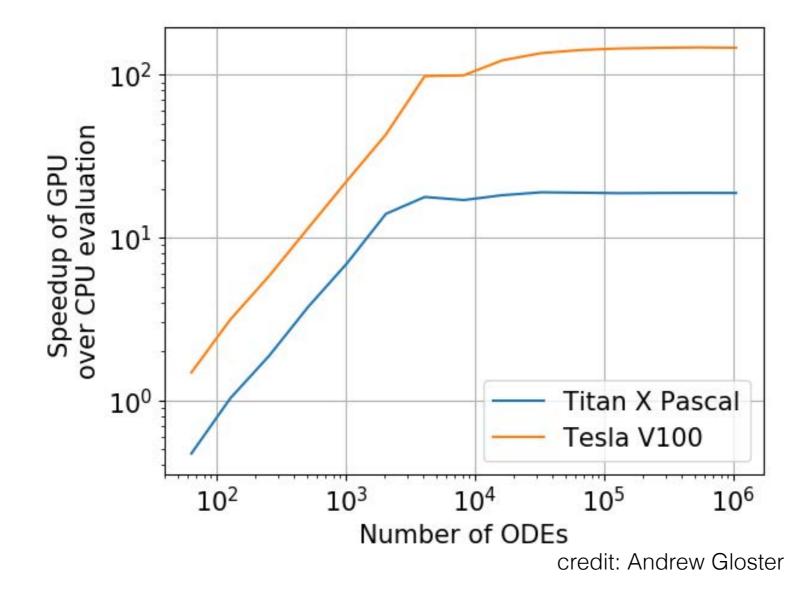
7:40	Peter Diener	Louisiana State University	Towards the Self-consistent Evolution of a Scalar Charge Around a Schwarzschild Black Hole (yet again, again)
8:00	Samuel Cupp	Louisiana State University	Progress towards self-consistent evolution of gravitational self-force around a Schwarzschild black hole
9:20	Nur E. M. Rifat	University of Massachusetts Dartmouth	Surrogate model for gravitational wave signals from binary black hole system generated by point-particle black hole perturbation theory (ppBHPT)
9:40	Tousif Islam	University of Massachusetts (UMass) Dartmouth	Detectability and Parameter Estimation Accuracy for Intermediate-mass black holes (IMBH) with current generation detectors Read Abstract

Friday

9:00	Josh Mathews	University College Dublin	Gravitational Perturbations by a Spinning Secondary in the RW gauge Read Abstract	\bigcirc
9:20	Gabriel Andres Piovano	La Sapienza, University of Rome	Extreme mass ratio inspirals with spinning secondary Read Abstract	\bigcirc

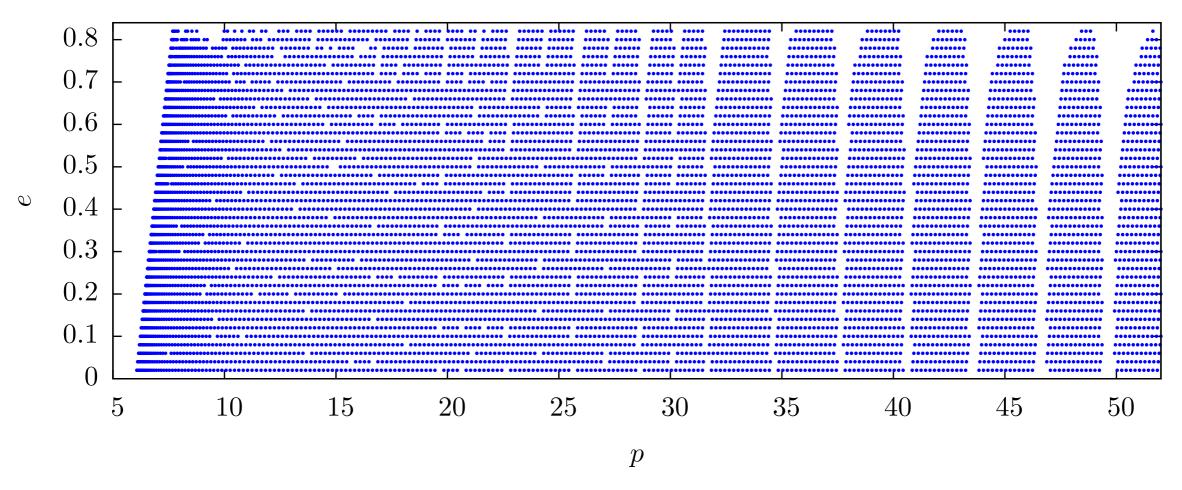
Further discussion:

