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Abstract

In this thesis, we propose a new calculation method of the superconformal index by using

the Anti-de Sitter (AdS)/Conformal Field Theory (CFT) correspondence.

AdS/CFT is a correspondence between a four-dimensional conformal field theory (CFT)

and type IIB string theory on AdS5×M5 (AdS), where M5 is a five-dimensional compact

manifold. This is the strong/weak duality, and one can use AdS/CFT to study the strongly

coupled field theories from the theory on the AdS side. There are many AdS/CFTs

depending on the compact manifold M5. The simplest example is M5 = S5, and the

corresponding CFT is N = 4 U(N) supersymmetric Yang-Mills (SYM) theory. There are

also AdS/CFTs in which the Lagrangian on the CFT side is not known. The interesting

example is AdS/CFT between a Zk S-fold theory and type IIB string theory on AdS5 ×
S5/Zk, where the S-fold theory is an N = 3 superconformal field theory (SCFT) and

always strongly coupled. In this case, AdS/CFT is a significant tool to study the S-fold

theories. To understand strongly coupled field theories, the study of theories for which

the Lagrangian is not known is quite important.

It is possible to understand AdS/CFT from D3-branes in type IIB string theory, where

the D3-brane is a 3+1-dimensional object. A rank N CFT is realized on the worldvol-

ume of N D3-branes, while D3-branes produce the AdS geometry. This is the origin of

AdS/CFT. In the large N limit, the AdS side is well described by classical gravity, and

there are many applications to the analysis of strongly coupled theories, even for the theo-

ries for which the Lagrangian is not known. On the other hand, if N is finite, it is believed

that the theory on the AdS side is described by quantum gravity. Since no one knows

quantum gravity, people think that it is difficult to calculate the physical quantities on

the CFT side from the AdS side when N is finite.

However, it may be possible to calculate the superconformal index by using AdS/CFT

due to the simplification by the supersymmetry even though N is finite. The supercon-

formal index has the information of the BPS operator spectrum of a given SCFT and

is independent of the coupling constant. Thus, if we calculate the superconformal index

for an SCFT, one can immediately obtain the non-trivial information of the SCFT even

though the Lagrangian is not known. In fact, the calculation method of the superconfor-

mal index on the AdS side in the large N limit is already known, and the application to

S-fold theories has also been performed by using AdS/CFT. Furthermore, the candidates

that contribute to the superconformal index on the AdS side in the finite N region are

known: the D3-branes wrapped on three-cycles in the compact manifold M5.
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4 Abstract

Inspired by these previous researches, we develop the calculation method of the super-

conformal index on the AdS side when N is finite. To achieve this purpose, we adopt the

following strategy. First, we use the well-known AdS/CFT: the correspondence between

N = 4 U(N) SYM and type IIB string theory on AdS5 × S5. In this case, the super-

conformal index is calculable using the Lagrangian on the CFT side. The results then

provide us a hint to search for the calculation method of the superconformal index on the

AdS side in the finite N region. Concretely, we analyze the single wrapped D3-branes and

compare the results with the CFT results. Then, we propose the calculation method of

the superconformal index on the AdS side in the finite N region. We see that our results

agree with the CFT results up to contributions from the multiple wrapped D3-branes.

Second, we apply our method to S-fold theories. Then, we can predict the superconfor-

mal index of the finite rank S-fold theories from the AdS side. Since it is expected that

the rank one and two S-fold theories are equivalent to N = 4 SYM, we can carry out

the consistency check. Besides this check, recently, the superconformal index of the rank

three Z3 S-fold theory was calculated using the renormalization group flow, and we can

confirm the correctness of our method for this case. All the results given in this thesis are

consistent with the known facts.
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Chapter 1

Introduction

Quantum field theories (QFT) has been extensively studied in elementary particle physics.

In particular, the weak coupling region of QFT is well understood by the perturbation

method. On the other hand, it is difficult to analyze the strong coupling region of QFT

because the perturbation method is not applicable. Nevertheless, strongly coupled field

theories often appear in particle physics. For example, quantum chromodynamics (QCD)

is an asymptotically free theory and becomes the strongly coupled theory in the low

energy region. One of the quite important problems in QCD is to understand color

confinement. So far, no one understands color confinement in an analytical way, even

though the lattice QCD suggests that color confinement should occur. To solve the color

confinement problem, the understanding of the strongly coupled field theory is essential.

Although the strong coupling region of the realistic QFT is very difficult to analyze,

one can learn many things about the strongly coupled physics from the supersymmetric

field theories. The supersymmetry is the symmetry between bosonic fields and fermionic

fields. Ths supersymmetry algebra is generated by N Lorentz spinor generators. The

restriction for the theory is stronger as N increases. It is known that N is smaller than

or equal to four for four-dimensional field theory without gravity.

N = 1 supersymmetric theories are important for phenomenology. Since the restriction

of N = 1 supersymmetry for the theory is relatively weak, one can construct various

phenomenological models with N = 1 supersymmetry. However, N = 1 supersymmetry

is not enough to solve the theory. On the other hand, N = 4 supersymmetry gives

the quite severe constraint to the theory, and it is believed that N = 4 supersymmetric

Yang-Mills (SYM) theory [1, 2] is the only theory having N = 4 supersymmetry in four-

dimension. Therefore, an N = 4 theory is uniquely specified by the gauge group only.

Although this theory cannot be the realistic theory, it is still interesting as a toy model

to learn the strongly coupled physics because the quantum corrections to the theory are

suppressed due to the boson/fermion cancellation. Furthermore, since the β-function of

this theory is zero, N = 4 SYM also has the conformal symmetry. In total, N = 4 SYM

has the N = 4 superconformal symmetry.

For N = 2 supersymmetric theories, the restriction is not so strong. However, it is

enough to calculate the low energy effective action, which is obtained by integrating out
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the massive modes in the theory. In fact, Seiberg and Witten determined the low energy

effective action of N = 2 SU(2) gauge theory [3,4] in 1994. They used a certain Riemann

surface to obtain the low energy effective action. Such a Riemann surface is called the

Seiberg-Witten (SW) curve. The understanding of the non-perturbative effect in the

supersymmetric field theory has been greatly progressed by their success. For instance,

one can explain the electric charge confinement via the monopole condensation by breaking

N = 2 to N = 1.

In addition to the understanding of the non-perturbative effects of QFT, the diversity

of QFT is recognized more than before by Seiberg and Witten’s analysis. The significant

fact is that there are many conformal field theories (CFT) that the construction of the

Lagrangian is uncertain. Since it looks like that these theories have no tunable parame-

ters, there is no general procedure that gives the Lagrangian (or, there are few tunable

parameters that can help us find the Lagrangian). The famous examples of such theories

are Argyres-Douglas (AD) theories [5, 6]. AD theories arise at the superconformal fixed

point in which the mutually non-local BPS particles become massless [5–9]. Note that, in

principle, the existence of the ultra-violet (UV) Lagrangian that flows to a target theory

in the renormalization group (RG) flow is enough to analyze the theory. In fact, the UV

Lagrangian that flows to a certain AD theory was discovered by Maruyoshi and Song [10],

and some physical quantities were discussed. Although it is quite difficult to analyze the-

ories for which neither the Lagrangian nor UV Lagrangian are known, one may be able

to analyze them by using dualities.

A duality is a correspondence between outwardly different but physically equivalent

theories. In the duality, it often occurs that a strongly coupled theory corresponds to

a weakly coupled theory. In such a situation, the duality enables us to analyze the

strongly coupled theory via the dual weakly coupled theory. For example, in Seiberg and

Witten’s analysis, the electric-magnetic duality, an example of strong/weak duality, plays

an important role.

Another significant example of strong/weak duality is the AdS/CFT correspondence

proposed by Maldacena [11] in 1997. Roughly speaking, the AdS/CFT correspondence is

a correspondence between a d-dimensional CFT and a d + 1-dimensional gravity theory

on Anti-de Sitter (AdS) spacetime. This correspondence can be understood through

the string theory. The string theory is a theory of strings defined on ten-dimensional

spacetime, and there are p + 1-dimensional objects called Dp-branes as well as strings.

The p + 1-dimensional field theory is realized on the worldvolume of Dp-branes [12],

whereas the AdS spacetime is realized near the D-branes [13]. Although this observation

is far from the proof of AdS/CFT, it is enough to convince us that AdS/CFT holds.

It is known that the strong coupling region on the CFT side corresponds to the classical

gravity on the AdS side. Thus, AdS/CFT provides us a powerful tool to investigate the

strong coupling region of QFT. One can construct AdS/CFT that the theory on the CFT

side is a QCD-like theory by arranging the D-branes in the string theory. The Sakai-

Sugimoto model [14, 15] is known as an example of such the case. One can calculate the

Soryushiron Kenkyu



11

mass of mesons in the Sakai-Sugimoto model, and it is a good example of applications of

AdS/CFT to QCD. It is also known that if the rank of CFT (number of D-branes in the

string theory setup) is finite, the corresponding gravity theory is quantum gravity. Then

it is possible to investigate quantum gravity by using AdS/CFT. However, this fact is an

obstacle to study the strongly coupled CFT with the finite rank when we use AdS/CFT.

Physical quantities protected by the supersymmetry may overcome this obstacle due

to the simplification by the supersymmetry. Candidates of such quantities are the su-

perconformal index and the BPS partition function [16]. The superconformal index is a

kind of partition functions defined in a superconformal field theory (SCFT). It has infor-

mation regarding the operator spectrum of the theory. Also, the superconformal index

does not depend on the coupling constant and is calculable by using the Lagrangian on

the CFT side. Once we calculate the superconformal index, we can obtain the non-trivial

information of the theory. Thus the calculation of the superconformal index for SCFTs,

for which the Lagrangian is not known, is the first goal of the analysis of such SCFTs.

Similarly, the BPS partition function also has information about the operator spectrum

of the theory. Moreover, the structure of the BPS partition function is much simpler than

the superconformal index, and it is useful to speculate the structure of the superconformal

index.

In this thesis, we would like to calculate the superconformal index of the finite rank

SCFTs, for which the Lagrangian is not known, by using AdS/CFT in the finite N region,

where N is the rank of a given SCFT. Then, we need to develop the calculation method

of the superconformal index on the AdS side when N is finite. This research also helps to

expand the scope of applications of AdS/CFT.

For this purpose, it is useful to consider the simplest AdS/CFT: the correspondence

between N = 4 U(N) SYM and type IIB string theory on AdS5 × S5. In this case,

the Lagrangian on the CFT side is known, and the superconformal index is calculable.

The concrete expression of the superconformal index provides us a hint to search for the

calculation method of the superconformal index on the AdS side. First, AdS/CFT in

the N → ∞ limit (large N limit) is well studied because the corresponding theory on

the CFT side is classical gravity. Actually, the superconformal index on the AdS side

was calculated as contributions of Kaluza-Klein (KK) modes on S5, and the agreement

with that on the CFT side was confirmed [16]. Second, when N is finite, there are new

contributions coming from the D3-branes wrapping on three-cycles in S5 as well as KK

modes. The existence of supersymmetric configurations of D3-branes expanded in S5

was first shown in [17]. The calculation method of the superconformal index for such

wrapped D3-branes has not been known so far, and we propose the formula to calculate

the contributions of wrapped D3-branes on the AdS side. Based on the formula, we also

confirm the agreement of the superconformal index with that on the CFT side up to a

certain order of the parameters in the index. A similar analysis of the BPS partition

function is also given.

Once we develop the calculation method of the superconformal index on the AdS side
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in the finite N region, we can apply our method to SCFTs for which the Lagrangian is not

known. We focus on the S-fold theories as examples of such theories. Namely, we calculate

the superconformal index of the S-fold theories as well as the BPS partition function. An

S-fold theory is an N = 3 SCFT and constructed by Garcia-Etxebarria and Regalado [18]

in 2015. It is well known that any N = 3 theories connected with the free theory by

tuning the parameters have N = 4 supersymmetry automatically. So the existence of

genuine N = 3 theories that do not have N = 4 supersymmetry were uncertain until

the discovery of S-fold theories, where a genuine N = 3 theory is an N = 3 theory that

never has the N = 4 supersymmetry. Since S-fold theories are constructed by using D3-

branes in type IIB string theory, we can consider the AdS/CFT correspondence for S-fold

theories [19,20]. Thus, it is possible to investigate S-fold theories by using AdS/CFT. We

apply our formula mentioned in the last paragraph to find the superconformal index of

S-fold theories. Because it is conjectured that some of the S-fold theories are equivalent

to N = 4 SYM with a certain gauge group (Aharony-Tachikawa conjecture) [20], we

can compare our result with the index of corresponding N = 4 SYM. Moreover, the UV

Lagrangian of some of the S-fold theories were given by Zafrir [21], and the index was

calculated by using the UV Lagrangian. We can also compare our result with Zafrir’s

result.

The organization of this thesis is as follows.

In the rest of this chapter, we review some basic concepts to define the superconformal

index and the BPS partition function. In particular, we review the Witten index, the

conformal and superconformal symmetry. Then we define the superconformal index and

the BPS partition function. We also discuss SCFTs for which the Lagrangian is not

known.

In Chapter 2, we review the AdS/CFT correspondence between N = 4 U(N) SYM and

type IIB string theory on AdS5 × S5. We start from the review of N = 4 SYM and give

the superconformal index and the BPS partition function of N = 4 U(N) SYM. After

that, we see the elementary facts of type IIB string theory. Then we consider AdS/CFT

correspondence. The agreement of the index and the BPS partition function in the large

N limit is also reviewed.

In Chapter 3, we calculate the finite N corrections to the BPS partition function and

the superconformal index following the author’s and his collaborators’ paper [22]. After

the calculation, we compare our results with those on the CFT side.

In Chapter 4, we review the S-fold theories following [18–20]. First, we consider the

orientifold and calculate the BPS partition function ofN = 4 SO(N) SYM. Then we define

the S-fold and S-fold theories. We calculate the finite N corrections to the BPS partition

function and the superconformal index following the author’s and his collaborators’ papers

[22, 23]. The results of orientifold are compared with those on the CFT side. For S-

fold theories, we also carry out the consistency check regarding the Aharony-Tachikawa

conjecture [20] and the Zafrir’s analysis [21].

Chapter 5 is devoted to conclusions and discussions.
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We give the conventions for four-dimensional theories and notations of group theory in

Appendix A.

In this thesis, we denote Napier’s number, imaginary unit, and derivative in Roman

type. We use the notation “Tr” only for traces of gauge group indices. Otherwise, we use

“tr” for traces.

1.1 Partition function

A partition function is very important because we can read off the non-trivial information

of a quantum theory. For example, the thermal partition function gives us the energy

spectrum of a theory. The thermal partition function of a theory with the Hamiltonian

H is given by

Z(β) = trH(e−βH) = trH(qH) = Z(q), q = e−β , (1.1)

where the trace is taken over the Hilbert space of the theory, and β = 1/kBT is the

inverse temperature. Actually, the coefficients and exponents of the Taylor expansion of

Z(q) with respect to q have information of the energy spectrum of the theory.

There is another expression of the partition function: the path integral form. Let us

consider a quantum mechanical system of a particle. To see the path integral form, let us

rewrite the partition function (1.1) by position eigenstates |x⟩:

Z(β) =

∫
dx⟨x|e−βH |x⟩. (1.2)

This is reminiscent of the transition amplitude. If we identify the Boltzmann factor

with the time evolution operator, this is the transition amplitude with the time evolution

t = −iβ. Thus, the partition function can be written as the path integral with the periodic

boundary condition:

Z(β) =

∫
Dx exp

[
i

∫ −iβ

0

dtL(x, ẋ)

]
, x(0) = x(−iβ), (1.3)

where L(x, ẋ) is the Lagrangian obtained by the Legendré transformation of the Hamil-

tonian.

In a quantum field theory, the fundamental degrees of freedom are not positions of

particles but fields. Then the partition function of a quantum field theory is given by

Z =

∫
DΦeiS[Φ]. (1.4)

The time direction is compactified to S1.

In the analysis of the quantum field theory, we often want to know the correlation
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function because it encodes the scattering amplitudes through the Lehmann-Symanzik-

Zimmermann reduction formula. As it is well known we add a source term J(x) coupled

to the field Φ in the action, and the correlation function ⟨Φ(x1)Φ(x2) · · · ⟩ is

⟨Φ(x1)Φ(x2) · · · ⟩ =
1

Z[J = 0]

(
−i

δ

δJ(x1)

)(
−i

δ

δJ(x2)

)
· · ·Z[J ]

∣∣∣∣
J=0

. (1.5)

Then, we can read off what particles are present and how they interact with each other.

This is one of the main goals of particle physics.

The benefits of the partition function are not limited to those mentioned above. For ex-

ample, if the number of particles N is conserved, we can obtain the information regarding

the number of particles as well as energy spectrum from the grand partition function:

Ξ(β, µ) = tr(e−βHe−µN ) = tr(qHuN ) = Z(q, u), q = e−β , u = e−µ, (1.6)

where the trace is taken over all possible N values as well as Hilbert space with the

constant N and µ is the chemical potential. We refer to u as the fugacity. Thus the

grand partition function is a generalization of the partition function by adding a number

operator N , which commutes with the Hamiltonian.

Similarly, in general, we can add more information of the spectrum to the partition

function by using the symmetries of the theory. If there are symmetries commuting

with the Hamiltonian, we can generalize the partition function as follows because the

symmetries do not change the structure of the eigenstates of the Hamiltonian:

Z(q, u1, u2, · · · ) = trV (q
HuF1

1 uF2
2 · · · ), (1.7)

where F1, F2, · · · commute each other and u1, u2, · · · are also called the fugacities as an

analogy of the grand partition function. The trace is taken over the Hilbert space of the

theory. The commutativity means that we can choose Fj as the Cartan generators of the

symmetries.

Actually, we can regard the partition function as a character in the context of the group

theory. The character of a representation R of a group G is defined as the trace over the

representation space VR:

χR(g) = trVR
R(g) =

∑
i

[R(g)]ii, (1.8)

where R(g) is a representation matrix of an element g ∈ G. The partition function has

the same structure. The Hilbert space is VR. Hence the partition function is represented

as a character of the state space with g = qHuF1
1 uF2

2 · · · .
Let us see the generalized partition function in the concrete example: 3d harmonic
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oscillators. The Hamiltonian is given by

H =
3∑

i=1

a†iai, (1.9)

where we neglect the zero-point energy for simplicity. The ordinary thermal partition

function is now

Z(q) =
1

(1− q)3
= 1 + 3q + 6q2 + 10q3 + 15q4 + · · · . (1.10)

Then we can read off the energy spectrum of this theory from the coefficients of fugacity

q as promised. As you know, there is an SU(3) global symmetry of this system. Since

the rank of SU(3) is two, we can define two fugacities coupled to the Cartan generators

of SU(3). The definition of the generalized partition function is

Z(q, u1, u2) = tr(qHuR1
1 uR2

2 ), (1.11)

where R1 and R2 are the SU(3) Cartan generators. For the fundamental representation

they are R1 = diag(1,−1, 0) and R2 = diag(0, 1,−1). When the energy eigenvalue is

n without the zero-point energy, it turns out that degenerating states belong to (n, 0)

representation of SU(3). The notation (n, 0) means the Dynkin label of SU(3), and its

definition is given in Appendix A.2. Hence the partition function is

Z(q, u1, u2) =
∞∑

n=0

qnχ(n,0)(u1, u2) =
1

(1− qu1)(1− q u2

u1
)(1− q 1

u2
)
, (1.12)

where χ(n,0) is defined by (A.34). Expanding the partition function with respect to q, we

can find the energy spectrum with SU(3) charge information. Therefore, the generalized

partition function tells us information about the theory in more detail.

The partition function (1.11) is expressed as the character as we introduced before. The

Hamiltonian (1.9) is time independent, and it behaves as U(1) symmetry of the theory.

So we can define the U(3) symmetry by combining this U(1) symmetry with the SU(3)

symmetry. The number of the fugacities is the rank of U(3), namely three. It is convenient

to introduce linearly independent Cartan generators RX , RY , and RZ of U(3) instead of

H, R1, and R2. The relation among them is H = RX + RY + RZ , R1 = RX − RY , and

R2 = RY − RZ . Let x, y, and z be the corresponding fugacities to RX , RY , and RZ .

Then the new fugacities are related with the old ones as x = qu1, y = qu2/u1, z = q/u2.

The definition (1.11) of the partition function is replaced by

Z(x, y, z) = trV (x
RXyRY zRZ ). (1.13)

This is just the character of U(3) (see (A.27)). Note that we have the (n, 0) representation
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for n-th excited states, and we have to sum contributions from all possible representations.

Therefore we have

Z(x, y, z) =
∞∑

n=0

χ(n,0)(x, y, z) =
1

(1− x)(1− y)(1− z)
, (1.14)

where χ(n,0) is defined by (A.32). This agrees with (1.12) with the replacement x =

qu1, y = qu2/u1, z = q/u2.

