1 1st order phase transition in Maxwell-Chern-Simon QED

by Y. Hoshino (Kushiro NCT) & T. Inagaki, Y. Mizutani (Hiroshima Univ.)

Outline

1995 Kondo & Maris

3-dimensional QED with Chern-Simon term with 4-component fermion

θ : topological mass

small θ Parity and Chiral symmetry broken

$\theta_{cr} \rightarrow$ only Parity broken phase and chiral symmetric Phase
Method: Schwinger-Dyson eq in non-local gauge with massless loop correction

2011 Raya tested by Ladder Schwinger-Dyson eq and found $\theta_{cr} \sim 8 \times 10^{-3} e^2$

○ Our case covariant gauge with Ball-Chiu vertex which satisfy Ward-Takahashi-identity

○ Recently Mizutani showed the θ_{cr}? in quenched case removing rolling error in low energy region.

○ Advantage of our case

1 order parameter is gauge invariant & low-energy mass is gauge invariant

(on-shell limit only transverse degree of freedom contribute)

2 Z factor is gauge dependent
My results

Schwinger-Dyson eq with massless loop without vertex correction is solved in Landau gauge

and find the consistent solution.

infrared problem does not arise: massless loop soften the photon propagator as $1/p$.

with vertex correction: now in progress

Ward-Takahashi-identity by gauge invariance

S-D(equation of motion)

$$S_F^{-1}(p) = S_F^{(0)-1} - ie^2 \int \frac{d^3k}{(2\pi)^3} \Gamma_\mu(p, k) S_F(k) \gamma_\nu D_F^{\mu\nu}(p - k)$$

$$= A(p) p \cdot \gamma - B(p)$$

$$(p - q) \nu S_F'(p) \Gamma_\nu(p, q) S_F'(q) = S_F'(p) - S_F'(q)$$
2 Ball-Chiu Ansatz (1980)

Bashir, Pennington (1994)

\[S_F^{-1}(p) = A(p) \gamma \cdot p - B(p) \]
\[\Gamma^L_{\mu}(p, q) = \Gamma^L_{\mu}(p, q) + \Gamma^T_{\mu}(p, q) \]
\[(p - q)_{\mu} \Gamma^L_{\mu}(p, q) = S_F^{-1}(q) - S_F^{-1}(p) \]
\[(p - q)_{\mu} \Gamma^T_{\mu}(p, q) = 0 \]

Transverse vertex does not disturb the W-T identity.

Assume

\[\Gamma^L_{\mu}(p, q) = a(p, q) \gamma_{\mu} + b(p, q)(p+q) \cdot \gamma(p+q)_{\mu} - c(p, q)(p+q)_{\mu} \]

solution
\[
\Gamma^L_{\mu}(p, q) = \frac{A(p) + A(q)}{2} \gamma_\mu + \frac{A(p) - A(q)}{2(p^2 - q^2)} (p + q) \cdot \gamma(p + q)_\mu \\
- \frac{B(p) - B(q)}{p^2 - q^2} (p + q)_\mu
\]

3 Chirality & Parity in (2+1)-dimension

\[\gamma_\mu = \{\gamma_0, \gamma_1, \gamma_2\}, \{\gamma_\mu, \gamma_\nu\} = 2g_{\mu\nu}, \gamma_3, \gamma_5 \text{ Dirac representation}\]

\[\gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \gamma^5 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix},\]

(1)

\[\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.\]

(2)

chiral transform \[\psi \mapsto \exp(i\alpha\gamma_3)\psi, \psi \mapsto \exp(i\beta\gamma_5)\psi\]
\[\bar{\psi} \psi \rightarrow \cos(2\alpha) \bar{\psi} \psi (1) \psi + i \sin(2\alpha) \bar{\psi} (\gamma_3 \text{or} \gamma_5) \psi \]

\(m_e \bar{\psi} \psi \) is not singlet and violate chiral symmetry.

\[\sigma = \bar{\psi} \psi, \pi = \bar{\psi} (\gamma_3 \text{or} \gamma_5) \psi, \]

\(\circ \) \(\sigma \) plays the role of Higgs and \(\pi \) restores symmetry as in the \(\sigma \) model.