- Use Slack for text-based discussion
- If you organise a video call invite everyone.
 Announce the call in the #capra-main channel


Specific discussions:

- Faster GSF codes (Now)
- Covering the parameter space (~12:00 CDT)
- Fast waveforms (~12:30 CDT)

Extra slides

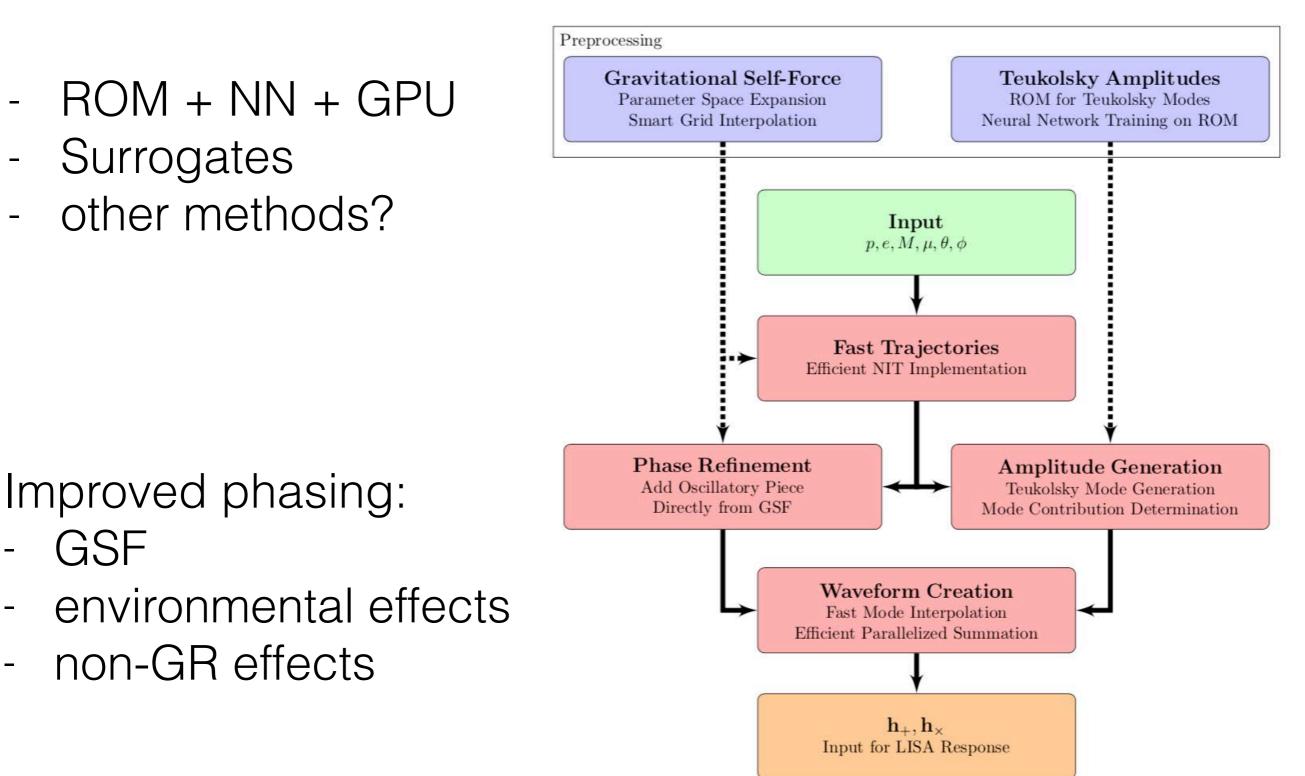

GSF inspirals:

- 1st-order GSF for point particle on generic bound orbit in Kerr
- Flux due to spin on the secondary for generic bound orbits in Kerr

GPUs?

Covering the parameter space

In the past we've just grid up the parameter space


Difference precision requirements for different parts of GSF

A lot of data to curate: need good standard formats

Use analytic knowledge

Figure from Osburn, Warburton, Evans, https://arxiv.org/abs/1511.01498

Fast waveforms