Because the 3d harmonic oscillator is solvable, there are no obstacles to calculate the

partition function. In the case of an interacting quantum field theory, if the theory is

weakly coupled, we can use the perturbative expansion to obtain the partition function.

It is very difficult to obtain the partition function in the strong coupling region due to the

non-perturbative effects. However, we are often able to calculate the partition function

exactly for supersymmetric theories. Then, we understand quantum field theories more

deeply.

1.2 Witten index

In the presence of supersymmetry, we can define an important physical quantity that does

not depend on the coupling constant. It is the Witten index [24]. The independence of

the coupling constant enables us to calculate the Witten index exactly even for the strong

coupling region, and we can learn something about the non-perturbative effects of the

theory. Hence it is worthwhile to consider the Witten index.

In the supersymmetric theory, the supersymmetry algebra is defined as

{Q̂†, Q̂} = ∆̂, (1.15)

where Q̂ is nilpotent, and the form of ∆̂ depends on the detail of the theory. In the super-

symmetric quantum mechanics, ∆̂ is nothing but the Hamiltonian. In other theories such

as superconformal field theories, ∆̂ is a certain combination of the symmetry generators.

Because ∆̂ commutes with Q̂ and Q̂†, an action of Q̂ and Q̂† on an eigenstate of ∆̂ does

not change its eigenvalue. Let us focus on an eigenstate |ψ⟩ with an eigenvalue ∆. Then

we can show that ∆ is positive-definite:

∆ = ⟨ψ|∆̂|ψ⟩ = |Q̂|ψ⟩|2 + |Q̂†|ψ⟩|2 ≥ 0. (1.16)

In what follows, we omit the hat symbol of operators for simplicity unless there is no

confusion.

Now the Witten index of a supersymmetric theory with the supersymmetry algebra

(1.15) is defined by

IWitten(β) = trH[(−1)F e−β∆], (1.17)
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1.2 Witten index 17

∆

∆ = 0

∆

∆ = 0

coupling g1, IWitten = 1 coupling g2, IWitten = 1

Fig. 1.1 The structure of states in a supersymmetric theory with supersymmetry
algebra (1.15). Here a white node stands for a bosonic state, while a black node
stands for a fermionic state. The coupling constant is g1 on the left side and g2 on
the right side. The structure of states also changes if we change the coupling constant.
However, the Witten index does not change because the excitation is always a pair
of bosonic and fermionic states with the same eigenvalue.

where F is the fermion number operator and (−1)F assigns the minus sign to fermionic

states. Thus the Witten index can also be written as

IWitten(β) =
∑

bosons

e−β∆n −
∑

fermions

e−β∆n , (1.18)

where n is a label of each state.

As we mentioned at the beginning of this section, the Witten index does not depend on

the coupling constant. To see this, let us consider representations of the supersymmetry

algebra (1.15). For ∆ > 0 states, we can define a creation and annihilation operator

a = Q/
√
∆, a† = Q†/

√
∆ satisfying {a†, a} = 1. This is just the two-dimensional Clifford

algebra, and we can define the Clifford vacuum as usual: a|Ω⟩ = 0. We assume that

the Clifford vacuum is a bosonic state. Due to the nilpotency of the supercharges, we

have a two dimensional representation: (|Ω⟩, a†|Ω⟩). This indicates that all states with

∆ > 0 form a pair between a bosonic state and a fermionic state. Because supercharges

commute with ∆, this pair of the states has the same eigenvalue for ∆. This means

that contributions from ∆ > 0 are always canceled. Therefore, the Witten index is only

received from contributions of ∆ = 0 states. If we change the coupling constant, some

states may be excited. However, this excitation is always the pair of bosonic and fermionic

states (see Fig. 1.1). Hence the excitation does not affect the Witten index, and that

is why the Witten index is independent of the coupling constant. Strictly speaking, this

discussion is applicable to any continuous parameter of the theory. In particular, the

Witten index is an RG flow invariant.

The fact that the Witten index has contributions from ∆ = 0 states only shows that
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the Witten index is independent of β. Actually, we can also show it more directly.

d

dβ
IWitten(β) = trH[(−1)F {Q†, Q}e−β{Q†,Q}] = 0, (1.19)

where we used the cyclic symmetry of the trace and (−1)FQ = −Q(−1)F .

According to the above discussion, we also express the Witten index as

IWitten(β) = #(bosonic states with ∆ = 0)−#(fermionic states with ∆ = 0). (1.20)

This expression may be more practical for the calculation.

We have seen that the Wittne index receives the contribution from ∆ = 0 states. Let

|ψ⟩ be state with ∆ = 0. In fact, this state satisfies the following condition:

Q|ψ⟩ = Q†|ψ⟩ = 0. (1.21)

We call this condition the Bogomol’nyi-Prasad-Sommerfield (BPS) condition and the state

|ψ⟩ satisfying (1.21) is called the BPS state. This condition is a necessary and sufficient

condition to be ∆ = 0. In this sense, the Witten index has the information of the BPS

state spectrum of the theory.

As in the case of the thermal partition function, it is possible to generalize the Witten

index to include the conserved charges associated with the global symmetries of the theory.

However, we have an additional constraint: the generators of global symmetries should

commute with the supercharges; otherwise, the discussion of independence of β is invalid.

Then the generalized Witten index is defined by

I(q, uj) = trV [(−1)F q∆uF1
1 uF2

2 · · · ], (1.22)

where q = e−β , and we introduced the fugacities related to the symmetries. As we noted,

we have constraints [Q,Fj ] = 0. Again, this index tells us about the more detailed

information of the BPS spectrum of the theory, and the index can be calculable even for

the strong coupling region.

1.3 Localization

In this section, we explain how to calculate the Witten index in the Lagrangian theory.

As we saw in the previous section, the partition function can be expressed as the path

integral formalism in the quantum field theory. This is also the case for the Witten index.

Due to the trace over the states, a spacetime manifold in which the path integral is carried

out has a form X × S1, where the period of S1 is the inverse temperature β. To ensure

the convergence of the path integral, the space manifold X must be compact.

In the path integral formalism, boundary conditions for fields are very important. In

the thermal partition function, we impose the anti-periodic boundary condition of S1
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1.3 Localization 19

for fermionic fields. Conversely, we have the fermion number operator (−1)F in the

definition of the Witten index, and we impose the periodic boundary condition even for

fermionic fields as well as bosonic fields. Furthermore, the generalized Witten index has

additional operators related to global symmetries. Then we have to include the effects

of these additional operators on the boundary conditions. Let us consider a general

trace tr[(−1)F e−β∆O]. In the original Witten index O = 1 while in the generalized one

O = uF1
1 uF2

2 · · · . Then the boundary condition becomes

e−β∆OΦ(τ)O−1eβ∆ = eβ∂τOΦ(τ)O−1e−β∂τ = OΦ(τ + β)O−1 = Φ(τ), (1.23)

where Φ is a field, and τ is a coordinate in S1. With this boundary condition, the Witten

index in the path integral formalism is

IWitten =

∫
X×S1

DΦe−S[Φ], (1.24)

where we performed the Wick rotation appropriately. Although it is difficult to carry out

this path integral in general, the localization method [25] enables us to calculate the path

integral exactly in the presence of the fermionic symmetry (e.g., supersymmetry).

In this thesis, we would like to apply the localization method to the Witten index.

However, the localization method itself can be applied for various partition functions in a

compact manifold M with a fermionic symmetry. So let us review the general argument

of the localization method in this subsection.

Let S be the action with fermionic symmetry: δFS = 0, where δF is nilpotent or its

square becomes a certain bosonic symmetry δB with δBS = 0. Here we would like to

evaluate the following path integral:

Z =

∫
M

DΦe−S[Φ]. (1.25)

Instead of this, we consider the following deformed path integral:

Z(t) =

∫
M

DΦe−S[Φ]−tδFV [Φ], (1.26)

where V is a Grassmann odd functional satisfying δBV = δ2FV = 0. We can reproduce Z

by Z(t = 0). In fact, it is easy to show that Z(t) does not depend on t:

dZ(t)

dt
= −

∫
M

DΦδFV e−S−tδFV

= −
∫
M

DΦδF
(
V e−S−tδFV

)
= −δF

(∫
M

DΦδFV e−S−tδFV

)
= 0, (1.27)

where we assumed the fermionic symmetry δF is not anomalous. Thus, we can evaluate

Z by Z(t) with any t. The simplest value of t to find Z is the t→ ∞ limit. In this limit,
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the path integral is dominated by saddle points of the deformation term δFV with the

assumption δFV ≧ 0. Then, only configurations satisfying δFV [Φ0] = 0 contribute to the

integral. Let us expand S[Φ] and δFV [Φ] around Φ0 with the fluctuation t−
1
2 Φ̂. In the

t→ ∞ limit, residual path integral becomes

Z =
∑
Φ0

∫
M

DΦ̂e−S[Φ0]−Φ̂δFV (2)[Φ0]Φ̂, (1.28)

where δFV
(2)[Φ0] is the second-order derivative of the functional δFV [Φ]. It is happily

the Gauss integral. We can perform the integral, and the result is the determinant of

the linear operator δFV
(2). However, we have to pay attention to the existence of zero

eigenvalues. If the operator δFV
(2) has zero eigenvalues, we have to eliminate these zero

eigenvalues and the integral remains for the corresponding component of the vector Φ0.

Let a be such a component. Then, the final result is

Z =
∑
Φ0

∫
da

DetF (δFV
(2)[Φ0])

Det′B(δFV
(2)[Φ0])

, (1.29)

where the prime in Det indicates the elimination of the zero eigenvalues. The important

point of this result is that there are only finite number integrals. We call this determinant

the one-loop determinant because it corresponds to the one-loop diagram in the absence

of the non-perturbative effects.

1.4 Superconformal field theory

A theory with the superconformal symmetry is called a superconformal field theory

(SCFT). The superconformal symmetry is essential for the definition of the supercon-

formal index. First, we review the conformal symmetry, and second, we generalize it to

superconformal symmetry to define the superconformal index in the latter subsection.

1.4.1 Conformal symmetry

The 4d conformal transformation in R1,3 is generated by translations Pµ, Lorentz trans-

formations Mµν , dilatation D, and special conformal transformations Kµ. They satisfy
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the following commutation relations:

[D,Pµ] = iPµ, (1.30a)

[D,Kµ] = −iKµ, (1.30b)

[Pµ,Kµ] = −2iMµν + 2iηµνD, (1.30c)

[Mµν ,Mρσ] = iηµρMνσ − iηµσMνρ − iηνρMµσ + iηνσMµρ, (1.30d)

[Mµν , Pρ] = iηµρPν − iηνρPµ, (1.30e)

[Mµν ,Kρ] = iηµρKν − iηνρKµ, (1.30f)

where all the generators are Hermite. If we define generators MAB (A,B = 0, 1, · · · , 5)
as

MAB =

 Mµν − 1
2 (Pν −Kν) − 1

2 (Pν +Kν)
1
2 (Pµ −Kµ) 0 D
1
2 (Pµ +Kµ) −D 0

 , (1.31)

then the commutation relations (1.30) are unified into a simple commutation relation:

[MAB ,MCD] = iηACMBD − iηADMBC − iηBCMAD + iηBDMAC (1.32)

with ηAB = diag(−1, 1, 1, 1, 1,−1). This means that the conformal algebra is isomorphic

to SO(2, 4).

In CFTs, it is useful to consider the radial quantization instead of the vertical quanti-

zation. In the radial quantization, we define the theory on R×S3 instead of R1,3, and we

regard R as the time direction. The theory on R× S3 is related with the original theory

on R1,3 by the Weyl transformation of the metric:

gµν(x) → g′µν(x) = e2w(x)gµν(x), (1.33)

where w(x) is a certain real function of x. Note that in this manipulation, we need

appropriate Wick rotations. Since the Weyl transformation preserves the structure of the

conformal symmetry, the information of the original theory on R1,3 is mapped into the

theory on R × S3. Now we can avoid the infra-red (IR) divergence due to the infinite

volume of each time slice because the time slice is now S3. This is the benefit of the radial

quantization.

Now operators inserted at the origin in R1,3 are mapped into states in the Hilbert space

of the theory in R×S3. Namely, we have a one-to-one correspondence between operators

at the origin O(0) in R1,3 and states

|O⟩ ≡ O(0)|0⟩ (1.34)

in R × S3, where |0⟩ is the conformal invariant vacuum of a CFT. This is the so-called
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operator-state correspondence. Thus we can find the operator spectrum of the theory in

R1,3 in terms of states in R× S3. In what follows, the term “an operator” indicates “an

operator inserted at the origin”; otherwise, we will explain the meaning of “an operator.”

It is useful to classify operators O(0) in terms of representations of conformal algebra.

First of all, an operator with the scaling dimension E is transformed under the dilatation

as

[D,O(0)] = iEO(0). (1.35)

Then, from the conformal algebra (1.30), we find that Pµ and Kµ have a role of raising

and lowering the scaling dimension respectively:

[D, [Pµ,O(0)]] = i(E + 1)[Pµ,O(0)], (1.36)

[D, [Kµ,O(0)]] = i(E − 1)[Kµ,O(0)]. (1.37)

These are followed by the Jacobi identity. In the unitary theory, there is a lower bound

to the scaling dimension. Thus the action of Kµ terminates at a certain value of the

scaling dimension. An operator with this scaling dimension is called the primary operator.

Namely, the primary operator satisfies

[Kµ,O(0)] = 0. (1.38)

As in the highest weight construction of the group theory, we can use the primary operator

as a starting point to construct the conformal representation. Note that in the state

picture, we call the corresponding state the primary state.

Before discussing conformal representation, let us give the conformal transformation

laws for operators inserted at a generic point x. This operator O(x) is related to the

operator inserted at the origin by

O(x) = eiPµx
µ

O(0)e−iPµx
µ

. (1.39)

Then the conformal transformation laws of an operator O(x) are given by [26]

[Pµ,O(x)] = −i∂µO(x), (1.40a)

[Mµν ,O(x)] = [i(xµ∂ν − xν∂µ) + Σµν ]O(x), (1.40b)

[Kµ,O(x)] = [i(x2∂µ − 2xµx
ν∂ν − 2Exµ)− 2xνΣµν ]O(x), (1.40c)

[D,O(x)] = i(xµ∂µ + E)O(x), (1.40d)

where Σµν is a spin matrix corresponding to the Lorentz transformation.
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Representations of conformal algebra

A conformal representation is uniquely specified by the Cartan charges of a primary

operator. We have already seen that the conformal algebra is isomorphic to so(2, 4). Its

subalgebra u(1) × so(4) corresponds to the dilatation and the Lorentz transformation in

R1,3 respectively. Let jL and jR be the left- and right-handed spin. The dilatation charge

is E. Then this primary operator is labeled by jL, jR, and E. We denote the label as

[jL, jR]E . (1.41)

We can construct a tower of operators (or states) by acting Pµ. The operators (or states)

generated by acting Pµ on the primary operator (state) are called descendants. The

labeling (1.41) can also be used for descendants.

There is one thing we have to pay attention to when the construction of representation.

In fact, the zero norm states may appear in the tower of the representation. Corresponding

operators are not physical. In order to make the theory unitary, we have to remove such

states from the tower. Then such the tower is called a short representation.

As an example of a short representation, let us consider free massless primary scalar

field ϕ : [0, 0]1. We can construct descendants by acting Pαα̇ ≡ 1
2 (σ

µ)αα̇Pµ : [ 12 ,
1
2 ]1. The

result is

ϕ : [0, 0]1
Pαα̇−−→ ∂αα̇ϕ : [ 12 ,

1
2 ]2

Pαα̇−−→ ∂{α{α̇∂β}β̇}ϕ : [1, 1]3 ⊕ ϵαβϵα̇β̇∂αα̇∂ββ̇ϕ : [0, 0]3.
Pαα̇−−→ · · · , (1.42)

where ∂αα̇ = 1
2 (σ

µ)αα̇∂µ. Other irreducible combinations are vanished because ∂αα̇’s are

commutative each other. Now the representation [0, 0]3 is in fact absence physically since

it corresponds to the equation of motion of ϕ:*1

ϵαβϵα̇β̇∂αα̇∂ββ̇ϕ ∝ ∂2ϕ = 0. (1.43)

In the state picture, the corresponding state is the zero norm state. It is possible to show

this statement directly by calculating its norm. Hence we have to subtract this operator

(or state) from the tower of descendants, and the representation becomes short.

1.4.2 Superconformal symmetry

In the presence of the supersymmetry and the conformal symmetry, the symmetry is

enhanced to the superconformal symmetry. What supersymmetries survive on a general

manifold is obtained by the Killing spinor equations. In the flat space, we have the

*1 The presence of a free massless scalar field means that we assume the presence of its Lagrangian
L = ∂µϕ∂µϕ and as a result we have the equation of motion for ϕ.
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following Killing spinor equations:

∂µϵI = −iσµκI , ∂µϵ
I = −iσµκ

I , (1.44)

where ϵαI (I = 1, · · · ,N ) is a parameter of the supersymmetry transformation and κI is

an arbitrary spinor. The general solutions are given by

ϵI = ηI − ixµσµζI , κI = ζI , (1.45)

where ηI and ζI are constant spinors. The first term corresponds to a supercharge QI
α,

and the second term corresponds to a supercharge S
I

α̇. We also have their Hermite con-

jugations: Q
α̇

I and Sα
I . Namely, the Hermiticity of the supercharges is

(QI
α)

† = Q
α̇

I , (Sα
I )

† = S
I

α̇. (1.46)

They generate the following anti-commutation relations:

{Qα̇

I , Q
J
β} = δJI P

α̇
β , (1.47a)

{Sα
I , S

J

β̇} = −δJIKα
β̇ , (1.47b)

{Sα
I , Q

J
β} =

i

2
δαβ δ

J
ID + iδJIM

α
β + δαβR

J
I , (1.47c)

{Qα̇

I , S
J

β̇} =
i

2
δα̇
β̇
δJID + iδJIM

α̇

β̇ − δα̇
β̇
RJ

I , (1.47d)

where RI
J are generators of R-symmetry U(N )R (N ≤ 3) and SU(4)R (N = 4) which

are the rotation of the supercharges. For the convenience of a supersymmetric theory, we

introduced the spinor indices for P,K, and M generators by

Pαβ̇ = −Pβ̇α =
1

2
(σµ)αβ̇Pµ, (1.48)

Kαβ̇ = −Kβ̇α =
1

2
(σµ)αβ̇Kµ, (1.49)

Mα
β =

1

4
(σµν)α

β
Mµν , (1.50)

M
α̇

β̇ =
1

4
(σµν)α̇β̇Mµν . (1.51)

The transformation law of the fundamental and ant-fundamental representation of the

R-symmetry is

[RI
J , ϕK ] = δIKϕJ − 1

4
δIJϕK , [RI

J , ϕ
K ] = −δKJ ϕI +

1

4
δIJϕ

K . (1.52)
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Then the generators of R-symmetry satisfy

[RI
J , R

K
L] = δILR

K
J − δKJ R

I
L. (1.53)

The commutation relation (1.52) indicates that for the N = 4 case, all the commutation

relations of RK
K vanish, so that the R-symmetry group is not U(4)R but SU(4)R.

Other commutators with supercharges are the following:

[D,QI
α] =

i

2
QI

α, [D,Q
α̇

I ] =
i

2
Q

α̇

I , (1.54)

[D,Sα
I ] = − i

2
Sα
I , [D,S

I

α̇] = − i

2
S
I

α̇, (1.55)

[Kα
β̇ , Q

I
γ ] = −δαγ S

I

β̇ , [Kα
β̇ , Q

γ̇

I ] = −δγ̇
β̇
Sα
I , (1.56)

[P α̇
β , S

γ
I ] = −δγβQ

α̇

I , [P α̇
β , S

I

γ̇ ] = −δαγQI
β . (1.57)

As in the conformal symmetry, these commutation relations are unified with (1.30) into

a simple relation. To see this, let us define the generators TA
B (A = (α, α̇, I)) as

TA
B =

N
α
β Kα

β̇ S
α

J

P α̇
β N

α̇

β̇ −Qα̇

J

QI
β SI

β̇
RI

J

 , (1.58)

where

Nα
β = − i

2
δαβD + iMα

β − 1

4
δαβR

K
K , (1.59)

N
α̇

β̇ =
i

2
δα̇
β̇
D − iM

α̇

β̇ − 1

4
δα̇
β̇
RK

K . (1.60)

Then the superconformal algebra is unified into the following simple relation:

TA
BT

C
D − ωTC

DT
A
B = ωδADT

C
B − δCBT

A
D, (1.61)

ω = (−1)(A+B)(C+D). (1.62)

We defined (−1)A as +1 or −1 depending on whether A is bosonic or fermionic (spinor)

index. Note that the trace of TA
B is zero:

Nα
α +N

α̇
α̇ +RK

K = 0. (1.63)

Therefore the 4d superconformal algebra is isomorphic to SU(2, 2|N ) and for N = 4

isomorphic to PSU(2, 2|4) which is defined by removing the U(1)R factor.
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Representations of the superconformal algebra

As in the case of the conformal representation, it is possible to define the superconformal

primary operator satisfying

[SI
α̇,O(0)] = [S

α

I ,O(0)] = 0. (1.64)

Note that a conformal primary operator is not always a superconformal primary. How-

ever, its converse is true. Since the generator Kα
α̇ is roughly SS, a superconformal

primary operator is always a conformal primary. And operators constructed by acting

Q on a superconformal primary operator are all conformal primary operators because K

and S commute each other.

