Orbifolding the Membrane Action

Seiji Terashima, F.Y (YITP, Kyoto U.) ArXiv: 0807.0368

Question

What is the low energy effective theory on multiple M2 branes (membranes) ?

Hopeful Candidate

World volume theory of membranes suggested by ABJM

By Aharony, Bergman, Jaffris, Maldacena ArXiv: 0806.1218 [hep-th] • 3dim $\mathcal{N}=6$ Chern-Simons matter theory

• M2 branes probing C^4/Z_k (*k*: level of Chern-Simons term)

Different from the method of
orbifolding the theory of D branes !!Douglas and Moore
(hep-th/9603167)

Orbifolding by the Z_n action $\rightarrow U(N)^n$ Quiver gauge theory

Orbifolding is non-trivial for membrane theory !!

Chan-Paton factorsWhich D-branes the open string attached.Gauge indices

Structure of the countterpart of Chan-Paton factor is not clear

Theme

•What is the relationship between orbifold structure naturally encoded in the ABJM theory and the method of orbifolding for D-branes?

• They are actually equivalent?

• The orbifold action Z_k encoded in the ABJM theory can be reproduced from the method of orbifolding for D-branes? $\rightarrow No!$

Does the method for D-branes applicable for membranes for other orbifold actions?

- •Always applicable (Actually equivalent ?)
- Method for D-branes are not applicable for membranes?
- Methods of orbifolding depends on the orbifold action ?

Conclusion

•We constructed the theory which we suggest to the world volume theory of M2 branes probing

 $(C^{4}/Z_{k})/Z_{n} \qquad (k = nk')$ $Z_{k}:(y^{1}, y^{2}, y^{3}, y^{4}) \rightarrow \left(e^{\frac{2\pi i}{k}}y^{1}, e^{\frac{2\pi i}{k}}y^{2}, e^{\frac{2\pi i}{k}}y^{3}, e^{\frac{2\pi i}{k}}y^{4}\right) \qquad \qquad \text{Already incoded in the}$ $Z_{n}:(y^{1}, y^{2}, y^{3}, y^{4}) \rightarrow \left(e^{\frac{2\pi i}{n}}y^{1}, e^{\frac{2\pi i}{n}}y^{2}, e^{-\frac{2\pi i}{n}}y^{3}, e^{-\frac{2\pi i}{n}}y^{4}\right) \qquad \qquad \text{Further orbifolding}$ by using the method for D-branes.

• We checked that its moduli space is $[(C^4/Z_k)/Z_n]^N/S_N$ [$(C^4/Z_k)/Z_n]^N/S_N$ Which is consistent with the picture that M2 branes are probing $(C^4/Z_k)/Z_n$

We discussed that we cannot use the method for D-branes for orbifold action to reproduce one which is encoded in ABJM theory.

Discussion

•Method of orbifolding similar to the case of D branes are applicable <u>for some cases</u>.

• It is not applicable if orbifolding structure vanishes when taking this limit.