Rotator or symmetric top.

Another mass \(m_o \bar{\psi} \pi \psi \) (spin density), \(\tau = [\gamma_3, \gamma_5]/2 \)

\(\bar{\psi} \psi \) is singlet under Parity \(\psi(x_0, x_1, x_2) = P \psi(x_0, -x_1, x_2) \),

\[P = \gamma_1 \gamma_5 \]

\(\bar{\psi} \pi \psi \rightarrow -\bar{\psi} \pi \psi \) but singlet under chiral transform

\[m = m_e + \tau m_o \]
Solving Dirac equation $\psi \mapsto \psi_+ + \psi_-$, chiral representation 2-spinor with m_+, m_-

$$m = m_e \begin{pmatrix} I_2 & 0 \\ 0 & I_2 \end{pmatrix} + m_o \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} = \begin{pmatrix} m_+ & 0 \\ 0 & m_- \end{pmatrix}$$

$$L = \bar{\psi}_+(x)(i\partial \cdot \gamma - m_+)\psi_+(x)$$
$$+ \bar{\psi}_-(x)(i\partial \cdot \gamma - m_-)\psi_-(x) \quad (3)$$

Propagator can be decomposed

$$S(p) = \frac{-1}{\gamma \cdot pA(p) - B(p)} = \frac{\gamma \cdot pA_+(p) + B_+(p)}{A_+(p)^2 p^2 + B_+(p)^2} \chi_+$$
$$+ \frac{\gamma \cdot pA_-(p) + B_-(p)}{A_-(p)^2 p^2 + B_-(p)^2} \chi_- \quad (4)$$

$$\chi_+ = (1 + \tau)/2 = \begin{pmatrix} I_2 & 0 \\ 0 & 0 \end{pmatrix}, \chi_- = (1 - \tau)/2 = \begin{pmatrix} 0 & 0 \\ 0 & I_2 \end{pmatrix}$$
S-D equation split into 2 spinor(S_+, S_-) with full $\Gamma_\mu(p, q)$

2-kinds of mass:$m_e = (m_+ + m_-)/2, m_0 = (m_+ - m_-)/2$

4 Maxwell-Chern-Simon QED

$$L = -\frac{1}{4}F_{\mu\nu}F_{\mu\nu} - \frac{\theta}{4}\epsilon_{\mu\nu\rho\sigma}F_{\mu\nu}A_\rho + ...$$

$F \times A$: Parity violating current

$$J_\nu = \partial_\mu F_{\mu\nu} + \frac{\theta}{2}\epsilon_{\alpha\beta\nu}F_{\alpha\beta}$$

$$D_{\mu\nu}(p) = \frac{g_{\mu\nu} - p_\mu p_\nu/p^2 - i\theta\epsilon_{\mu\nu\rho\sigma}p_\rho/p^2}{p^2 - \theta^2 + i\epsilon} + \xi \frac{p_\mu p_\nu}{p^4}$$
\(\theta \) may be corrected by vacuum polarization

\[
\Pi_e = \frac{e^2}{8} \sqrt{k^2} (m = 0)
\]

massless loop \(c = e^2/8 \)

\[
D_e(k) = \frac{k^2 + c\sqrt{k^2}}{(k^2 + c\sqrt{k^2})^2 + \theta^2 k^2}, \quad (5)
\]

\[
D_O(k) = \frac{-\theta\sqrt{k^2}}{(k^2 + c\sqrt{k^2})^2 + \theta^2 k^2}. \quad (6)
\]