Then we can use supercharges QI
α and Q

α̇

I as raising operators. From the commutation

relations (1.54) and (1.55), we find that the raising operators raise the scaling dimension

by half and the lowering operators SI
α and S

I

α̇ lower the scaling dimension by half.

By using the raising operators Q and Q, we also construct the tower of operators.

Since we have already discussed conformal representations constructed by acting Pα̇α,

we here restrict our target to the conformal primary operators. Then we can regard the

supercharges Q and Q as nilpotent raising operators. Thus the tower must terminate if we

use up all the raising operators. Then we call this representation long. Otherwise, there

are certain non-physical operators (zero norm states), and the representation becomes

short. We can consider conformal descendants for each conformal primary constructed by

a superconformal primary, and finally, we obtain a superconformal representation.

The superconformal primary operators (states) and Q-excited (Q-excited) operators

(states) are labeled by not only the Lorentz spins jL, jR and the scaling dimension E but

also the R-charges, where R-charges are the Cartan charges of the R-symmetry. So we

use the notation

[jL, jR]
(R-charges)
E (1.65)

for the components of the superconformal representations.

We give the general structure of the superconformal representation in Fig. 1.2. For

simplicity of the notation, we used the state picture.

1.4.3 Deformation of CFTs

In relativistic theories, it is believed that CFTs are realized at a fixed point of a renor-

malization group (RG) flow in which the beta-function is zero. Here we would like to

consider deformations of a CFT. A deformation of a CFT is defined as an infinitesimal

shift of this CFT from a fixed point in the space of RG flows. Roughly speaking, there

are three classes of deformations:

• Adding local operators to the Lagrangian.
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|p⟩ QI
α−−−−→ QI

α|p⟩
QI

α or Q
α̇
I−−−−−−→ · · · −−−−→ (All possible

combinations of Q and Q
)|p⟩

Pα̇α

y Pα̇α

y Pα̇α

y Pα̇α

y
Pα̇α|p⟩

QI
α−−−−→ Pα̇αQ

I
β |p⟩

QI
α or Q

α̇
I−−−−−−→ · · · −−−−→ Pα̇α(

All possible

combinations of Q and Q
)|p⟩

Pα̇α

y Pα̇α

y Pα̇α

y Pα̇α

y
...

...
...

...

Fig. 1.2 An example of a general superconformal representation. |p⟩ stands for the
superconformal primary state. In terms of operators QI

α|O⟩ is replaced by [QI
α,O].

The horizontal sequences correspond to the tower of Q-excited and Q-excited states,
and the vertical sequences correspond to the conformal descendants. The states
located in the first row are all conformal primary.

• Gauging of a global symmetry.

• Moving onto a moduli space of vacua.

In this thesis, we focus on the first one: adding a local operator to the Lagrangian.

The adding of a local operator to the Lagrangian is the most common way to deform a

CFT. This deforms the Lagrangian L of a CFT as follows:

δL = gO. (1.66)

Here g is an infinitesimal coupling constant, and O is a local operator existing in the

original CFT. For the original (undeformed) CFT g = 0. This deformation can also be

defined even though we do not know the Lagrangian of the original CFT, by using the

conformal perturbation theory [27].

Now we would like to restrict the class of an operator O we treat in this thesis. First,

we require that a deformation preserves the Lorentz symmetry, namely, an operator O
must be a scalar. Second, we require that an operator O is a conformal primary of a

conformal representation. Since O exists in the original CFT, it is clear that O belongs to

a certain conformal representation. However, if O were a conformal descendant, it would

not change the bulk physics because a descendant operator can be written as derivatives

of a certain operator. Thus O should be a conformal primary.

Let ∆O be the conformal dimension of a deformation operator O. Then we can classify

the deformation operator in three types by the value of ∆O.

• Relevant operators (∆O < 4): In this case, the corresponding coupling constant

is called a relevant coupling constant. Then a CFT at g = 0 is an ultraviolet

(UV) fixed point. An RG flow is initiated by turning on the coupling constant,

and the coupling constant in the infrared (IR) region grows. Thus the conformal
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perturbation is eventually violated.

• Irrelevant operators (∆O > 4): The corresponding coupling constant is called an

irrelevant coupling constant. Now a CFT at g = 0 is realized at an IR fixed point to

which the irrelevant coupling gets smaller. The deformed CFT might be an effective

theory of a certain UV theory.

• Marginal operators (∆O = 4): The corresponding coupling constant is called a

marginal coupling constant and dimensionless. The marginal deformation con-

serves the conformal symmetry at the leading order of the conformal perturbation.

Then the deformation leads to a nearby fixed point for a small g enough. Includ-

ing the effect of higher-order corrections, the marginal deformations are divided

into marginally relevant, marginally irrelevant, and exactly marginal. An exactly

marginal deformation preserves the conformal symmetry exactly.

Let us consider an exactly marginal deformation in detail. An exactly marginal defor-

mation enables us to deform a CFT continuously, and parameters (coupling constants) of

continuous deformations form a space of deformations for a CFT. Such a space is called

a conformal manifold. Some of interacting CFTs can be constructed by continuous de-

formations from a free theory. Conversely, if there is no marginal deformation in a given

CFT, this CFT does not connect with any free theories. Furthermore, even though there

are marginal deformations, CFTs are not necessarily connected to a free theory.

1.4.4 Theories for which the Lagrangian is unknown

For an interacting CFT connecting to a certain free theory, we can in principle give the

Lagrangian by exactly marginal deformations. However, for a CFT which is not connected

to a free theory, there is no general prescription to give the Lagrangian.

There may be the UV Lagrangian that flows to a target CFT. Although we do not

know the Lagrangian of a target CFT, we can find the information about the CFT from

the UV Lagrangian. In fact, although the Lagrangian is not known for AD theories,

UV Lagrangians were found, and several physical quantities were discussed using the UV

Lagrangian [10]. However, unfortunately, there is also no general prescription to find the

UV Lagrangian.

In summary, it is quite difficult to discuss CFTs that are not connected to a free theory.

The only way to discuss such a CFT is to use a duality.

In this thesis, we mainly focus on the N = 4 SYM and the S-fold theories. The

former has the Lagrangian. On the other hand, the latter theories are CFTs that are

not connected to a free theory. Then, it seems that there is no way to calculate physical

quantities of S-fold theories*2. However, fortunately, there is AdS/CFT for S-fold theories,

and we may calculate the physical quantities of the S-fold theories through type IIB string

*2 Recently, UV theories of a part of S-fold theories were found [21], so they enable us to calculate
physical quantities of such a part of S-fold theories. However, our calculation method we will give
in the latter part of this thesis can be applied for general S-fold theories and is still useful.
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theory on the AdS side. This analysis will be discussed in Chapter 4.

1.5 Superconformal index

So far, we have considered the general properties of CFTs and SCFTs. We also have

seen that there is no prescription to give the Lagrangian and UV Lagrangian for CFTs

that are not connected to a free theory. In this case, the only way to investigate such

theories is to use a duality, as we saw in the last subsection. In fact, AdS/CFT enables us

to analyze the S-fold theories. However, AdS/CFT is a strong/weak duality, and this is

an obstruction to calculate various physical quantities. So we focus on the Witten index

because it does not depends on the coupling constant. If a theory is an SCFT, the Witten

index is specifically referred to as the superconformal index [16].

The superconformal index itself is defined in the state picture, namely defined on R×S3,

which ensures the convergence of the path integral. To define the superconformal index,

we need the superconformal algebra on R×S3 instead of that on R1,3. The superconformal

algebra on R×S3 is related to that on R1,3 by the analog of the Wick rotation. Although

we do not give the derivation, the transformation of the generators of the superconformal

algebra from R1,3 to R× S3 is given by

P α̇
α → −P α̇

α, S
α

I → −Sα

I , Q
α̇

I → −Qα̇

I ,

Mα
β → −iJα

β , M
α̇

β̇ → iJ
α̇

β̇ , D → iH, (1.67)

and the Hermiticity of generators is changed. Concretely, the Hermiticity is given by

H† = H, (P α̇
β)

† = Kβ
α̇,

(Jα
β)

† = Jβ
α, (J

α̇

β̇)
† = J

β̇
α̇,

(QI
α)

† = Sα
I , (Q

α̇

I )
† = S

I

α̇. (1.68)

The important commutation relation to define the superconformal index is ∆ = {Q†,Q},
where Q is one of the supercharges. We choose Q as Q

α̇=1̇

I=1 . Let ∆ be the commutation

relation between Q
1̇

1 and its Hermite conjugate we have

∆ = 2{Q1̇

1, S
1

1̇} = H − 2jR −R1
1, (1.69)

where the factor 2 in front of the anti-commutation relation is just the convention to make

our notation simpler. jR is the right-handed spin operator J
1̇

1̇ and H is the Hamiltonian

in the radial quantization.

Roughly speaking, the superconformal index is the Witten index in regard to the “su-

persymmetry (1.69)”. As we saw in Sec. 1.2, we can add more fugacities corresponding

to global symmetries commuting with Q and Q†. For superconformal theories, a part of
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the conformal symmetry and other global symmetries commute with Q and Q†. Note

that the R-symmetry does not commute with Q and Q† and only its subgroup commute

with them. We define flavor symmetries as global symmetries other than the conformal

symmetry, which commute with Q and Q† including the subgroup of the R-symmetry.

Then the superconformal index is defined as

ISCI = tr

[
(−1)Fx∆qH+jRy2jL

∏
i

uFi
i

]
, (1.70)

where Fi is the Cartan generators of the flavor symmetries (or their linear combination)

commuting with each other as well as Q and Q†. The contributions come from the ∆ = 0

states (BPS states) as we saw in Sec. 1.2. Namely, the index does not depend on x.

As we mentioned before, the index is defined on R × S3. Since we have the operator-

state correspondence, it is possible to translate the BPS state spectrum in R × S3 into

the BPS operator spectrum in R1,3, where the BPS operator OBPS is defined as operator

satisfying

[Q
1̇

1,OBPS] = [S
1

1̇,OBPS] = 0. (1.71)

Then the index also encodes the information of the BPS operator spectrum of the theory

on R1,3.

Thus, since the index encodes the BPS spectrum and is independent of the coupling

constant, it may be possible to find the BPS spectrum of the theory using AdS/CFT

even for theories for which the Lagrangian is unknown. One of the goals of quantum field

theories is to investigate its low energy effective theory (CFT) and to determine what

types of operators and interactions exist. The fact that the combination of the index and

AdS/CFT may actually achieve part of that goal is surprising and shows the importance

of the index.

1.5.1 Chiral ring

Before explaining how to calculate the superconformal index, we need to comment on the

properties of the BPS operators. States on R× S3 correspond to operators inserted into

the origin on R1,3. In general, the composite operators are ill-defined at the same point

in the spacetime. To make composite operators well-defined, we have to consider certain

regularizations or operator product expansions (OPEs). Otherwise, the operator-state

correspondence does not work for composite operators. However, the BPS operators are

well-defined even for the composite operators inserted into the same point.

This statement can be understood in terms of the correlation function among BPS
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operators. Actually, we can show

∂

∂xµ1
⟨O(x1)O2(x2) · · · On(xn)⟩ = 0, (1.72)

where Oi(xi) is a BPS operator inserted at a point xi. This equation states that the

correlation function among BPS operators does not depend on the coordinates. Thus it

is possible to define the correlation function even for x1 = x2 = · · · = xn. This is the

statement we mentioned above.

Let us prove the statement (1.72). Then, it is useful to consider the chiral ring [28].

The chiral ring is defined in an N = 1 supersymmetric theory. If an operator O satisfies

[Qα̇,O] = 0 (1.73)

for a certain Qα̇, we say that the operator O belongs to the chiral ring. Namely, the

chiral ring is a set of operators satisfying (1.73). We call operators satisfying (1.73) chiral

operators.

The chiral operators are independent of the spacetime coordinates, up to Qα̇-

commutators. From the commutation relation (1.40a) and (1.47a) we have

i(σµ)αα̇∂µO(x) = −(σµ)αα̇[Pµ,O(x)] = 2{Qα̇, [Qα,O(x)]}. (1.74)

This implies that a correlation function among the chiral operators is independent of the

spacetime coordinates:

i

2
(σµ)αα̇

∂

∂xµ1
⟨O1(x1)O2(x2) · · · On(xn)⟩

= ⟨{Qα̇, [Qα,O1(x)1]}O2(x2) · · · On(xn)⟩

= −
n∑

k=2

⟨[Qα,O1(x1)]O2(x2) · · · [Qα̇,Ok(xk)] · · · On(xn)⟩ = 0. (1.75)

Therefore we finished the proof. Then we can take points of inserted operators freely.

This enables us to do the cluster decomposition as follows:

⟨O1(x1)O2(x2) · · · On(xn)⟩ = ⟨O1⟩⟨O2⟩ · · · ⟨On⟩. (1.76)

Since the condition of the BPS operators (1.71) is just the chiral ring (1.73) for α̇ = 1,

the composite BPS operators make sense even for the same point. This is one of the

reasons why we focus on the BPS operators.
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1.5.2 Superconformal index for Lagrangian theories

As the end of this section, we review how to calculate the superconformal index in an

SCFT with its Lagrangian. In Sec. 1.3, we saw that the Witten index can be calculated

by the localization technique. Likewise, the superconformal index can also be in principle

calculated by the localization technique using its Lagrangian. However, we have a more

physical way called “free field counting” to obtain the same result with the localization.

In this subsection, we review this way instead of the localization.

Since the superconformal index does not depend on the coupling constant g, we can

evaluate the index at g = 0. Then the problem to calculate the index is what kinds of

BPS operators exist in the theory. This can be read off from the Lagrangian. Then the

procedure to find the index is the same as the harmonic oscillators.

In the case of the single harmonic oscillator, we have a state tower

|0⟩, a†|0⟩, (a†)2|0⟩, · · · , (a†)k|0⟩, · · · , (1.77)

where |0⟩ a vacuum state. Then we call a†|0⟩ a single-particle state and a state whose

form is (a†)k|0⟩ is called a multi-particle state for k > 1. Similarly, when we have a BPS

operator O(x) which is not a composite operator in a CFT on R1,3, we have a state tower

on R× S3 as

|0⟩CFT,O(0)|0⟩CFT, (O(0))2|0⟩CFT, · · · , (O(0))k|0⟩CFT, · · · , (1.78)

where |0⟩CFT is a conformal invariant vacuum state, and we call O(0)|0⟩CFT and

(O(0))k|0⟩CFT a single-particle BPS state and a multi-particle BPS state, respectively.

Correspondingly, we call a BPS operator O(x) a single-particle BPS operator, and O(x)k

is called a multi-particle BPS operator. If there are several kinds of BPS operators, a

BPS operator that is not made of any other operators is called a single-particle BPS

operator. Conversely, a composite BPS operator is called a multi-particle BPS operator.

The first step of the free field counting is to consider the superconformal index of single-

particle states. To do it, we need to list all the single-particle states. Let mn(q, y, ui) be a

monomial of a contribution from a certain single-particle state to the index, where n is a

label of a single-particle state. Then we can obtain the single-particle index by summing

up all monomials corresponding to single-particle states in the list:

isp(q, y, ui) =
∑
n

cnmn(q, y, ui), (1.79)

where cn is an integer corresponding to the number of a monomial mn(q, y, ui).

The next step is to consider the multi-particle states. We have seen that the state

structure (1.78) is the same as that of the single harmonic oscillator (1.77) for each single-

particle BPS state. Namely, each single-particle BPS state corresponding to a monomial
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mn(q, y, ui) forms a single harmonic oscillator. Then a partition function of the single

harmonic oscillator represented by a monomial mn(q, y, ui) without the zero point energy

is given by

mn(q, y, ui) →
1

1−mn(q, y, ui)
. (1.80)

This manipulation is called plethystic exponential. We denote this manipulation as

Pexp(mn(q, y, ui)) =
1

1−mn(q, y, ui)
. (1.81)

When the theory has some harmonic oscillators, the total partition function is given by

the product of each partition function:

Pexp

(∑
n

cnmn(q, y, ui)

)
=
∏
n

1

(1−mn(q, y, ui))cn
. (1.82)

It seems that this manipulation is valid only for bosonic operators. However, in fact,

this is valid even for fermionic operators due to the extra minus sign. In the ordinary

partition function in which the temporal boundary condition of a fermionic operator is

anti-periodic, the fermionic contribution is given by 1 + mn, where mn is a monomial

corresponding to a fermionic contribution. On the other hand, in the index, the temporal

boundary condition is periodic as in the case of bosons, and we have an extra minus sign in

front of the monomial: −mn. The index is then given by 1−mn, which is the same result

as applying the plethystic exponential to −mn. Therefore, the plethystic exponential

(1.82) is applicable to both bosonic and fermionic single-particle BPS operators.

One more manipulation is needed to find the index for gauge theories. In general,

the BPS operators are charged under the gauge interaction, and the index would depend

on the gauge fugacity za (a = 1, · · · , rankG), where G is the gauge group. However,

only the gauge invariant BPS operators contribute in gauge theories because the index

is a kind of partition function. Thus the index is gauge invariant and independent of

the gauge fugacities. Also, when we discuss the AdS/CFT correspondence, there is no

corresponding symmetry to the gauge symmetry on the AdS side. Then the physical

quantities on the CFT side, which we should compare with corresponding quantities on

AdS sides, should be gauge invariant. Conversely, this is also why we focus on the gauge

invariant BPS operators and the superconformal index.

In order to extract the gauge invariant components, we have to perform the gauge

integral with the Haar measure defined by

∫
G

dµ ≡ 1

|WG|

rankG∏
a=1

∮
|za|=1

dza
2πiza

Pexp
(
χG
adj(za)− rankG

)
, (1.83)
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where |WG| is the order of the Weyl group WG and χG
adj(za) is the character of the adjoint

representation of the gauge group G. Actually, the Haar measure is obtained by the zero

mode integral in the localization. Finally, the index that counts the gauge invariant BPS

operators for Lagrangian theories is given by

ISCI(q, y, ui) =

∫
G

dµPexp (isp(q, y, ui, za)) , (1.84)

where isp(q, y, ui, za) is the single-particle index including the gauge fugacities. In this

way, we can find the superconformal index of an SCFT with its Lagrangian.

We have an additional comment for the plethystic exponential (1.82). There is another

expression of the plethysitc exponential. To obtain this expression, we rewrite the right

hand side of (1.82) by using f = exp(log f):

Pexp(isp(q, y, ui)) = exp

[
−
∑
n

cn log(1−mn(q, y, ui))

]

= exp

[∑
n

∞∑
k=1

cnmn(q, y, ui)
k

k

]

= exp

[ ∞∑
k=1

1

k
isp(q

k, yk, uki )

]
, (1.85)

where isp(q, y, ui) =
∑

n cnmn(q, y, ui) with the monomial mn(q, y, ui). We use these two

formulas (1.82) and (1.85) depending on the situation.

We have a comment for the free field counting. In fact, the free field counting is not

always valid for the calculation of the superconformal index. In general, BPS operators

can acquire the anomalous dimension. In this case, the superconformal index calculated

by the localization is not in agreement with that calculated by the free field counting. For

the N = 4 SYM, BPS operators do not acquire the anomalous dimension, and we can use

the free field counting.

1.6 BPS partition function

There is another important supersymmetric partition function named BPS partition func-

tion. It includes only contributions from the BPS primary scalar operators. Thus the dis-

cussion of the Witten index is not applicable to the BPS partition function and in general

the BPS partition function depends on the coupling constant. As a result, the form of the

BPS partition function of the interacting theory is different from that of the free theory*3.

However, the structure of the BPS partition function is quite simple, and we can calculate

*3 The BPS spectrum of primary scalar operators is invariant for the non-zero coupling constant [16,28].
Then, all we have to do is to take into account the spectrum at g = 0 and the spectrum for g ̸= 0,
where g is a coupling constant.
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the BPS partition function even for interacting theories. Furthermore, the BPS partition

function gives us a significant hint to search the structure of the superconformal index.

Thus, study of the BPS partition function is important.

The definition of the BPS partition function is given by

Z(ui) = trBPS scalars

[∏
i

uFi
i

]
, (1.86)

where Fi are charges of the global symmetries. Like the superconformal index, we can

read off the BPS primary scalar operator spectrum from this.

For free theories, the BPS partition function can be evaluated by the free field counting.

On the other hand, there is no general method to calculate the BPS partition function

for interacting theories. In particular, the localization technique is not applicable to the

BPS partition function.

In this thesis, we calculate the BPS partition function for the N = 4 SYM and S-fold

theories. The BPS partition function of the N = 4 SYM has been well studied because

the BPS partition function can be calculated as a certain invariant polynomial of the

Weyl group of a gauge group. On the other hand, the S-fold theories are not a gauge

theory, and no one had calculated the BPS partition function for S-fold theories except

for the author’s and his collaborators’ research [23]. In Chapter 4, we will explain the

BPS partition function of the S-fold theories.

Soryushiron Kenkyu



Soryushiron Kenkyu



37

Chapter 2

AdS/CFT Correspondence

In this chapter, we review the AdS/CFT correspondence between the four-dimensional

(4d) N = 4 U(N) supersymmetric Yang-Mills (SYM) theory and type IIB superstring

theory on AdS5 × S5. This chapter aims to introduce the essential and basic concepts

of the AdS/CFT correspondence. We also review the BPS partition function and the

superconformal index for N = 4 U(N) SYM. Since the large N limit of the AdS/CFT

correspondence for N = 4 SYM have been well studied, the agreement of the BPS par-

tition function and the superconformal index were already confirmed*1. We also see this

agreement.

First, we review N = 4 SYM and its properties. Then we calculate the BPS partition

function and the superconformal index for N = 4 U(N) SYM. Second, we review the

string theory and its properties necessary to see the AdS/CFT correspondence. Third, we

consider the AdS/CFT correspondence by using the D3-brane, which is a 3+1-dimensional

object existing in type IIB string theory. Finally, we confirm the agreement of the BPS

partition function and the superconformal index in AdS/CFT.

2.1 Four-dimensional N = 4 supersymmetric

Yang-Mills theory

Here we would like to discuss N = 4 SYM. This theory has N = 4 supersymmetry and

the maximally supersymmetric theory without gravity. It is believed that N = 4 SYM is

the only theory having N = 4 supersymmetry. In addition to the supersymmetry, N = 4

SYM also has the conformal symmetry, and hence the theory has N = 4 superconformal

symmetry. Namely, N = 4 SYM is an SCFT.

N = 4 SYM has a vector multiplet composed of a gauge field Aµ, gauginos λI and

*1 Since the structure of the BPS partition function is easy, the agreement of the BPS partition
function in the finite N region was also confirmed [29]. However, the investigation of the BPS
partition function gives us a great insight to find the finite N corrections to the superconformal
index on the AdS side and still important. The analysis in regard to the finite N corrections will
be given in Chapter 3.
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RX RY RZ SO(6)R
Q4 1

2
1
2 − 1

2

4
Q3 1

2 − 1
2

1
2

Q2 − 1
2

1
2

1
2

Q1 − 1
2 − 1

2 − 1
2

Q1
1
2

1
2

1
2

4
Q2

1
2 − 1

2 − 1
2

Q3 − 1
2

1
2 − 1

2

Q4 − 1
2 − 1

2
1
2

Table 2.1 The SO(6)R Cartan charges of supercharges. QI ’s belong to 4 ∈ SO(6)R,

while QI ’s belong to 4 ∈ SO(6)R.

λ
I
, and adjoint scalar fields ϕIJ = −ϕJI . I, J = 1, 2, 3, 4 are the spinor indices of the

SO(6)R ≃ SU(4)R symmetry, which is the rotation symmetry of four supercharges QI .

The four-dimensional spinor conventions is given in Appendix A.1. We define the Car-

tan generators of SO(6)R as RX , RY , and RZ . These generators are related to the

R-symmetry generators RI
J defined in subsection 1.4.2 as

RX =
1

2
(R1

1 +R2
2 −R3

3 −R4
4), (2.1a)

RY =
1

2
(R1

1 −R2
2 +R3

3 −R4
4), (2.1b)

RZ =
1

2
(R1

1 −R2
2 −R3

3 +R4
4). (2.1c)

The upper and lower indices of QI and QI correspond to 4 and 4, respectively. The

SO(6)R Cartan charges of supercharges are listed in Table 2.1. We also list field contents

of N = 4 SYM in Table 2.2. Note that the scalar field ϕIJ satisfies the reality condition

ϕ
IJ

=
1

2
ϵIJKLϕKL. (2.2)

Thus ϕIJ has the three independent complex scalar fields X, Y, and Z. We define these

three complex scalar fields as

X = ϕ12, Y =ϕ13, Z = ϕ14. (2.3)

For the gauge field Aµ, its field strength Fµν can be decomposed into the self dual part

Fα
β and anti-self dual part F

α̇

β̇ as

Fα
β =

1

4
(σµν)α

β
Fµν , F

α̇

β̇ =
1

4
(σµν)α̇β̇Fµν . (2.4)
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Fields SO(6)R
ϕIJ 6
λI 4

λ
I

4
Fµν 1

Table 2.2 Fields contents of the N = 4 SYM with their representation of SO(6)R.

The Lagrangian of the N = 4 SYM on R1,3 is given by

LN=4
SYM =

1

g2
Tr

[
− 1

2
FµνF

µν + iλ
I
σµDµλI +

1

4
Dµϕ

IJ
DµϕIJ

+
1

2
λI [λJ , ϕ

IJ
] +

1

2
λ
I
[λ

J
, ϕIJ ] +

1

32
[ϕ

IJ
, ϕ

KL
][ϕIJ , ϕKL]

]
+

θ

16π2
Tr(Fµν F̃

µν),

(2.5)

where F̃µν is defined by

F̃µν =
1

2
ϵµνρσFρσ. (2.6)

The Lagrangian (2.5) is invariant under the N = 4 supersymmetric transformation given

by

δQAµ(x) = i(ηIσµλI + ηIσµλ
I
), (2.7a)

δQλI(x) = −1

2
Fµνσ

µνηI +DµϕIJσµη
J − i

2
[ϕIJ , ϕ

JK
]ηK , (2.7b)

δQϕIJ(x) = 2i(ηIλJ − ηJλI − ϵIJKLη
Kλ

L
). (2.7c)

Here the action δQ on a field Φ(x) is defined as

δQΦ(x) ≡ [ηIQ
I + ηIQI ,Φ(x)]. (2.8)

Furthermore, the Lagrangian (2.5) is also invariant under the super-conformal transfor-

mation

δSAµ(x) = −xνλIσµσνζ
I − xνλ

I
σµσνζI , (2.9a)

δSλI(x) =
i

2
Fµνxλσ

µνσλζI − iDµϕIJxνσ
µσνζJ + 2iϕIJζ

J +
1

2
[ϕIJ (x), ϕ

JK
]xµσµζK ,

(2.9b)

δSϕIJ (x) = −2xµ(ζIσµλJ − ζJσµλI − ϵIJKLζ
Kσµλ

L
). (2.9c)
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Here we also define the

δSΦ(x) ≡ [ζISI + ζIS
I
,Φ(x)]. (2.10)

We can show that the transformations δQ and δS satisfy the N = 4 superconformal

algebra. Let us focus on δQ as an example. Then we can calculate a commutation

relation [δQ, δ
′
Q]Φ(x) as follows:

[δQ, δ
′
Q]Φ(x) = [[ηIQ

I + ηIQI , η
′
IQ

I + η′IQI ],Φ(x)], (2.11)

where δ′QΦ(x) is defined by (2.8) with the replacement η → η′ and η → η′. When we

choose Φ(x) as the adjoint scalar field ϕIJ , we find

[δQ, δ
′
Q]ϕIJ = 2i∂µϕIJηKσ

µη′K − 2i∂µϕIJη
′
Kσ

µηK . (2.12)

This means that

[{Qα̇

I , Q
J
β}, ϕKL] = [−2δJI (σ

µ)β
α̇
Pµ, ϕKL]. (2.13)

Thus we derived the same commutation relation as (1.47a). In this way, we can obtain

all the anti-commutation relations (1.47) among fermionic generators. We can also show

that the Lagrangian (2.5) is invariant under the conformal transformation using (1.40).

Therefore, the Lagrangian (2.5) indeed has N = 4 superconformal symmetry on R1,3.

The beta function of N = 4 SYM is zero. Since the theory includes four Weyl spinor

fields λI and three complex scalar fields defined by (2.3), the one-loop beta function

becomes

β(g) ∝ − g3

16π2

(
11

3
− 1

3
· 3− 2

3
· 4
)

= 0, (2.14)

and this is consistent with the superconformal symmetry.

It is often useful to define the complex coupling constant τ as

τ =
θ

2π
+

4πi

g2
. (2.15)

Let us consider the marginal deformation of N = 4 SYM. To see it, we rescale the

definition of the fields as

Aµ → gAµ, ϕIJ → gϕIJ , λI → gλI . (2.16)
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Fields N = 4 (Q1,2,3,4) N = 2 (Q1,4) N = 1 (Q1)
(X, λ2)

vector multiplet
hypermultiplet

chiral multiplet
(Y, λ3) chiral multiplet
(Z, λ4)

vector multiplet
chiral multiplet

(Aµ, λ
1) vector multiplet

Table 2.3 The N = 2 and N = 1 decomposition of the N = 4 vector multiplet.
The N = 2 supersymmetry is generated by Q1,4 and its conjugate and the N = 1
supersyymetry is generated by Q1 and its conjugate.

Then the Lagrangian (2.5) is changed as

L = Tr

[
− 1

2
FµνF

µν + iλ
I
σµDµλI +

1

4
Dµϕ

IJ
DµϕIJ

+
g

2
λI [λJ , ϕ

IJ
] +

g

2
λ
I
[λ

J
, ϕIJ ] +

g2

32
[ϕ

IJ
, ϕ

KL
][ϕIJ , ϕKL]

]
, (2.17)

where we neglect the topological term Fµν F̃
µν . Then we can split the Lagrangian into two

parts: the free part and the interacting part. The conformal dimension of the interacting

part is four, and g is dimensionless. Therefore, all interacting terms are regarded as the

marginal deformations, and N = 4 SYM has the marginal deformations and connects to

a free theory. Note that N = 4 U(1) Maxwell theory is always a free theory because all

interacting terms vanish.

2.1.1 N = 1, 2 decomposition

It is helpful to decompose the N = 4 vector multiplet into the N = 1, 2 multiplets. Here

we choose Q1,4 and Q1,4 as supercharges of the N = 2 subalgebra. For N = 1 subalgebra

we use Q1 and Q1. Then the N = 4 vector multiplet splits into the N = 2 vector multiplet

and the N = 2 hypermultiplet as follows:

(X,Y,Z, λI , Fαβ)
N=4
vector → (Z, λ1,4, Fαβ)

N=2
vector ⊕ (X,Y, λ2,3)

N=2
hyper, (2.18)

where we only consider the self dual part of the gauge field and its superpartner. Similarly,

the N = 4 vector multiplet splits into the N = 1 vector multiplet and three N = 1 chiral

multiplets as

(X,Y,Z, λI , Fαβ)
N=4
vector → (λ1, Fαβ)

N=1
vector ⊕ (X, λ2)

N=1
chiral ⊕ (Y, λ3)

N=1
chiral ⊕ (Z, λ4)

N=1
chiral.

(2.19)

We summarize these decomposition in Table 2.3.

For calculating the BPS partition function, it is convenient to classify the BPS operators

of N = 4 SYM in terms of the N = 1, 2 language. First, we define the chiral primary
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Operators Supercharges

TrX Q3,4, Q1,2

TrY Q2,4, Q1,3

TrZ Q2,3, Q1,4

Table 2.4 Examples of chiral primary operators and supercharges annihilating them.

operators as superconformal primary operators annihilated by a certain combination of

supercharges QI , QI . Examples of the chiral primary operators are the adjoint scalar

operators TrX, TrY, and TrZ. The trace is taken in the adjoint representation of the

gauge group and necessary for making operators gauge invariant. The super-conformal

transformation of the adjoint scalar fields (2.9c) vanishes at the origin. Thus the adjoint

scalar operators (inserted at the origin) are indeed the superconformal primary operators.

Also, the supersymmetry transformation rules up to numerical coefficients, which can be

read off from (2.7c), are

[QI
α, ϕJK ] ∝ δIJλKα − δIKλJα, [Q

α̇

I , ϕJK ] ∝ ϵIJKLλ
Lα̇
. (2.20)

Then we can see the adjoint scalar operators TrX, TrY, TrZ defined by (2.3) are annihilated

by some of the supercharges. We list which supercharges annihilate the adjoint scalar

operators in Table 2.4. That is why the adjoint scalar operators TrX, TrY, TrZ are the

chiral primary operators. Note that Q1 annihilates all the adjoint scalar operators TrX,

TrY, TrZ.

Next, we would like to define the term “ k
16 -BPS operators”. The k

16 -BPS operators are

the BPS operators annihilated by k supercharges of {QI
α, Q

α̇

I |I = 1, 2, 3, 4, α = 1, 2, α̇ =

1̇, 2̇}. The number of total supercharges are sixteen, so k can take value from 1 to 16.

Let us consider the several examples. First, operators consisting of Z are annihilated by

Q2,3
α and Q

α̇

1,4, so they are 1
2 -BPS operators. Second, operators consisting of X and Y are

annihilated by Q4
α and Q

α̇

1 , so they are 1
4 -BPS operators. Finally, operators consisting of

X, Y, and Z are annihilated by Q
α̇

1 , so they are 1
8 -BPS operators.

2.1.2 Coulomb branch and Higgs branch

Here we would like to discuss the Coulomb branch and the Higgs branch. They are the

moduli space of a given theory, which is defined as the set of vacua. Let us consider a

gauge theory with the gauge group G and a potential term V (ϕ), where ϕ is a scalar field

of this theory. We assume that the minimum value of V (ϕ) is zero. Then the moduli space

is given by a set of vacua, which is specified by the vacuum expectation value (VEV) of

ϕ satisfying V (ϕ) = 0. Furthermore, we need to remove the gauge redundancy from a set
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of vacua. Then the moduli space M is defined by

M ≡ {ϕ|V (ϕ) = 0}/G. (2.21)

Let us consider an N = 2 gauge theory. Then, there is the N = 2 vector multiplet

composed of (ϕ, λ, ψ,Aµ), where ϕ is an adjoint scalar field, λ and ψ are Weyl spinor

fields, and Aµ is the gauge field. In general, the adjoint scalar field ϕ has a potential term

V (ϕ) ∝ Tr[ϕ, ϕ]2 (2.22)

The minimum condition V (ϕ) = 0 gives the VEV of ϕ as

⟨ϕ⟩ =
rankG∑
a=1

caH
a, (2.23)

where ca is a complex parameter and Ha is the Cartan generator of the gauge group G.

The residual gauge redundancy is the Weyl transformation of G. Then the moduli space is

given by CrankG/W, where W is the Weyl group of G. This moduli space is parameterized

by the gauge invariant Casimir operators and called the Coulomb branch. Also, we call

Casimir operators parameterizing the Coulomb branch the Coulomb branch operators.

A similar discussion can be made for the matter sector. Here we consider an N = 2

gauge theory with a hypermultiplet composed of (ψq̃, q, q̃, ψq), where ψq̃, ψq are Weyl

spinor fields and q, q̃ are complex scalar fields. The hypermultiplet belongs to a certain

representation of G. If there is a potential term for a field in the hypermultiplet, the VEV

of this field defines vacua, which forms the moduli space. This moduli space is called

the Higgs branch. The Casimir operators parameterizing the Higgs branch are called

the Higgs branch operators. We can also define the mixed branch by using both vector

multiplet and hypermultiplet.

Now let us apply above discussion to N = 4 SYM with the gauge group G. From the

N = 2 perspective, the theory has the vector multiplet (Z, λ1,4, Fαβ) and the hypermul-

tiplet (X,Y, λ2,3) as we have seen in (2.18). The potential term of adjoint scalar fields

X,Y,Z is given by

V (X,Y,Z) =
1

32g2
[ϕIJ , ϕKL][ϕ

IJ
, ϕ

KL
] = − 1

2g2

∑
Φ,Φ′=X,Y,Z,X,Y,Z

[Φ,Φ′]2. (2.24)

Since Z sits on the vector multiplet, the minimum condition

V (X,Y,Z) ⊃ V (Z) = − 1

g2
[Z,Z]2 = 0 (2.25)

gives the Coulomb branch of this theory. Similarly, since X and Y sit on the hypermultiplet,
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the minimum condition

V (X,Y,Z) ⊃ V (X,Y) = − 1

2g2

∑
Φ,Φ′=X,Y,X,Y

[Φ,Φ′]2 = 0 (2.26)

gives the Higgs branch. The minimum condition

V (X,Y,Z) = 0 (2.27)

gives the mixed branch. The moduli spaces for the Coulomb branch, the Higgs branch,

the mixed branch are CrankG/WG,C2rankG/WG,C3rankG/WG, respectively.

2.1.3 BPS partition function

In this subsection, we would like to discuss the BPS partition function of the N = 4 U(N)

SYM. According to the discussion in Sec. 1.6, we can define the BPS partition function

by using the global symmetries of N = 4 SYM, namely SO(6)R. Thus the BPS partition

function is defined by

Z(x, y, z) = trBPS(x
RXyRY zRZ ), (2.28)

where the trace is taken over the gauge invariant BPS operators consisting of the adjoint

scalar fields X, Y, and Z. The BPS condition for an operator O is here given by

[Q1,O] = 0. (2.29)

An operator O satisfying this condition is a 1
8 -BPS operator. In this sense, the BPS

partition function (2.28) is called the 1
8 -BPS partition function. Then the BPS partition

function have the information of the BPS operator spectrum for operators consisting of

X,Y,Z. Note that we do not consider the operators including X, Y, and Z because these

fields do not satisfy the BPS condition (2.29).

We can impose another BPS condition for the trace. If we impose

[Q2,O] = [Q3,O] = [Q1,O] = [Q4,O] = 0 (2.30)

as BPS conditions, the operators satisfying these conditions are 1
2 -BPS operators and

composed of Z. Because the R-charges of Z are (RX , RY , RZ) = (0, 0, 1), the correspond-

ing BPS partition function is derived by setting x = y = 0 in Z(x, y, z). We call this BPS

partition function the 1
2 -BPS partition function. Also, since Z sits in the N = 2 vector

multiplet, this BPS partition function is often called the Coulomb branch Hilbert series.

We can also impose the following BPS conditions:

[Q4,O] = [Q4,O] = 0. (2.31)
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Then the operators satisfying these conditions are 1
4 -BPS operators and composed of X

and Y. Because the R-charges of X and Y are (RX , RY , RZ) = (1, 0, 0), (0, 1, 0), the

corresponding BPS partition function is derived by setting z = 0 in Z(x, y, z). We call

this BPS partition function the 1
4 -BPS partition function. Also, since X and Y belong to

the N = 2 hypermultiplet, this BPS partition function is often called the Higgs branch

Hilbert series.

In this section, we are interested in the N = 4 U(N) SYM. In this case, the gauge

invariant BPS operators are simply trace operators consisting of X,Y,Z. Although the

determinant operators are also gauge invariant operators, we do not consider them because

the determinant operators can be written in terms of the trace operators. The reason is

as follows. For the determinant operators in the N = 4 U(N) SYM, we use two epsilon

tensors like ϵij···ϵ
kl···Φi

kΦ
j
l · · · . Then the epsilon tensors can be written in terms of the

Kronecker deltas. Thus the determinant operators can be written by a certain combination

of the trace operators.

We also comment on the Pfaffian operators. It is roughly adjoint fields contracted by

one epsilon tensor. The precise definition is given in (4.6). In the U(N) case, this cannot

be a gauge invariant operator since it is impossible to contract all the indices of adjoint

fields by one epsilon tensor. Thus, the Pfaffian operators are absent in the U(N) gauge

theory. However, the gauge invariant Pfaffian operators exist in the SO(2N) gauge theory,

and they play a significant role in Chapter 4.

Free theory

Here we discuss the BPS partition function of the N = 4 U(N) SYM at g = 0. In this

case, we can use the free field counting to find the BPS partition function. Because all

gauge invariant BPS operators are obtained as a combination of X,Y,Z, the BPS partition

function for g = 0 can be derived from the following formula:

ZU(N)(x, y, z) =

∫
U(N)

dµPexp[(x+ y + z)χ
U(N)
adj ], (2.32a)

∫
U(N)

dµ =
1

N !