- use of complex number

\[
D_e(k) = \text{Re}\left(\frac{1}{k^2 + (c + i\theta)\sqrt{k^2}} \right),
\]

\[
D_O(k) = \text{Im}\left(\frac{1}{k^2 + (c + i\theta)\sqrt{k^2}} \right). \quad (7)
\]

is helpful to perform angular integration in S-D equation.
D Landau gauge with bare photon mass θ

$$B_{\pm}(p) = \frac{e^2}{4\pi^2} \int_0^\infty dq q^2 \frac{dq}{2} \frac{dqq^2}{q^2 A_{\pm}(q)^2 + B_{\pm}(q)^2} \times [2(B_{\pm}(q)I_0(p, q) \mp \theta A_{\pm}(q)I_2(p, q_-)]].$$

$$p^2(A_{\pm}(p) - 1) = \frac{e^2}{4\pi^2} \int_0^\infty dq q^2 \frac{dq}{2} \frac{dqq^2}{q^2 A_{\pm}(q)^2 + B_{\pm}(q)^2} \times [2(A_{\pm}(q)I_3(p, q) \mp \theta B_{\pm}(q)I_2(p, q_+)]]$$

angular integral replace $\theta \to c + i\theta$

$$I_0(p, q) = \frac{-1}{2pq} \ln\left(\frac{(p - q)^2 + \theta)^2}{(p + q)^2 + \theta)^2}\right) \to \text{Re}(I_0(p, q, c, \theta))$$

$$I_2(p, q)_\pm = \frac{-1}{4pq} \ln\left(\frac{(p - q)^2 + \theta)^2}{(p + q)^2 + \theta)^2}\right)$$

$$\pm \frac{p^2 - q^2}{4\theta^2 pq} \ln\left(\frac{1 + \theta^2/(p - q)^2}{1 + \theta^2/(p + q)^2}\right) \to \text{Im}(I_2(p, q, c, \theta))$$

$$I_3(p, q) = \frac{(p^2 - q^2)^2}{8\theta^2 pq} \ln\left(\frac{1 + \theta^2/(p - q)^2}{1 + \theta^2/(p + q)^2}\right) - \frac{1}{2} - \frac{\theta^2}{8pq} \ln\left(\frac{(p - q)^2 + \theta^2}{(p + q)^2 + \theta^2}\right) \to \text{Re}(I_3(p, q, c, \theta)).$$
Add vertex correction terms.

5 Numerical results shown later

\[10^{-5} \leq p \leq 10^5, \, B_{\pm}(p), \, A_{\pm}(p), \, 50 \, \text{Digit} \]

We searched the value of \(\theta_{cr} \) where \(\langle \bar{\psi}\psi \rangle \simeq 0 \)

\[\langle \bar{\psi}\psi \rangle_e \simeq 0 \leftrightarrow \langle \bar{\psi}\psi \rangle_e \leq 10^{-5}, \text{ at } \theta = 0 \, \langle \bar{\psi}\psi \rangle \simeq 3 \times 10^{-3} e^4, \]

at \(\theta \simeq 1 \times 10^{-2} e^2, \, \langle \bar{\psi}\psi \rangle_e \simeq 2 \times 10^{-5} , \text{ without vertex correction: Parity broken and Chiral symmetric} \)

\(\theta \) dependence is slow in case with massless loop.

quenched case it is clear to see

Phase transition is not discussed. We need more dynamics as effective potential.
6 Summary

- $\theta = 0$ QED3 gauge invariant & chiral symmetry breaking: Maris et al
- 4-comonent case: small $\theta \leftrightarrow$ chiral symmetry & Parity broken

$m_e \neq 0$, small $m_o \neq 0$

- $\theta_{cr} \leftrightarrow$ Parity broken & chiral symmetric $m_e = 0, m_+ = -m_-, m_o \neq 0$(Kondo & Maris, 1995) non-local gauge quenched Landau gauge $\theta_{cr} = 8 \times 10^{-3} e^2$ (Raya, 2011)

vertex correction Parity broken, chiral symmetric ($MIZUTANI$) $\theta_{cr} \sim 8 \times 10^{-3} e^2$

My case massless loop + Landau gauge $\theta_{cr} \sim 10^{-2} e^2$
with vertex correction of BC, $\langle \overline{\psi}\psi \rangle_e \neq 0$ for large θ?

Chirality and Parity both broken

Now in progress

infrared behavior is soft by massless loop correction.

Our study has relations to finite density case.

with chemical potential which violates parity, C-S is induced by anomaly.