N∏
i=1

∫
|zi|=1

dzi
2πizi

∏
j ̸=k

(
1− zj

zk

)
, (2.32b)

χ
U(N)
adj =

N∑
i,j=1

zi
zj
, (2.32c)

where the Haar measure (2.32b) is obtained by the formula (1.83). Therefore, the formula

(2.32) contains terms for operators corresponding to all combinations of gauge invariant
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BPS operators. We show the BPS partition functions for small ranks below:

Zfree
U(1)(x, y, z) =

1

(1− x)(1− y)(1− z)
, (2.33)

Zfree
U(2)(x, y, z) =

1 + xyz

(1− x)(1− y)(1− z)(1− x2)(1− y2)(1− z2)(1− xy)(1− yz)(1− zx)
.

(2.34)

Let us consider the physical meaning of the BPS partition function given above. For

simplicity, we set x = y = z = q. Expanding Zfree
U(2)(q, q, q) with respect to q, we find

Zfree
U(2)(q, q, q) = 1 + 3q + 12q2 + 29q3 + · · · . (2.35)

The coefficients describe the number of BPS operators having the same conformal dimen-

sion in each term because the BPS condition (2.29) means RX +RY +RZ = E where E

is the conformal dimension. Let us focus on the term 12q2 as an example. Actually, we

can find the following BPS operators with E = 2:

Tr(X2), Tr(Y2), Tr(Z2), Tr(XY), Tr(YZ), Tr(ZX),

(TrX)2, (TrY)2, (TrZ)2, (TrX)(TrY), (TrY)(TrZ), (TrZ)(TrX). (2.36)

The number of these BPS operators is 12. Thus the BPS partition function indeed has

the information of the BPS operator spectrum as coefficients of the fugacities.

For N = 4 SU(N) SYM, the BPS partition function can be obtained by dividing the

U(N) BPS partition function (2.32) by the U(1) BPS partition function (2.33):

ZSU(N) =
ZU(N)

ZU(1)
. (2.37)

For example, the SU(2) BPS partition function is given by

Zfree
SU(2) =

1 + xyz

(1− x2)(1− y2)(1− z2)(1− xy)(1− yz)(1− zx)
. (2.38)

Although the 1
2 -BPS partition function can be obtained by Zfree

U(N)(0, 0, z), we have

another derivation for the 1
2 -BPS partition function. Since the 1

2 -BPS operators consist of

Z only, we can find all the 1
2 -BPS operators directly. These are {TrZ|n = 1, · · · , N} and

their composite operators. Namely, we can regard the single trace operators {TrZn} as

the single-particle operators of the 1
2 -BPS operators. Thus the 1

2 -BPS partition function

becomes

Zfree
U(N)(0, 0, z) = Pexp

(
N∑

n=1

zn

)
=

N∏
n=1

1

1− zn
. (2.39)
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Actually, we can show that

∫
U(N)

dµPexp(zχ
U(N)
adj ) =

N∏
n=1

1

1− zn
. (2.40)

Interacting theory

Let us consider the BPS partition function for the interacting theory, g ̸= 0. In general,

the form of the BPS partition function in g ̸= 0 is different from that at g = 0 because some

of the BPS operators acquire the quantum correction, and they are no longer the BPS

operator in g ̸= 0. However, the BPS partition functions in the weak coupling region and

the BPS partition functions in the strong coupling region agree with each other [16, 28].

For U(1) Maxwell theory, all fields in the Lagrangian (2.17) are commutative with each

other, so there is no interaction terms and the U(1) BPS partition function in g ̸= 0 is

the same as that at g = 0.

First, the 1
2 -BPS partition function is the same as that in the free theory (2.39), because

the ingredient to make the 1
2 -BPS operators is the only Z, and we need not take the

interaction into account.

It is not so easy to find the 1
8 -BPS partition function for the interacting theory because

there are non-trivial relations called syzygies [30] among the single trace operators. For

example, in the U(2) SYM, we find the following relation

Tr({X,Y}Z) = (TrX)(TrYZ) + (TrY)(TrZX) + (TrZ)(TrXY)− (TrX)(TrY)(TrZ). (2.41)

and the operator Tr({X,Y}Z) does not contribute to the U(2) BPS partition function.

A more systematic way to count the independent BPS operators satisfying (2.29) is

to use the chiral ring generated by Q1. As we have seen in subsection 1.5.1, the chiral

ring is defined in an N = 1 theory. Now we regard N = 4 SYM as an N = 1 theory,

where supercharges are Q1 and Q1. Then the interaction terms regarding the adjoint

scalars are treated as the potential terms (2.24), and they should be reproduced by the

superpotential from the N = 1 perspective. The superpotential W (Φi) that reproduce

the potential term should satisfy an equation

δW

δΦi
∝ g2ϵijkTr[Φj ,Φk], (2.42)

where Φi=x,y,z are N = 1 chiral multiplets including the scalar field X,Y,Z, respectively.

Furthermore, it follows that

δW

δΦi
∝ [Φ∗

i ]F (2.43)

from an equation of motion for a general homogeneous superpotential consisting of a chiral

multiplet Φi, where [ ]F means picking up the F -term of the anti-chiral multiplet Φ∗
i .
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Thanks to the F -term condition, we regard the commutation relation [Φi,Φj ] as zero, and

for the adjoint scalar fields, we have

[X,Y] = [Y,Z] = [Z,X] = 0. (2.44)

Therefore, we regard these scalar fields as Cartan valued adjoint matrices of the gauge

group. This condition is actually the same as the minimum condition of the poten-

tial (2.24). Thus the BPS operators consisting of X,Y,Z parametrize the moduli space

C3N/WU(N), where WU(N) = SN is the Weyl group of U(N).

Now we can diagonalize X,Y,Z simultaneously and let xi, yi, zi be the diagonal com-

ponents. The Weyl transformation acts on xi, yi, zi as xσ(i), yσ(i), zσ(i), where σ ∈ SN .

Then the 1
8 -BPS operators are polynomials of these N variables invariant under the Weyl

transformation. We can use the following polynomials as bases of the invariant polyno-

mial.

∑
σ∈SN

N∏
i=1

x
mx

i

σ(i)y
my

i

σ(i)z
mz

i

σ(i), (2.45)

where the set of three integers {mx
i ,m

y
i ,m

z
i } labels the basis. We can regard (2.45) as the

wave function of the three-dimensional harmonic oscillator. The symmetrization
∑

σ∈SN

is now interpreted as the Bose statistics. Therefore, the wave function (2.45) is regarded

as that of the system with N bosonic particles in the harmonic potential.

The 1
8 -BPS grand partition function is the same as the grand partition function of this

system and given by

Ξ
1
8 -BPS

U(∗) (x, y, z; t) =
∞∑

N=0

Z
1
8 -BPS

U(N) (x, y, z)tN

=
∞∏

p,q,r=0

1

1− txpyqzr
= Pexp

(
t

(1− x)(1− y)(1− z)

)
. (2.46)

The 1
2 -BPS and 1

4 -BPS grand partition functions can be obtained by setting x = y = 0

and z = 0 respectively. In particular, we can show that

Ξ
1
2 -BPS

U(∗) (z; t) =
∞∏
r=0

1

1− tzr
=

∞∑
N=0

(
N∏

n=0

1

1− zn

)
tN (2.47)

by using the q-binomial theorem, and the coefficient of tN indeed agrees with (2.39).

It is easier to obtain the BPS partition functions for small ranks by expanding the grand
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partition function (2.46) with respect to t. The results for N = 1, 2 are

Z
1
8 -BPS

U(1) =
1

(1− x)(1− y)(1− z)
, (2.48)

Z
1
8 -BPS

U(2) =
1 + xy + yz + zx

(1− x)(1− y)(1− z)(1− x2)(1− y2)(1− z)2
. (2.49)

In these examples, we see that the U(1) BPS partition function indeed agrees with that

of the free theory (2.33), as we mentioned at the beginning of this sub-subsection. On

the other hand, the U(2) partition function is completely different from the free U(2)

partition function (2.34).

To see the difference between (2.34) and (2.49) clearer, let us expand the U(2) BPS

partition function (2.49) with respect to x = y = z ≡ q. The result is

Z
1
8 -BPS

U(2) (q, q, q) = 1 + 3q + 12q2 + 28q3 + · · · . (2.50)

We see that the term 28q3 deviates from the term in (2.35) by q3. The origin of this

deviation comes from the fact that a degree three BPS operator Tr([X,Y]Z) is no longer

contributes to the BPS partition function because of the commutativity (2.44).

2.1.4 Superconfromal index

Another example of the physical quantities we would like to consider is the superconformal

index. As in the case of the BPS partition function, the superconformal index has the

information of the BPS spectrum of the theory. Unlike the BPS partition function, the

superconformal index includes contributions from scalar, fermion, gauge field, and their

descendant operators, as well as chiral primary scalar operators. Thus the superconformal

index has richer information than the BPS partition function.

As we have seen in Sec. 1.5, the superconformal index is defined as the Witten index

regarding the N = 4 superconformal algebra on R × S3. The algebra among fermionic

generators are given by

{Qα̇

I , Q
J
α} = δJI P

α̇
β , (2.51a)

{Sα
I , S

J

β̇} = δJIK
α
β̇ , (2.51b)

{Sα
I , Q

J
β} =

1

2
δαβ δ

J
IH + δJI J

α
β + δαβ

(
RJ

I −
1

4
δJI R

K
K

)
, (2.51c)

{Qα̇

I , S
J

β̇} =
1

2
δα̇
β̇
δJIH − δJI J

α̇

β̇ − δα̇
β̇

(
RJ

I −
1

4
δJI R

K
K

)
. (2.51d)
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Now the superconformal index I of the N = 4 SYM on R× S3 is defined as

I = tr[(−1)Fx∆qH+jRy2jLuRX−RY vRY −RZ ], (2.52)

where ∆ is given by

∆ = 2{S1

1̇, Q
1̇

1} = H − 2jR − (RX +RY +RZ). (2.53)

The trace is taken over the Hilbert space of the theory on R× S3. Here H is the Hamil-

tonian in the radial quantization, and we defined jL = −J2
2 and jR = J

1̇

1̇. The SO(6)R
generators RX , RY , and RZ are defined in (2.1). The BPS condition of an operator O
for the superconformal index (2.52) is

[Q
1̇

1,O] = [S
1

1̇,O] = 0. (2.54)

This condition is equivalent to the condition ∆ = 0, and the index (2.52) does not depend

on x.

It is convenient to expand the index (2.52) with respect to the fugacity q. Then, we

can classify the BPS operators in order from the operator having the smallest conformal

dimension. In this case, the index respects the left-handed spin symmetry SU(2)jL and

part of SO(6)R. Since we choose a supercharge Q
1̇

1 to define the index (2.52), SO(6)R is

broken to SU(3)R × U(1). This SU(3)R is generated by RX − RY and RY − RZ , while

this U(1) is generated by RX + RY + RZ . The supercharge Q
1̇

1 has a non-trivial charge

under this U(1) (see Table 2.1), so the index only respects this SU(3)R symmetry. As

a result, the index expanded by q can be written in terms of the SU(3)R character and

the SU(2)jL character. The SU(3) character is defined in (A.34), and we define SU(2)jL
character as

χJ
n = χn(y), (2.55)

where χn(a) is defined in (A.33).

It seems that the BPS condition (2.54) is different from what we used for the BPS

partition function (2.29). In the case of the BPS partition function, since we only consider

the chiral primary operators, the condition [S
1

1̇,O] = 0 is automatically satisfied. Thus,

the chiral primary operators that we have considered in the previous subsection satisfy

the BPS condition (2.54), and they also contribute to the index (2.52).

Let us calculate the index (2.52) for the N = 4 U(N) SYM following the procedure

given in subsection 1.5.2. To do it, our task is to find the single-particle index of this

theory, and we need the list of all fields and equations of motion with charges of U(1)H ×
SU(2)jL × SU(2)jR × SO(6)R. We show this list in Table 2.5 and Table 2.6, and we use

the notation [jL, jR]
(RX ,RY ,RZ)
E , where E is the conformal dimension (eigenvalue of H).
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Fields [jL, jR]
(RX ,RY ,RZ)
E ∆

X [0, 0]
(1,0,0)
1 0

Y [0, 0]
(0,1,0)
1 0

Z [0, 0]
(0,0,1)
1 0

X [0, 0]
(−1,0,0)
1 2

Y [0, 0]
(0,−1,0)
1 2

Z [0, 0]
(0,0,−1)
1 2

λ11 [ 12 , 0]
( 1
2 ,

1
2 ,

1
2 )

3
2

0

λ12 [− 1
2 , 0]

( 1
2 ,

1
2 ,

1
2 )

3
2

0

λ21 [ 12 , 0]
( 1
2 ,−

1
2 ,−

1
2 )

3
2

2

λ22 [− 1
2 , 0]

( 1
2 ,−

1
2 ,−

1
2 )

3
2

2

λ31 [ 12 , 0]
(− 1

2 ,
1
2 ,−

1
2 )

3
2

2

λ32 [− 1
2 , 0]

(− 1
2 ,

1
2 ,−

1
2 )

3
2

2

λ41 [ 12 , 0]
(− 1

2 ,−
1
2 ,

1
2 )

3
2

2

λ42 [− 1
2 , 0]

(− 1
2 ,

1
2 ,−

1
2 )

3
2

2

λ
41̇

4 [0, 12 ]
( 1
2 ,

1
2 ,−

1
2 )

3
2

0

λ
42̇

[0,− 1
2 ]

( 1
2 ,

1
2 ,−

1
2 )

3
2

2

λ
31̇

[0, 12 ]
( 1
2 ,−

1
2 ,

1
2 )

3
2

0

λ
32̇

[0,− 1
2 ]

( 1
2 ,−

1
2 ,

1
2 )

3
2

2

λ
21̇

[0, 12 ]
(− 1

2 ,
1
2 ,

1
2 )

3
2

0

λ
22̇

[0,− 1
2 ]

(− 1
2 ,

1
2 ,

1
2 )

3
2

2

λ
11̇

[0, 12 ]
(− 1

2 ,−
1
2 ,−

1
2 )

3
2

2

λ
12̇

[0,− 1
2 ]

(− 1
2 ,−

1
2 ,−

1
2 )

3
2

4

F11 [1, 0]
(0,0,0)
2 2

F12 [0, 0]
(0,0,0)
2 2

F22 [−1, 0]
(0,0,0)
2 2

F
1̇1̇

[0, 1]
(0,0,0)
2 0

F
1̇2̇

[0, 0]
(0,0,0)
2 2

F
2̇2̇

[0,−1]
(0,0,0)
2 4

∂11̇ [ 12 ,
1
2 ]

(0,0,0)
1 0

∂12̇ [ 12 ,−
1
2 ]

(0,0,0)
1 2

∂21̇ [− 1
2 ,

1
2 ]

(0,0,0)
1 0

∂22̇ [− 1
2 ,−

1
2 ]

(0,0,0)
1 2

Table 2.5 Charges for fields in N = 4
SYM.

EOM [jL, jR]
(RX ,RY ,RZ)
E ∆

∂2X = 0 [0, 0, 0]
(1,0,0)
3 2

∂2Y = 0 [0, 0, 0]
(0,1,0)
3 2

∂2Z = 0 [0, 0, 0]
(0,0,1)
3 2

∂2X = 0 [0, 0, 0]
(−1,0,0)
3 4

∂2Y = 0 [0, 0, 0]
(0,−1,0)
3 4

∂2Z = 0 [0, 0, 0]
(0,0,−1)
3 4

(∂λ)11̇ = 0 [0, 12 ]
( 1
2 ,

1
2 ,

1
2 )

5
2

0

(∂λ)12̇ = 0 [0,− 1
2 ]

( 1
2 ,

1
2 ,

1
2 )

5
2

2

(∂λ)21̇ = 0 [0, 12 ]
( 1
2 ,−

1
2 ,−

1
2 )

5
2

2

(∂λ)22̇ = 0 [0,− 1
2 ]

( 1
2 ,−

1
2 ,−

1
2 )

5
2

4

(∂λ)31̇ = 0 [0, 12 ]
(− 1

2 ,
1
2 ,−

1
2 )

5
2

2

(∂λ)32̇ = 0 [0,− 1
2 ]

(− 1
2 ,

1
2 ,−

1
2 )

5
2

4

(∂λ)41̇ = 0 [0, 12 ]
(− 1

2 ,−
1
2 ,

1
2 )

5
2

2

(∂λ)42̇ = 0 [0,− 1
2 ]

(− 1
2 ,−

1
2 ,

1
2 )

5
2

4

(∂λ)41 = 0 [ 12 , 0]
( 1
2 ,

1
2 ,−

1
2 )

5
2

2

(∂λ)42 = 0 [− 1
2 , 0]

( 1
2 ,

1
2 ,−

1
2 )

5
2

2

(∂λ)31 = 0 [ 12 , 0]
( 1
2 ,−

1
2 ,

1
2 )

5
2

2

(∂λ)32 = 0 [− 1
2 , 0]

( 1
2 ,−

1
2 ,

1
2 )

5
2

2

(∂λ)21 = 0 [ 12 , 0]
(− 1

2 ,
1
2 ,

1
2 )

5
2

2

(∂λ)22 = 0 [− 1
2 , 0]

(− 1
2 ,

1
2 ,

1
2 )

5
2

2

(∂λ)11 = 0 [ 12 , 0]
(− 1

2 ,−
1
2 ,−

1
2 )

5
2

4

(∂λ)12 = 0 [− 1
2 , 0]

(− 1
2 ,−

1
2 ,−

1
2 )

5
2

4

(∂F )1̇1 = 0 [ 12 ,
1
2 ]

(0,0,0)
3 2

(∂F )1̇2 = 0 [ 12 ,−
1
2 ]

(0,0,0)
3 4

(∂F )2̇4 = 0 [− 1
2 ,

1
2 ]

(0,0,0)
3 2

(∂F )2̇2 = 0 [− 1
2 ,−

1
2 ]

(0,0,0)
3 4

(∂F )1̇1 = 0 [ 12 ,
1
2 ]

(0,0,0)
3 2

(∂F )1̇2 = 0 [ 12 ,−
1
2 ]

(0,0,0)
3 4

(∂F )2̇1 = 0 [− 1
2 ,

1
2 ]

(0,0,0)
3 2

(∂F )2̇2 = 0 [− 1
2 ,−

1
2 ]

(0,0,0)
3 4

∂γ[α̇∂
ϵ
β̇]
Fγϵ ≡ 0 [0, 0]

(0,0,0)
4 4

∂
[α
γ̇ ∂

β]
ϵ̇ F

γ̇ϵ̇ ≡ 0 [0, 0]
(0,0,0)
4 4

Table 2.6 Charges for equations of motion
(EOM) in N = 4 SYM.
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Now we pick up the BPS fields with ∆ = 0 to calculate the single-particle index. Other

contributions are automatically canceled due to the boson-fermion cancellation. We should

also include the descendants generated by ∂11̇ and ∂21̇ because these derivatives satisfy

the BPS condition. Let m(q, y, u, v) be a monomial corresponding to the contribution of

a certain BPS primary operator OBPS. Its descendants are obtained by multiplying the

derivatives repeatedly. For example, if a descendant has k ∂11̇’s and l ∂21̇’s, this descendant

field is (∂11̇)
k(∂21̇)

lOBPS. Since the monomials corresponding to the derivatives ∂11̇ and

∂21̇ are q
3
2 y and q

3
2 y−1 respectively, the monomial corresponding to this descendant field

is given by (q
3
2 y)k(q

3
2 y−1)lm(q, y, u, v). Therefore, all the contributions from the primary

field and descendant fields becomes

∞∑
k,l=0

(q
3
2 y)k(q

3
2 y−1)lm(q, y, u, v) =

m(q, y, u, v)

(1− q
3
2 y)(1− q

3
2 y−1)

. (2.56)

Gathering all the BPS contributions, including their descendants, gives the following

formula for the single-particle index:

isp =
χ(1,0)q − χJ

1 q
3
2 − χ(0,1)q

2 + 2q3

(1− q
3
2 y)(1− q

3
2 y−1)

, (2.57)

where χ(m,n) and χ
J
n are the SU(3)R character and SU(2)jL character defined by (A.34)

and (2.55), respectively.

According to the formula (1.84), the superconformal index of the N = 4 U(N) SYM is

now given by

IU(N) =

∫
U(N)

dµPexp(ispχ
U(N)
adj ), (2.58)

where isp is defined in (2.57). The Haar measure is given by (2.32b) and χ
U(N)
adj is given by

(2.32c). Note that this formula is valid even for the interacting theory because the index

does not depend on the coupling constant. The indices for small ranks up to some orders

of q are given by

IU(1) = 1 + χ(1,0)q − χJ
1 q

3
2 + (χ(2,0) − χ(0,1))q

2 + (χ(3,0) − χ(1,1) + 1− χJ
2 )q

3

+ χJ
1χ(0,1)q

7
2 + (χ(4,0) − χ(2,1) + χ(1,0) − χJ

2χ(1,0))q
4

+ (χJ
2χ(0,1) + χ(2,0) − χ(3,1) + χ(5,0))q

5 + (−χJ
1χ(1,0) − χJ

3χ(1,0))q
11
2

+ (χJ
2χ(1,1) + χ(3,0) − χ(4,1) + χ(6,0))q

6 +O(q
13
2 ), (2.59)
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IU(2) = 1 + χ(1,0)q − χJ
1 q

3
2 + (−χ(0,1) + 2χ(2,0))q

2 − χJ
1χ(1,0)q

5
2

+ (2− χJ
2 − χ(1,1) + 2χ(3,0))q

3 + χJ
1 (χ(0,1) − χ(2,0))q

7
2

+ (−χJ
2χ(1,0) + χ(1,0) − 2χ(2,1) + 3χ(4,0))q

4 + χJ
1 (1 + 2χ(1,1) − χ(3,0))q

9
2

+ (−2χJ
2χ(2,0) − 2χ(0,1) + χ(2,0) − 2χ(3,1) + 3χ(5,0))q

5

+ χJ
1 (χ(1,0) + 2χ(2,1) − χ(4,0))q

11
2

+ (χJ
2 (χ(1,1) − χ(3,0))− χ(1,1) + 2χ(3,0) − 3χ(4,1) + 4χ(6,0))q

6

+ (−χJ
3χ(2,1) + χJ

1 (−3χ(0,1) − χ(1,2) + 2χ(3,1) − χ(5,0)))q
13
2

+ (χJ
2 (3χ(0,2) + 2χ(1,0) + 2χ(2,1) − 2χ(4,0)) + 4χ(1,0) + 2χ(4,0)

− 3χ(5,1) + 4χ(7,0))q
7

+ (χJ
5 + χJ

3 (−1− 2χ(1,1) − χ(3,0)) + χJ
1 (−1− 5χ(1,1)

− χ(2,2) − 2χ(3,0) + 2χ(4,1) − χ(6,0)))q
15
2

+ (χJ
4 (χ(0,1) − χ(2,0)) + χJ

2 (χ(1,2) + 4χ(2,0) + 3χ(3,1) − 2χ(5,0))

+ 3χ(0,1) + χ(1,2) + χ(2,0) + 3χ(5,0) − 4χ(6,1) + 5χ(8,0))q
8 +O(q

17
2 ), (2.60)
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IU(3) = 1 + χ(1,0)q − χJ
1 q

3
2 + (−χ(0,1) + 2χ(2,0))q

2 − χJ
1χ(1,0)q

5
2

+ (2− χJ
2 − χ(1,1) + 3χ(3,0))q

3 + χJ
1 (χ(0,1) − 2χ(2,0))q

7
2

+ (−χJ
2χ(1,0) + χ(0,2) + 2χ(1,0) − 2χ(2,1) + 4χ(4,0))q

4

+ χJ
1 (1 + χ(1,1) − 2χ(3,0))q

9
2

+ (χJ
2 (χ(0,1) − 2χ(2,0))− 2χ(0,1) + 2χ(2,0) − 2χ(3,1) + 5χ(5,0))q

5

+ χJ
1 (χ(1,0) + 3χ(2,1) − 3χ(4,0))q

11
2

+ (−χ(0,3) − 4χ(1,1) + χ(2,2) + 3χ(3,0) − 3χJ
2χ(3,0) − 4χ(4,1) + 7χ(6,0))q

6

+ χJ
1 (χ(0,1) + χ(1,2) + 3χ(2,0) + 3χ(3,1) − 3χ(5,0))q

13
2

+ (χJ
2 (−χ(0,2) − χ(1,0) + χ(2,1) − 4χ(4,0))− χ(0,2) + χ(1,0) − 5χ(2,1)

+ 3χ(4,0) − 4χ(5,1) + 8χ(7,0))q
7

+ (χJ
5 − χJ

3χ(3,0) + χJ
1 (1− χ(1,1) + 3χ(3,0) + 5χ(4,1) − 4χ(6,0)))q

15
2

+ (χJ
2 (χ(0,1) + 2χ(1,2) + 2χ(2,0) + χ(3,1) − 5χ(5,0)) + 3χ(0,1) + χ(0,4)

+ χ(1,2) + χ(2,0) − χ(2,3) − 5χ(3,1) + χ(4,2) + 4χ(5,0) − 6χ(6,1) + 10χ(8,0))q
8

+ (χJ
1 (−4χ(0,2) − 5χ(1,0) − χ(1,3) − 6χ(2,1) + 3χ(4,0) + 5χ(5,1) − 4χ(7,0))

+ χJ
3 (−3χ(0,2) − χ(1,0) − χ(2,1) − χ(4,0)) + χJ

5χ(1,0))q
17
2

+ (3χ(0,3) + 8χ(1,1) + 2χ(2,2) + 6χ(3,0) − 5χ(4,1) + 5χ(6,0) − 7χ(7,1) + 12χ(9,0)

+ χJ
2 (6 + χ(0,3) + 8χ(1,1) + 3χ(2,2) + 4χ(3,0) + 3χ(4,1) − 6χ(6,0))

+ χJ
4 (χ(1,1) − χ(3,0) − 1))q9

+ (χJ
1 (−8χ(0,1) − 8χ(1,2) − 8χ(2,0) − χ(2,3) − 10χ(3,1) − χ(4,2) + χ(5,0) + 7χ(6,1) − 5χ(8,0))

+ χJ
3 (−4χ(0,1) − 2χ(1,2) − 2χ(2,0) − 2χ(3,1) − 2χ(5,0)) + χJ

5 (−χ(0,1) + 2χ(2,0)))q
19
2

+ (−4χ(0,2) − χ(0,5) + 3χ(1,0) + 2χ(1,3) + 12χ(2,1) + χ(2,4) + 3χ(3,2) + 6χ(4,0) − χ(4,3)

− 5χ(5,1) + χ(6,2) + 6χ(7,0) − 9χ(8,1) + 14χ(10,0)

+ χJ
2 (2χ(0,2) + 4χ(1,0) + 7χ(2,1) + 5χ(3,2) + 7χ+4χ(5,1) − 7χ(7,0))

+ χJ
4 (−χ(0,2) + χ(1,0) − χ(4,0)))q

10 +O(q
21
2 ). (2.61)

In the next chapter, we will reproduce these results up to certain orders of the fugacity q

from the AdS side. Before going to this reproduction, we will review the essential concepts

of type IIB string theory in the next section.

2.2 Type IIB string theory

The superstring theory is a theory of strings that propagate in ten-dimensional (10d)

spacetime. It is well known that there are five different anomaly free superstring theories:

type I, type IIA, type IIB, Heterotic SO(32), and Heterotic E8×E8. These string theories
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are related to each other by the string duality. In this section, we review type IIB theories,

which has N = (2, 0) supersymmetry, because our interest in this thesis is the AdS/CFT

correspondence regarding type IIB string theory.

There are two kinds of strings: closed strings and open strings. In the 10d spacetime, a

string sweeps a two-dimensional (2d) surface Σ called a worldsheet. Let σa (a = 0, 1) be

the coordinates on the worldsheet, where σ0 and σ1 stand for the temporal and spatial

coordinates, respectively. We normalize σ1 so that σ1 ∈ [0, π]. Then the motion of

strings is described in the 10d coordinates XM (σ) (M = 0, 1, · · · , 9), a map from the

2d worldsheet into the 10d spacetime called the target space. There are also fermionic

partners of XM , denoted by ψM (σ), which is a two-component Dirac spinor in 2d.

The bosonic part of the string action is the Polyakov action given by

Sstr = − 1

4πℓ2s

∫
Σ

d2σ
√
−ggab(σ)∂aXM∂bXM , (2.62)

where gab(σ) is a metric on the worldsheet. ℓs is called the string length, a unique

parameter of the string theory.

The general solution of the equation of motion obtained from (2.62) is a superposition

of left- and right-moving waves

XM (σ) = XM
L (σ1 + σ0) +XM

R (σ1 − σ0). (2.63)

The corresponding fermionic partners to the left- and right-moving waves are the lower

and upper component of ψM (σ). Then we denote ψM (σ) as

ψM (σ) =

(
ψM
R (σ1 − σ0)

ψM
L (σ1 + σ0)

)
. (2.64)

Although we omitted the fermionic part of the action in (2.62), we can find the coordinate

dependence of ψM
L,R by using the equation of motion of the fermionic fields. We refer to

(XM
L/R, ψ

M
L/R) as the left/right moving sector.

2.2.1 Closed strings

Let us first consider the closed strings. Since the discussion of the right moving sector is

parallel to that of the left moving sector, we focus on the left moving sector.

Here we discuss the boundary condition of fields. For the bosonic field XM
L , the peri-

odicity of the closed string means XM
L (σ1 + σ0 + π) = XM

L (σ1 + σ0). On the other hand,

there are two choices of the boundary condition for the fermionic field ψM
L : the periodic
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Sectors Fields
NS-NS ϕ,BMN , gMN

NS-R λML , χR

R-NS λML , χR

R-R C,CMN , CMNRS

Table 2.7 The massless spectrum of the type IIB theory. The NS-NS and R-R sectors
are made of bosonic fields, whereas NS-R and R-NS sectors are made of fermionic
fields.

and anti-periodic boundary conditions

Ramond (R) : ψM
L (σ1 + σ0 + π) = ψM

L (σ1 + σ0), (2.65a)

Neveu-Schwarz (NS) : ψM
L (σ1 + σ0 + π) = −ψM

L (σ1 + σ0). (2.65b)

Fermionic fields satisfying (2.65a) are called Ramond (R) fermions, and fermionic fields

satisfying (2.65b) are called Neveu-Schwarz (NS) fermions.

Now we can do the oscillator expansion for the bosonic field XM
L and the fermionic

field ψM
L . If we impose the canonical commutation relations for the coefficients of the

oscillator expansion, we can perform the quantization of the theory. Then, we obtain the

finite number of massless states and the infinite number of massive states. However, we

are interested in the low energy behavior of the string theory, so we focus on the massless

states here. Combining the left moving sector and the right moving sector, we have four

sectors depending on the choice of the boundary condition of the fermionic fields: NS-NS,

NS-R, R-NS, and R-R sector. The NS-NS and R-R sectors have the 10d bosonic fields,

and NS-R and R-NS sectors have 10d fermionic fields. The massless fields of type IIB

string theory appearing in these sectors are summarized in Table 2.7.

We can find many massless fields in Table 2.7. In the NS-NS sector, we have a scalar

field ϕ called the dilaton, 2-form field BMN called “B-field”, and symmetric tensor field

gMN called graviton. In the NS-R and R-NS sectors, we have two left-handed gravitinos

λML and two right-handed dilatinos χR. The existence of two gravitinos belonging to the

same chirality shows that the theory indeed has the N = (2, 0) supersymmetry. In the

R-R sector, we have p-form fields with p = 0, 2, 4, and they are called R-R p-form fields.

2.2.2 Open strings

So far, we have reviewed the massless spectrum of closed strings. There are also open

strings as well as closed strings. For open strings, there are two kinds of boundary con-

ditions: Dirichlet and Neumann boundary conditions. For bosonic fields, these boundary
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Fig. 2.1 An open string connecting a D-brane with the other D-brane. Its worldsheet
is a cylinder.

conditions are expressed as

XM |σ1=0,π = const. : Dirichlet boundary conditions, (2.66)

∂XM

∂σ1

∣∣∣∣
σ1=0,π

= 0 : Neumann boundary conditions. (2.67)

We can choose different boundary conditions for each M . When the Dirichlet boundary

condition is imposed on the 9 − p bosonic fields, endpoints of strings can move in a

p + 1-dimensional hypersurface called a Dp-brane. This hypersurface is specified by the

equations (2.66).

The spectrum of open strings is also obtained by the canonical quantization. We can

also consider NS and R fermions. The quantization gives us the finite number of massless

states and the infinite number of massive states. Again, we are interested in the massless

states, and it is convenient to regard the massless fields as fields living on Dp-branes.

Namely, we can realize a p + 1-dimensional quantum field theory on Dp-branes in the

low-energy limit. In this sense, D-branes are useful to investigate quantum field theories.

So, in what follows, we will see the properties of Dp-branes.

2.2.3 D-branes

In the last subsection, we defined a Dp-brane as a p+ 1-dimensional hypersurface where

open strings can end. However, D-branes have various properties as physical objects that

go beyond just the hypersurface.

Coupling to R-R fields

In fact, D-branes are electrically coupled to R-R fields [31]. This fact can be understood

through the open-closed duality in the string theory. Suppose a situation where two flat

D-branes are placed with a certain distance, as in Fig. 2.1. Then an open string can

be stretched between two D-branes. The shape of the worldsheet of this open string is

Soryushiron Kenkyu



58 Chapter 2 AdS/CFT Correspondence

Fig. 2.2 A closed string propagating between two D-branes. Its worldsheet is also
a cylinder. We can regard this situation as the radiation and absorption of a closed
string by D-branes.

a cylinder connecting a D-brane with the other one. However, this situation can also be

regarded as a propagation of a closed string between two D-branes, as in Fig. 2.2. In this

sense, we can say that D-branes are the source of closed strings. Then we have an electric

coupling term of a single Dp-brane to the R-R p+1-form field Cp+1 as well as the kinetic

term of the R-R field as follows:

SRR = − 1

2g2e

∫
Fp+2 ∧ ∗Fp+2 −

∫
WV

Cp+1, (2.68)

where the integral of the coupling term is taken over the p+1-dimensional worldvolume of a

Dp-brane. Note that p takes the values −1, 1, 3 for type IIB string theory*2. Fp+2 = dCp+1

is the field strength of the R-R field. The Hodge dual ∗ of a k-form field Ak is defined by

∗Ak = ∗
(

1

k!
AM1···Mk

dXM1 ∧ · · · ∧ dXMk

)
=

1

k!(10− k)!
ϵM1···MkN1···N10−k

AM1···MkdXN1 ∧ · · · ∧ dXN10−k . (2.69)

ge is the unit charge of a single Dp-brane defined by

ge = (2πℓs)
7−p
2 . (2.70)

Then the definition of the electric charge of a single Dp-branes should be given by

Qele =
1

ge

∮
S8−p

∗Fp+2 = ge. (2.71)

*2 Here we do not discuss type IIA string theory in detail, p can take the values 0, 2 in type IIA string
theory.
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D-branes electric magnetic

D(−1) C0 C̃8

D1 C2 C̃6

D3 C4 C4

D5 C̃6 C2

D7 C̃8 C0

Table 2.8 A table for R-R p+1-forms and electrically coupled Dp-branes. Dp-branes
can also magnetically couple to R-R 7− p-forms.

Therefore, the electric charge of Dp-branes is the unit charge ge times the number of

Dp-branes.

It is possible to consider the magnetic version of above discussion. The magnetic flux

F̃8−p is defined by the Hodge dual of the electric flux Fp+2 as

1

gm
F̃8−p =

1

ge
∗ Fp+2, (2.72)

where gm is the unit magnetic charge of a single Dp-brane. The unit electric charge ge
and the unit magnetic charge gm satisfy the Dirac quantization condition

gegm = 2π. (2.73)

Then the definition of the magnetic charge of a single Dp-brane should be given by

Qmag =
1

gm

∮
Sp+2

∗F̃8−p = gm. (2.74)

Using (2.72) and the Dirac quantization condition (2.73), we can show that∮
Fp+2 ∈ 2πZ. (2.75)

Finally, we can define Dp-branes with p = 5, 7 as objects magnetically coupled to R-R

fields in type IIB string theory. Thus we find Dp-branes with odd p in type IIB string

theory. They are summarized in Table 2.8. In this Table we defined dual R-R fields C̃p

satisfying F̃p+1 = dC̃p.

(p, q)-string

In addition to the D1-brane, we can consider the electrically charged object for the B-field.

This object is called the fundamental string (F1-string). In this context, we may call the

D1-brane the D1-string. Furthermore, we can also consider the one-dimensional object,

a bound state of p F1-strings and q D1-strings. This object is called (p, q)-string, where
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(p, q) charges are given by

p =

∫
∗H3, q =

∫
∗F3. (2.76)

Here we defined the fluxes H3 = dB2 and F3 = dC2.

Dirac-Born-Infeld action

We have seen that D-branes couple to the R-R fields. Besides this, we can also consider

the motion of D-branes. In the case of a relativistic particle, its motion is described by

its worldline. Likewise, the motion of D-branes is described by its worldvolume. Thus the

action of D-branes is schematically given by

SDp ∝ −
∫

dpξ
√
−detGab, (2.77)

where ξa (a = 0, · · · , p − 1) are coordinates on Dp-branes and Gab is the induced metric

defined by

Gab =
∂XM

∂ξa
∂XN

∂ξb
gMN . (2.78)

Here XM (ξ) (M = 0, · · · , 9) are 10d coordinates having a role of a map from p + 1-

dimensional worldvolume to 10d target space and gMN is the 10d metric.

The existence of the 10d metric gMN in the induced metric shows that D-branes couple

to the graviton in the NS-NS sector. Then it is easy to expect that D-branes couple to not

only the graviton but also all fields in the NS-NS sector, namely the dilaton and B-field.

Actually, this is the case.

Besides the NS-NS sector in the bulk, an open string living on a D-brane has a vector

field. This vector field is a U(1) gauge field on the D-brane.

Including all fields coupled to the D-brane, we obtain the correct action for the Dp-brane

called the Dirac-Born-Infeld (DBI) action as follows:

SDBI
Dp = − 1

(2π)pℓp+1
s

∫
dp+1ξe−ϕ

√
−det(Gab +Bab + 2πℓ2sFab). (2.79)

Because of the supersymmetry, there should also be coupling to the fermionic terms that

we omitted here.

The vacuum expectation value of the dilaton ϕ gives the string coupling constant of

type II string theories as gs = e⟨ϕ⟩. Although it is believed that gs should be determined

by physics, we have no way to do it up to now because we may need the non-perturbative
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formulation of the string theory. Then the tension of a D-brane is given by

Tp =
1

(2π)pℓp+1
s gs

. (2.80)

In summary, the action of Dp-branes is made with the DBI action and the coupling to

the R-R fields. In fact, the coupling to the R-R field is generalized to the Chern-Simons

(CS) type action

SCS
Dp =

∫ [
e2πℓ

2
sF2+B2 ∧

∑
k

Ck

]
p+1

, (2.81)

where [ ]p+1 indicates that we pick up only p + 1-form. The R-R coupling term we

have already discussed is included in the first term of the expansion of the exponential.

Therefore, the action of a single Dp-brane is

SDp = SDBI
Dp + SCS

Dp . (2.82)

2.2.4 Type IIB supergravity

Finally, let us review type IIB supergravity. This is the low energy effective theory of

type IIB string theory and only includes the massless fields in the string theory. The

massless fields of type IIB string theory are summarized in Table 2.7. The action of type

IIB supergravity is given by

SSUGRA
IIB =

1

2κ2

∫
d10X

√
−G

(
R− 1

2
GMN ∂Mτ∂Nτ

(Imτ)2

)
− 1

4κ2

∫
|τ |2H3 ∧ ∗H3 −

1

4κ2

∫
F3 ∧ ∗F3

− 1

4κ2

∫
ReτF3 ∧ ∗H3 −

1

4κ2

∫
ReτH3 ∧ ∗F3

− 1

4κ2

∫
F ′
5 ∧ ∗F ′

5 −
1

4κ2

∫
C4 ∧H3 ∧ F3 + (fermion terms), (2.83)

where κ is the 10d Newton constant defined by

κ2 =
(2π)7ℓ8s

2
. (2.84)

τ = C0 + ie−ϕ is the axio-dilaton field. Fluxes H3, F3, and F
′
5 are defined as

H3 = dB2, F3 = dC2, F ′
5 = dC4 +

1

2
B2 ∧ dC2 −

1

2
C2 ∧ dB2. (2.85)
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We rescaled the metric gMN as

GMN = e−ϕ/2gMN . (2.86)

The action (2.83) is invariant under the following SL(2,R) transformation

τ → τ ′ =
aτ + b

cτ + d
, (2.87a)(

C2

B2

)
→
(
C ′

2

B′
2

)
=M

(
C2

B2

)
, (2.87b)

C4 → C ′
4 = C4, (2.87c)

GMN → G′
MN = GMN , (2.87d)

where

M =

(
a b

c d

)
∈ SL(2,R). (2.88)

Thus type IIB supergravity has the SL(2,R) symmetry.

Because the 2-form fields form an SL(2,R) doublet, the (p, q) charges also form an

SL(2,R) doublet. Then, due to the flux quantization (2.75), the SL(2,R) symmetry is

broken to SL(2,Z).
This symmetry maps type IIB string theory with the string coupling constant gs = e⟨ϕ⟩

onto that with 1/gs. This can be seen by considering a matrix

M =

(
0 −1

1 0

)
(2.89)

with C0 = 0. Then the transformation (2.87a) means

gs →
1

gs
. (2.90)

Therefore, type IIB supergravity has a strong/weak self duality called the S-duality. The

S-duality holds even for type IIB string theory.

2.3 The correspondence

We have finished preparing to discuss the AdS/CFT correspondence between 4d N = 4

SYM and type IIB string theory on AdS5×S5. Here, let us confirm the precise statement

of AdS/CFT. The AdS/CFT correspondence states that
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The AdS/CFT correspondence� �
4d N = 4 U(N) supersymmetric Yang-Mills theory with coupling constant gYM

is equivalent to

type IIB superstring theory with string length ℓs and string coupling constant gs on

AdS5 × S5 whose radius is L.� �
Note that the AdS/CFT correspondence is still a conjecture.

There are two free parameters on both sides. On the CFT side, we have the rank of

gauge group N and the coupling constant gYM. On the AdS side, we have the string

length ℓs and the AdS radius L, which is the typical scale of the AdS system. They are

related by the following two independent equations:

2g2YMN =
L4

ℓ4s
, (2.91a)

4πN =
L4

ℓ4P
, (2.91b)

where ℓP is the Planck length defined by ℓ4P = ℓ4sgs. Using this definition of the Planck

length, it follows that g2YM = 2πgs from (2.91). In this duality, all the physics on the CFT

side is mapped to the physics on the AdS side, and vise versa.

Let us see the AdS/CFT correspondence in various parameter region using (2.91).

• g2YMN ≫ 1 and N ≫ 1, or correspondingly, L≫ ℓs and L≫ ℓP
In this case, on the CFT side, the system is described by the strongly coupled

N = 4 U(N) SYM with the N → ∞ limit (large N limit)*3. On the AdS side, the

system is described by the classical gravity, and we can neglect string excitation

states whose mass is proportional to 1/ℓs. Namely, the system on the AdS side is

well described by the type IIB supergravity. Thus, the AdS/CFT correspondence in

this parameter region gives us a strong tool to investigate strongly coupled quantum

field theories from the classical supergravity. This is one of the motivations for the

investigation of the AdS/CFT correspondence.

• g2YMN ≲ 1 and N ∼ 1, or correspondingly, L ≲ ℓs and L ∼ ℓP
In this case, on the CFT side, the system is described by the weakly coupled N = 4

U(N) SYM, where we can use the perturbation technique. On the AdS side, the

system is described by the quantum gravity, and the string excitation states have

to be taken into account. This situation might enable us to study the quantum

gravity through AdS/CFT. This is another motivation for the investigation of the

AdS/CFT correspondence.

*3 We often regard N ≫ 1 as the large N limit, namely N → ∞ limit.
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CFT side AdS side
parameter region description parameter region description

g2YMN ≲ 1 weak coupling L ≲ ℓs all states necessary
g2YMN ≫ 1 strong coupling L≫ ℓs only massless states
N ∼ 1 finite N L ∼ ℓP quantum gravity
N ≫ 1 large N L≫ ℓP classical gravity

Table 2.9 The possible situations depending on the parameter region in AdS/CFT.
We might be able to make four situations combining the upper parameter relation
(2.91a) and lower parameter relation (2.91b).

We summarize the possible situations depending on the parameters in Table 2.9.

The AdS/CFT correspondence arises from two faces of D3-branes in type IIB string

theory: the open string perspective and closed string perspective. In what follows, we

review how to obtain the correspondence from D3-branes.

2.3.1 D3-brane picture

In this subsection, we discuss the open string perspective and focus on fields on D3-

branes. As a setup, we consider a stack of N coincident D3-branes in flat 10d Minkowski

spacetime. These D3-branes are flat, and embedding of D3-branes into the 10d target

space is given by

Xµ = xµ (µ = 0, 1, 2, 3), Xi+3 = 0 (i = 1, · · · , 6), (2.92)

where xµ is the worldvolume coordinates on N D3-branes.

For a single D3-brane (N = 1 in the above setup), we mentioned just above (2.79)

that a 4d U(1) gauge theory arises on the D3-brane. Actually, in the low energy region

Eob ≪ ℓ−1
s we can obtain the action of the 4d Maxwell theory by expanding the DBI

action (2.79) with respect to ℓ2s, where Eob is the energy scale of the observation. This

fact can be explicitly seen by expanding the DBI action (2.79) with respect to ℓ2s under

the background

e⟨ϕ⟩ = gs, BMN = 0, gMN = ηMN = diag(−1, 1, · · · , 1). (2.93)

In addition to this background of the NS-NS fields, we assume the following background

for the R-R fields

Ck = 0 for k ̸= 4. (2.94)

In this setup, coordinates Xi+3 (i = 1, · · · , 6) look like scalar fields living on the D3-

brane from the viewpoint of the worldvolume theory. We define these scalar fields as

Soryushiron Kenkyu



2.3 The correspondence 65

ϕi = Xi+3/2πℓ2s. Then, expanding the DBI action (2.79), we find the following action:

SDBI
D3 ≃ − 1

(2π)3ℓ4sgs

∫
d4x+

1

2πgs

∫
d4x

(
−1

4
FµνF

µν − 1

2
∂µϕ

i∂µϕi
)
+O(ℓ2s), (2.95)

The first term is merely a constant proportional to the worldvolume, and does not affect

the physics, so we neglect it. Then, this is equivalent to the bosonic part of the N = 4

U(1) Maxwell theory if we identify 2πgs = g2YM. More precisely, the axio-dilaton field τ

is identified as the complex coupling constant τ define in (2.15).

As we mentioned in the first paragraph in Sec 2.2, the supersymmetry of type IIB

theory is N = (2, 0). Now, half of the supersymmetry is broken due to the existence of

the D3-brane. Namely, the D3-brane is a half BPS object, and we have the 4d N = 4

supersymmetry on this D3-brane. Since the DBI action (2.79) and its low energy expansion

(2.95) include only the bosonic terms, we have to add the fermionic terms to (2.95) so

that the action is invariant under N = 4. Note that since we have eight degrees of

freedom for bosons, the fermions also have the same degrees of freedom. Performing the

supersymmetric completion for (2.95), we find the following action:

S =
1

g2YM

∫
d4x

(
−1

4
FµνF

µν + iλIσ
µ∂µλ

I − 1

2
∂µϕ

i∂µϕi
)
, (2.96)

where λI (I = 1, 2, 3, 4) is the Weyl spinor belonging to the spinor representation of

SO(6)R with the positive chirality. This is the complete action of N = 4 U(1) Maxwell

theory.

In the case of N coincident D3-branes, open strings have the Chan-Paton (CP) factors

[32]. The CP factor runs from 1 to N , corresponding to the number of D3-branes, and

is assigned to each endpoint of strings. We can regard the CP factor as the index of

the gauge group U(N), and an open string that ends on D3-branes is transformed as the

adjoint representation of U(N). Therefore, there is the U(N) gauge field on N coincident

D3-branes, and the N = 4 U(N) SYM is realized.

2.3.2 Black 3-brane solution

Here we discuss the closed string perspective. For simplicity, we do not take into account

the string massive states. Besides this, we take the large N limit to avoid the difficulty of

the quantum gravity. In this case, N D3-branes are viewed as a massive charged object

under the R-R 4-form filed C4. Then the supergravity description is valid.

Now we are considering the type IIB supergravity. From the action (2.83), we obtain

the 10d Einstein equation. Corresponding to (2.93) and (2.94), we assume the ansatz

satisfying the following properties for the solution of the Einstein equation:

1. The solution is time independent.

2. R-R fields Ck = 0 for k ̸= 4.
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3. B-field BMN = 0.

4. The solution preserves the SO(1, 3) × SO(6) isometry as well as sixteen super-

charges.

5. The metric gMN , R-R 4-form field C4, and the dilaton ϕ has non-trivial solutions.

6. At infinity, gMN = ηMN and eϕ = gs.

The solution is then given by

ds23-brane =
r2

L2
ηµνdX

µdXν +
L2

r2
δijdX

idXj

=
L2

z2
(dz2 + ηµνdX

µdXν) + L2dΩ2
5, (2.97)

with the 5-form flux

F5 = 16πℓ4sNϵ5, (2.98)

where µ, ν = 0, · · · , 3 and i, j = 4, · · · , 9. The radial coordinate r is defined by r2 =∑
i(X

i)2. ϵ5 is the volume form of S5 defined by r = L. In this solution we took the near

horizon limit r ≪ L. The metric (2.97) is nothing but the metric of AdS5 × S5. Then

this system describes closed strings propagating in AdS5 × S5 spacetime, namely, type

IIB string theory on AdS5 × S5.

So far, we have seen two perspectives in N coincident D3-branes, and we obtained the

4d N = 4 U(N) SYM from the open string perspective and type IIB string theory on

AdS5 × S5 from the closed string perspective. In this way, we can reach the idea of the

AdS/CFT correspondence.

2.4 Agreement of the index in the large N limit

We have seen the idea of the AdS/CFT correspondence in the last section. In this section,

we confirm the agreement of the BPS partition function and the superconformal index

on both sides in the large N limit. Although the BPS partition function depends on the

coupling constant, this dependence is quite simple. It is known that the BPS partition

function of the N = 4 U(N) SYM in the weak coupling region is the same as that on

the strong coupling region [16, 28]. Thus, this coupling dependence does not matter. On

the contrary, the investigation of the BPS partition function gives us significant hints to

study the superconformal index, so it is worthwhile to review the BPS partition function

as well as the superconformal index.

2.4.1 BPS partition function

First we consider the 1
8 -BPS partition function defined in (2.28). Since this quantity is

easier to calculate than the superconformal index, it is a good practice before calculating
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the superconformal index. We calculate the BPS partition function on both sides.

CFT side

Before calculating on the CFT side, we have to pay attention to the fact that the BPS

partition function depends on the coupling constant. On the AdS side, it is difficult

to consider the zero coupling limit because of the string massive states. Thus we only

consider the non-zero coupling case. Then the BPS partition function on the CFT side is

given by the series coefficients of the grand partition function (2.46).

Now it is easy to evaluate the BPS partition function in the large N limit from the

grand partition function (2.46). It can be read off from the grand partition function by

using a formula

a∞ = lim
t→1

(1− t)f(t) (2.99)

for a series expansion f(t) =
∑∞

n=0 ant
n with |t| < 1. Then the BPS partition function of

N = 4 U(N) SYM in the large N limit is

Z
1
8 -BPS

U(∞) = lim
t→1

(1− t)Ξ
1
8 -BPS

U(∗) (x, y, z; t) = Pexp

(
1

(1− x)(1− y)(1− z)
− 1

)
. (2.100)

AdS side

Let us consider the AdS side in which the system is described by type IIB supergrav-

ity. We want to know the corresponding object on the AdS side to the chiral primary

operators, contributing to the BPS partition function. Actually, Witten noted that the

corresponding objects are Kaluza-Klein modes on S5 [33], which are scalar particles with

the angular momentum on S5. Their spectrum has already been analyzed by [34]. Thus,

we here confirm the agreement of the spectrum on both sides in terms of the BPS partition

function.

There are the same global symmetry SO(2, 4)× SO(6) on the AdS side as that on the

CFT side. This symmetry is the isometry of AdS5 × S5 spacetime. On the CFT side,

SO(2, 4) is the conformal symmetry, and SO(6) is the R-symmetry of N = 4 supersym-

metry. Then the KK modes are also classified by this symmetry. Here we use the notation

[jL, jR]
(RX ,RY ,RZ)
E , which we introduced below (2.55), to classify the KK modes under the

global symmetry U(1)H ×SU(2)jL ×SU(2)jR ×SO(6)R ⊂ SO(2, 4)×SO(6). In terms of

this notation, the KK modes belong to [0, 0]
(n,0,0)
n representation.

In the case of the superconformal index (2.52), we saw that the index respects the

SU(3)R ⊂ SO(6)R symmetry because the particular choice of the supercharge breaks the

symmetry as SO(6)R → SU(3)R × U(1). This SU(3)R is generated by RX − RY and

RY −RZ . The index does not respects this U(1) symmetry because the supercharges are

charged under this U(1). However, in the case of the BPS partition function, since we

do not consider the superpartner of the KK modes (or primary scalars on the CFT side),

SU(3)R ×U(1) = U(3)R symmetry generated by RX , RY , and RZ is preserved. Namely,
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the BPS partition function can be written in terms of the U(3)R character. The U(3)

character for the (m,n) representation is given by

χ
U(3)R
(m,n) = χ(m,n)(x, y, z), (2.101)

where χ(m,n)(a, b, c) is defined in (A.32). Then the KK modes with E = n ≥ 1 belong to

(n, 0) representation under U(3)R, and the single-particle BPS partition function is just

the summation of the character of the (n, 0) representation over n ≥ 1:

iKK
BPS =

∞∑
n=1

χ
U(3)R
(n,0) =

1

(1− x)(1− y)(1− z)
− 1. (2.102)

The BPS partition function is given by its plethystic exponential and therefore coincides

with that on the CFT side, (2.100).

The next problem is how to include the finite N corrections into this expression. We

will discuss the finite N corrections to the BPS partition function in the next chapter.

2.4.2 Superconformal index

Second, we consider the superconformal index in the large N limit. Unlike the BPS

partition function, we do not care about the coupling constant because the index does not

depend on the coupling constant.

CFT side

Now we consider the large N limit of the localization formula (2.58). This can be obtained

by the saddle point method. In order to use it, we need to perform the variable change

zi → eiθi and pick up the leading term in the large N limit from the expression. The

expression of the index after the variable change becomes

IU(N) =
1

N !

∫ π

−π

N∏
i=1

dθi
2π

exp

− ∞∑
n=1

1

n

∑
i̸=j

(1− isp(x
n)) cos[n(θi − θj)]−Nisp(x

n)


 ,

(2.103)

where an argument x in isp(x) stands for (q, y, u, v). If we take the large N limit, terms

with
∑

i,j is of order N2, and it is a leading order contribution to the index. On the

other hand, the term Nisp is of order N and can be neglected. Likewise, since the Weyl

factor 1/N ! is about exp(−N logN + N) in the large N limit, we also neglect it. After

the computation, we have to normalize the index so that I(x = 0) = 1.
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Then the index in the large N limit is given by

IU(N)
N≫1
≈

∫ π

−π

N∏
i=1

dθi
2π

exp

−
∞∑

n=1

1

n

∑
i̸=j

(1− isp(x
n)) cos[n(θi − θj)]

 . (2.104)

Now, we introduce the eigenvalue density ρ(θ) given by

ρ(θ) =
1

N

N∑
i=1

δ(θ − θi). (2.105)

Then, the summation
∑

i is replaced by the integration with the eigenvalue density:

∑
i

→ N

∫
dθρ(θ). (2.106)

Under this manipulation, the integration over θi is interpreted as a summation over a

configuration of the eigenvalue density ρ(θ). Therefore∏
i

dθi →
∏
x

dρ(x)dρ∗(x) ≡ DρDρ∗. (2.107)

More precisely, we should take into account the Jacobian related with θi → ρ(θ). However,

the Jacobian is irrelevant in the large N limit [35], and we neglect it.

We now have the following integral:

IU(N)
N≫1
≈

∫
DρDρ∗e−Seff , (2.108a)

Seff =
N2

2π

∫
dθdθ′ρ(θ)ρ∗(θ′)V (θ − θ′), (2.108b)

V (θ) = 2π
∞∑

n=1

1

n
(1− isp(x

n)) cos(nθ). (2.108c)

If we carry out the Fourier expansion for ρ(θ) as

ρ(θ) =
∞∑

n=0

ρne
−inθ, (2.109)

the effective action becomes

Seff = N2
∞∑

n=1

|ρn|2

n
(1− isp(x

n)). (2.110)

This effective action Seff has a critical point at ρn≥1 = 0, ρ0 = 1. Thus we can evaluate
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[jL, jR]
(RX ,RY ,RZ)
E Condition Contribution

[0, 0]
(n,0,0)
n n ≥ 1 qnχ(n,0)

[ 12 , 0]
(n− 1

2 ,
1
2 ,

1
2 )

n+ 1
2

n ≥ 1 −qn+ 1
2χJ

1χ(n−1,0)

[0, 12 ]
(n− 1

2 ,
1
2 ,−

1
2 )

n+ 1
2

n ≥ 1 −qn+1χ(n−1,1)

[0, 1]
(n−1,0,0)
n+1 n ≥ 1 qn+2χ(n−1,0)

[0, 0]
(n−1,1,1)
n+1 n ≥ 2 qn+1χ(n−2,0)

[ 12 ,
1
2 ]

(n−1,1,0)
n+1 n ≥ 2 qn+

3
2χJ

1χ(n−2,1)

[ 12 , 1]
(n− 3

2 ,
1
2 ,

1
2 )

n+ 3
2

n ≥ 2 −qn+ 5
2χJ

1χ(n−2,0)

[0, 12 ]
(n− 3

2 ,
3
2 ,

1
2 )

n+ 3
2

n ≥ 3 −qn+2χ(n−3,1)

[0, 1]
(n−2,1,1)
n+2 n ≥ 3 qn+3χ(n−3,0)

Table 2.10 The KK modes on S5 with ∆ = 0. This list contains only the highest
weight Cartan charges. Note that we have to sum over the full representations as the
character for SU(3)R and SU(2)jL since the index respects these symmetries. The
SU(3)R symmetry is generated by RX −RY and RY −RZ . The characters for these
symmetries are defined in (A.34) and (2.55).

the large N index by the Gaussian integral around this critical point. Note that the

classical contribution vanishes. After the Gaussian integral and normalizing the index so

that I(x = 0) = 1, we finally have

IU(∞) =
∞∏

n=1

1

1− isp(xn)
. (2.111)

Next, we will see this expression exactly coincides with the index calculated from the

Kaluza-Klein modes on S5 on the AdS side.

AdS side

The large N limit of the BPS partition function on the AdS side was obtained by the

summation of the KK modes on S5. The superconformal index is a generalization of the

BPS partition function by including fermionic fields, gauge fields, and their descendants.

This generalization is a superconformal completion in the context of the algebra. Thus we

can find the superconformal index for the KK modes by considering the superconformal

completion of [0, 0]
(n,0,0)
n . After the superconformal completion of [0, 0]

(n,0,0)
n we have

representations listed in Table 2.10 with its contribution to the superconformal index.

These representations are also found by the S5 compactification of type IIB string theory.

See the reference [34].
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Let us denote all contributions listed in Table 2.10 by sn:

sn = χ(n,0)q
n − χJ

1χ(n−1,0)q
n+ 1

2 − (χ(n−1,0) − χ(n−2,0))q
n+1

+ χJ
1χ(n−2,1)q

n+ 3
2 + (χ(n−1,0) − χ(n−3,1))q

n+2 − χJ
1χ(n−2,0)q

n+ 5
2 + χ(n−3,0)q

n+3

(2.112)

with n ≥ 1. Although we cannot take a negative value for (m,n) in χ(m,n) essentially,

we can do it formally by using the Weyl character formula, and this generates the correct

spectrum for the KK modes. Physically, terms including χ(m,n) with negative m or n

correspond to the equations of motions of the KK particles. Then the single-particle

index is given by

iKK
sp =

1

(1− q
3
2 y)(1− q

3
2 y−1)

∞∑
n=1

sn

=
1

1− uq
+

1

1− v
uq

+
1

1− 1
v q

− 1

1− q
3
2 y

− 1

1− q
3
2 y−1

− 1, (2.113)

The multi-particle index is just the plethystic exponential of the single-particle index

(2.113):

IKK
AdS = Pexp(iKK

sp ) =
∞∏

n=1

(1− q
3
2nyn)(1− q

3
2ny−n)

(1− unqn)(1− vn

un qn)(1− v−nqn)
, (2.114)

which exactly coincides with the large N index (2.111) on the CFT side.
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Chapter 3

Finite N Corrections to the

Superconformal Index

In this chapter, we discuss the finite N corrections to the BPS partition function and

the superconformal index following the author’s and his collaborators’ paper [22]. At the

beginning, let us review the fact that the KK index (2.114) partially reproduces the finite

N index on the CFT side as well. To see this, we expand (2.114) with respect to q as

IKK
AdS = 1 + χ(1,0)q − χJ

1 q
3
2 + (−χ(0,1) + 2χ(2,0))q

2 − χJ
1χ(1,0)q

5
2

+ (2− χJ
2 − χ(1,1) + 3χ(3,0))q

3 + (χJ
1χ(0,1) − 2χJ

1χ(2,0))q
7
2

+ (χ(0,2) + 2χ(1,0) − χJ
2χ(1,0) − 2χ(2,1) + 5χ(4,0))q

4 +O(q
9
2 ). (3.1)

Comparing it with the finite N index on the CFT side (2.59), (2.60) and (2.61), we find

the following fact:

ICFT
U(N) = IKK

AdS − χ(N+1,0)q
N+1 +O(qN+ 3

2 ). (3.2)

Our question is what is the corresponding object of this extra term −χ(N+1,0)q
N+1 + · · ·

on the AdS side.

On the CFT side, the meaning of this extra term is clear. Since we proved ICFT
U(∞) = IKK

AdS,

above relation is written into

ICFT
U(N) = ICFT

U(∞) − χ(N+1,0)q
N+1 +O(qN+ 3

2 ). (3.3)

Then, the extra term means that there are additional constraints for BPS operators. For

simplicity, let us consider the N = 2 case. We have following BPS trace operators

TrΦ, Tr(Φ2), Tr(Φ3), · · · , (3.4)

where Φ is one of the adjoint scalar fields X,Y,Z. In the large N limit, all these operators

are independent. However, in the N = 2 case, some operators in (3.4) are not independent
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operators. Since the gauge group is U(2), Ta = (1, σi) and hence we have a following

relation*1:

Tr(Φ3) =
3

2
Tr(Φ2)TrΦ− 1

2
(TrΦ)3. (3.5)

Thus, the operator Tr(Φ3) is not the independent operator, and we must not count this

contribution in the calculation of the index. This indicates that Tr(Φn) with n > N are

not independent operators, namely

Eop ≤ N, (3.6)

where Eop is the conformal dimension of the independent trace operators. Then we have

to subtract the contributions of operators, which can be written by other independent

operators, from the large N index to obtain the finite N index. More precisely, if we

consider all the combinations of the scalar fields X,Y,Z to construct Eop = 3 operators,

we find the following ten scalar operators of the form Tr(Φ3):

Tr(X3), Tr(X2Y), Tr(XY2), Tr(Y3), Tr(X2Z),

Tr(XZ2), Tr(Y2Z), Tr(YZ2), Tr(XYZ), Tr(Z3), (3.7)

where we ignored the order of the operators. These operators form the (3, 0) representation

of SU(3)R ⊂ SO(6)R. Summing the contributions of these operators, we obtain χ(3,0)q
3.

Hence, the extra term in (3.5) can be understood as the subtraction of the not-independent

operators from the large N limit.

Again, what is the corresponding object of the extra terms on the AdS side? To solve

this problem is the main theme of this thesis. Let us recall the parameter relation (2.91b).

Since the D3-brane tension T3 defined in (2.80) is proportional to ℓ−4
P , the relation (2.91b)

can be rewritten as

N = 2π2T3L
4. (3.8)

If N ≫ 1, TD3 ≫ L−4, that means a D3-brane on the AdS side is too heavy to participate

in the physics. On the other hand, if N is of order unity (finite N), TD3 ∼ L−4 and we

may need to include the effect of D3-branes on the AdS side.

Even if D3-branes appear on the AdS side in the finite N region, how do we realize

the condition (3.6)? The answer is to wrap D3-brane on a three-cycle in S5 [17]. Such

a D3-brane is called a giant graviton or simply a wrapped D3-brane. In this thesis, we

adopt the name “wrapped D3-brane.” Because the worldvolume of a wrapped D3-brane is

bounded by the maximal circle of S5, namely S3, we can reproduce the condition (3.6) on

the AdS side. Note that the energy of a wrapped D3-brane is proportional to its volume.

*1 This relation is the simple version of (2.41).
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Now the condition is regarded as

volume of a wrapped D3-brane ≤ Vol(S3
Max) = 2π2L3. (3.9)

On the AdS side, the conformal dimension is translated as the energy of the corresponding

object times the AdS radius L. Therefore, we obtain the condition

ED3

T3L
≤ 2π2L3 ⇐⇒ ED3 ≤ N, (3.10)

where ED3 is the energy of a wrapped D3-brane scaled by the AdS radius L. Therefore we

expect that the wrapped D3-branes may give the finite N corrections to the index. The

preliminary investigation is given by [19]. In what follows, we compute the finite N BPS

partition function and superconformal index on the AdS side by using wrapped D3-brane

as well as KK modes following [22]. After the calculation, we compare our results with

those on the CFT side.

3.1 BPS partition function

In this section, we reproduce the BPS partition function for the interacting N = 4 U(N)

SYM on the AdS side, because the calculation of the BPS partition function gives us

many instructive experiences for the index in spite of their ease. The reproduction of the

BPS partition function shows non-trivial evidence for the AdS/CFT correspondence. Our

strategy in the finite N region is to consider the wrapped D3-branes discussed above. This

section is also meant to be a preparation for the analysis of the superconformal index on

the AdS side that will be discussed in the next section.

The first problem is what shape of wrapped D3-branes contribute to the BPS partition

function. This problem is elegantly solved by Mikhailov in his beautiful paper [36]. He

showed that the any 1
8 -BPS wrapped D3-branes are given by an intersection between a

holomorphic surface in C3 and S5 ⊂ C3. Let be X, Y and Z be complex coordinates on

C3. Then S5 is expressed by

|X|2 + |Y |2 + |Z|2 = L2 = 1, (3.11)

where L is the radius equal to the AdS radius*2. Any holomorphic surfaces are given by

a holomorphic function f(X,Y, Z) on C3. Mikhailov claims that the worldvolume of any

wrapped D3-branes is given by a holomorphic surface

f(X,Y, Z) = 0 (3.12)

*2 We take the L = 1 unit here.
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imposed by (3.11). The Taylor expansion of the holomorphic function is

f(X,Y, Z) =
∞∑

p,q,r=0

cpqrX
pY qZr =

∞∑
n=0

∑
p+q+r=n

cpqrX
pY qZr. (3.13)

The value of coefficients cpqr determines the configuration of wrapped D3-branes. Then we

treat the coefficients cpqr as dynamical variables. To obtain the BPS partition function of

wrapped D3-branes, we need the quantization of wrapped D3-branes. This can be carried

out by the geometric quantization [29,37].

Since the overall factor is irrelevant for f and the configuration, we can regard coeffi-

cients as projective coordinates of CP∞. There are two complicated issues. One is that

there may be different holomorphic functions that give the same D3-brane configurations.

The other is that there may be holomorphic surfaces that do not intersect with S5. Even

if we take into account the issues, the result is the same as what we obtained by neglecting

the issues [29]. As a result, we can treat the coefficients as independent variables.

Thanks to the result of the geometric quantization, we can treat each term for fixed n

in (3.13) independently. Let us focus on the degree n holomorphic surface given by∑
p+q+r=n

cpqrX
pY qZr = 0. (3.14)

We define n-ple wrapped D3-branes as D3-branes represented by (3.14). Let ZD3
n be

contributions to the BPS partition function from n-ple wrapped D3-branes. Then the

BPS partition function on the AdS side can be written in the form of

ZAdS
N = ZKK

BPS

(
1 +

∞∑
n=1

ZD3
n

)
. (3.15)

ZKK
BPS is the BPS partition function in the large N limit on the AdS side

ZKK
BPS = Pexp(iKK

BPS), (3.16)

where iKK
BPS is given by (2.102).

In our CFT analysis, we have calculated the BPS partition function in the exact form

like (2.48) and (2.49). However, here we would like to calculate the finite N corrections

to the index in each power of n. Then it is convenient to define the q fugacity associated

with the energy E of wrapped D3-branes in the unit of AdS radius L. (E is the conformal

dimension of the corresponding operators on the CFT side.) Then the definition of the

BPS partition function (2.28) is modified as

Z(x, y, z; q) = tr(qHxRXyRY zRZ ), (3.17)
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Note that the fugacity q is redundant because of the BPS condition

E − (RX +RY +RZ) = 0. (3.18)

Although It is then not inherently necessary to define the BPS partition function, we can

see the finite N corrections due to the wrapped D3-branes by expanding the BPS partition

function with respect to q.

Let us consider the n = 1 case as a first non-trivial finite N correction to the BPS

partition function. In this case, the most general holomorphic surface is

aX + bY + cZ = 0. (3.19)

The phase space is thus CP 2 whose homogeneous coordinates are (a, b, c). Our strategy

that we take here is to treat Z = 0 as a ground state and others as its excitations. In

order to do it, we consider the D3-brane action (2.82) for the wrapped D3-brane located

Z = 0. The DBI action describes a 4d field theory on the worldvolume, and the CS action

comes from the couping to the background R-R 4-form field C4.

First, let us consider the DBI action. It is easier to work in the polar coordinates than

the Cartesian coordinates in C3. The metric of AdS5 × S5 with the polar coordinates is

ds210d = − cosh2 rdt2 + dr2 + sinh2 rdΩ2
3

+ dθ2 + sin2 θdϕ2 + cos2 θ[dψ2
1 + sin2 ψ1(dψ

2
2 + sin2 ψ2dψ

2
3)], (3.20)

where (t, r,Ω3) forms AdS5 while (θ, ϕ, ψ1, ψ2, ψ3) forms S5. Z = 0 means θ = 0 and

r = 0 in the polar coordinates. Because our purpose is to consider the fluctuations on the

wrapped D3-brane, we calculate the induced metric of the D3-brane and expand r and θ

around r = 0, θ = 0. The DBI action with the induced metric up to quadratic terms of r

and θ is then

SD3
DBI = −T3

∫
R×S3

d4x
√
−g0

×

1− 1

2

 ∑
W=X,Y,Z

(|Φ̇W |2 − |∇ΦW |2) + 3|ΦZ |2 − |ΦX |2 − |ΦY |2
 , (3.21)

where xa = (t, ψ1, ψ2, ψ3) is the worldvolume coordinates of the wrapped D3-brane and√
−g0 = sin2 ψ1 sinψ2 is its volume element. The D3-brane tension T3 is given by

T3 =
1

(2π)3ℓ4P
=

N

2π2L4
. (3.22)
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We introduced three complex scalar fields as

ΦZ = θeiϕ, |ΦX |2 + |ΦY |2 = r2. (3.23)

These fluctuation modes must carry the non-trivial spin charges jL and jR because scalar

fields ΦX and ΦY represent fluctuations of AdS5 directions. The BPS partition function

does not have contributions with the non-trivial spin charge, so we neglect them in the

calculation of the BPS partition function.

Next, we consider the CS action. Because the CS action describes the coupling to the

R-R 4-form field, the action is given by*3

SD3
CS =

∫
R×S3

C4 (3.24)

To find the explicit form of the R-R 4-form field C4, we can use the flux quantization

condition ∫
S5

dC4 = 2πN (3.25)

followed by (2.75). Using the polar coordinates, we find

C4 =
N

2π2
ϕ̇ cos4 θ

√
−g0dt ∧ dψ1 ∧ dψ2 ∧ dψ3. (3.26)

Expanding cos4 θ up to quadratic terms, the CS action becomes

SD3
CS =

N

2π2

∫
d4x

√
−g0ϕ̇(1− 2θ2)

=
N

2π2

∫
d4x

√
−g0ϕ̇+

iN

2π2

∫
d4x

√
−g0(Φ∗

ZΦ̇Z − ΦZΦ̇
∗
Z) (3.27)

In summary, the D3-brane action is given by the classical action and fluctuations:

SD3 = SD3
cl + SD3

fluc, (3.28a)

SD3
cl =

N

2π2

∫
d4x

√
−g0(ϕ̇− 1), (3.28b)

SD3
fluc =

N

2π2

∫
d4x

√
−g0

[
1

2
(|Φ̇X |2 − |∇ΦX |2 + |Φ̇Y |2 − |∇ΦY |2 + |Φ̇Z |2 − |∇ΦZ |2)

+
3

2
|ΦZ |2 −

1

2
(|ΦX |2 + |ΦY |2) + i(Φ∗

ZΦ̇Z − ΦZΦ̇
∗
Z)

]
. (3.28c)

Let us consider the classical contribution. The energy of the D3-brane corresponds to

*3 Other R-R fields are set to be zero.
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the potential term in the classical Lagrangian. Namely,

E =
N

2π2

∫
S3

d3x
√
−g0 = N, (3.29)

in the unit of the AdS radius. The wrapped D3-brane feels the R-R flux, so that the

wrapped D3-brane has a non-trivial angular momentum. In this configuration, this is just

RZ corresponding to the R-charge on the CFT side. This is calculated as

RZ =
∂Lcl

∂ϕ̇
=

N

2π2

∫
S3

d3x
√
−g0 = N. (3.30)

Therefore, the Z = 0 configuration satisfies the BPS condition E = RZ . This result is

consistent with Mikhailov’s claim. This information tells us that the classical contribution

to the BPS partition function is (qz)N .

Let us move on to the calculation of the fluctuation modes on the wrapped D3-branes.

As we mentioned below (3.23), the fluctuation modes related with ΦX and ΦY is irrelevant

for the BPS partition function, so we only take into account terms including ΦZ . The

equation of motion for ΦZ is

−Φ̈Z +∇2ΦZ + 3ΦZ + 4iΦ̇Z = 0, (3.31)

where ∇2 is the Laplacian on S3. If we assume the solution takes the form e−iEtYl using

the spherical harmonics Yl on S
3 we have the following second-order equations for E:

(E − l + 1)(E + l + 3) = 0, (3.32)

where we used the eigenvalue of the Laplacian given by −l(l + 2). The solution corre-

sponding to the BPS fluctuation modes is

E = l − 1, (3.33)

because (l−1)− (−l−3) = 2l+2 > 0. From the BPS condition (3.18) we find RX +RY +

RZ = l− 1. The fluctuation modes around Z = 0 must also be given by the holomorphic

function, and this holomorphic function has the form

Z ∝
∞∑

p,q=0

XpY q. (3.34)

According to [36], the time dependence of a holomorphic surface is

(X(t), Y (t), Z(t)) = (eitX(0), eitY (0), eitZ(0)). (3.35)

If we assume that the initial configuration for each mode is given by Z(0) = X(0)pY (0)q,
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the Z(t) at time t becomes

Z(t) = e−i(p+q−1)tX(t)pY (t)q. (3.36)

Now we recognize that the E = −1 at l = 0 comes from Z itself while l = p + q modes

come from XpY q*4. We denote this scalar mode as ϕ
(l)

: [0, 0]
(p,q,0)
l−1 . The single-particle

BPS partition function coming from these scalar modes on the wrapped D3-brane located

Z = 0 is then

iBPS
sp =

∞∑
p,q=0

qp+q−1z−1xpyq =
(qz)−1

(1− qx)(1− qy)
. (3.37)

Hence, the single-particle BPS partition function on the wrapped D3-brane is obtained as

ZD3
Z=0 = (qz)NPexp

(
(qz)−1

(1− qx)(1− qy)

)
. (3.38)

The Taylor expansion with respect to q is

iBPS
sp =

1

qz
+
(x
z
+
y

z

)
+O(q). (3.39)

Thus we have a negative energy mode and two zero energy modes. We call a negative

energy mode a tachyonic mode and call a zero energy mode a zero mode simply. The

existence of a tachyonic mode implies that there are lower energy modes than the Z = 0

configuration. Actually, there are smaller worldvolume configurations than Z = 0 since

it is a great circle of S5. Mathematically, the plethystic exponential of a tachyonic term

does not work as far as z < 1, q < 1. So we temporarily impose z > 1, q > 1 and treat the

plethystic exponential of a tachyonic term as follows:

Pexp

(
1

qz

)
=

1

1− (qz)−1
= − qz

1− qz
= −qzPexp(qz). (3.40)

In this treatment, the tachyonic term hence serves to raise the overall power of q by one.

Now that the first term of the finite N corrections is not (qz)N but −(qz)N+1. This can

be understood as follows. On the CFT side, there exist finite number independent chiral

primary operators in the finite N region, while there exist infinite number operators in the

large N limit. For U(2) theory as an example, we have only two independent operators

TrZ and TrZ2 for the 1
2 -BPS sectors. Then the difference between the BPS partition

function for the U(2) theory and the U(∞) theory starts from (qz)2+1 and the minus sign

can be interpreted as a subtraction of extra operators from the large N theory to become

the U(2) theory. On the other hand, we have no physical interpretation on the AdS side.

*4 Note that the scalar fields ΦW=X,Y,Z are proportional to the coordinates X,Y, Z.
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Up to now, we are only able to handle it mathematically.

The zero modes are also important. They never describe higher energy configurations

because of no q-dependence. Instead of this, they correspond to the degenerating ground

states other than Z = 0. Actually, the plethystic exponential of the zero modes contains

all degenerating states:

−(qz)N+1Pexp
(x
z
+
y

z

)
= − (qz)N+1

(1− x
z )(1−

y
z )

= −qN+1zN+1

(
1 +

x

z
+
x2

z2
+ · · ·

)(
1 +

y

z
+
y2

z2
+ · · ·

)
.

(3.41)

Indeed, this formula includes not only all degenerating ground states but also extra states

as an infinite series. This fact reflects that the configuration space is CP 2. We have to

consider other patches of CP 2 in addition to Z = 0. Actually, the patches including Z = 0

is spanned by coordinates (a/c, b/c) but never includes X = 0 and Y = 0 since we have

to set to be c = 0 to realize X = 0 and Y = 0.

The discussion for other patches is essentially the same as that of Z = 0. To obtain the

fluctuation modes coming from X = 0 and Y = 0, only we have to do is to exchange the

fugacities (x, y, z) symmetrically. Actually, this manipulation corresponds to the Weyl

reflection of the U(3)R symmetry. We call this manipulation the Weyl completion.

After the Weyl completion, the BPS partition functions corresponding to Y = 0 and

Z = 0 are given by

ZD3
X=0 = (qx)NPexp

(
(qx)−1

(1− qy)(1− qz)

)
, (3.42)

ZD3
Y=0 = (qy)NPexp

(
(qy)−1

(1− qz)(1− qx)

)
(3.43)

To cancel the extra terms in (3.41) using the zero modes in the single-particle partition

function for X = 0 and Y = 0, all we have to do is to sum up three patches. To see this

procedure does work, let us focus on the term −(qz)N+1
(
1 + x

z + x2

z2 + · · ·
)

in (3.41).

The extra terms in this expression are actually canceled by the term − (qx)N+1

1− z
x

in X = 0:

− (qz)N+1

1− x
z

= −qN+1(zN+1 + zNx+ · · ·+ zxN + xN+1 + xN+2z−1 + · · · ), (3.44)

− (qx)N+1

1− z
x

=
qN+1xN+1 x

z

1− x
z

= qN+1(xN+2z−1 + · · · ), (3.45)

where we performed the Taylor expansion of the denominator in a region
∣∣x
z

∣∣ < 1. Note

that this cancellation can always occur since the summation of two expressions is the Weyl
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character formula of U(2) ⊂ U(3)R:

− (qz)N+1

1− x
z

− (qx)N+1

1− z
x

= −qN+1(zN+1 + zNx+ · · ·+ zxN + xN+1). (3.46)

How to realize the cancellation between three patches, including Y = 0 ? In fact, the

summation over three patches also becomes the Weyl character formula of U(3)R:

− (qx)N+1

(1− y
x )(1−

z
x )

− (qy)N+1

(1− z
y )(1−

x
y )

− (qz)N+1

(1− x
z )(1−

y
z )

= −qN+1χ
U(3)R
(N+1,0)(x, y, z). (3.47)

Here we include all zero modes to respect the U(3)R symmetry between x, y, z.

Now the formula of the finite N corrections to the BPS partition function is the sum-

mation of each wrapped D3-brane BPS partition function over the three patches:

ZD3
1 = ZD3

X=0 + ZD3
Y=0 + ZD3

Z=0. (3.48)

We expect that this must give the finite N corrections to the BPS partition function

coming from the single wrapped D3-brane configurations. Likewise, in the evaluation of

the classical energy in the single wrapped D3-brane case, the classical energy of the double

wrapping configuration is 2N in the unit of the AdS radius, the contribution to the BPS

partition function starts from O(q2N ). Note that this evaluation is just the estimation.

There may be a contribution from tachyonic terms as in the single wrapping case, and

the first contribution of the double wrapping configurations may be a higher power than

q2N .

Now the finite N BPS partition function up to the single wrapping on the AdS side is

given by

ZAdS
N = ZKK

BPS(1 + ZD3
1 ), (3.49)

where we do not include the higher wrapping than the single wrapping. We expect that

the formula (3.49) is valid up to O(q2N+δ2), where δ2 is an effect of tachyonic terms on

the double wrapping.

Let us confirm the validity of this formula for small ranks, N = 1, 2. For simplicity, we

set x = y = z = 1 in the definition (3.17), or x = y = z = q in (2.28). On the CFT side,

expanding (2.48) and (2.49) up to some orders, we find

ZCFT
U(1) = 1 + 3q + 6q2 + 10q3 + 15q4 + 21q5 + 28q6 + 36q7 +O(q8), (3.50)

ZCFT
U(2) = 1 + 3q + 12q2 + 28q3 + 66q4 + 126q5 + 236q6

+ 396q7 + 651q8 + 1001q9 +O(q10). (3.51)
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On the other hand, our formula (3.49) gives

ZAdS
N=1 = (· · · identical terms with (3.50) · · · )− 216q7 +O(q8), (3.52)

ZAdS
N=2 = (· · · identical terms with (3.51) · · · ) + 539q9 +O(q10). (3.53)

From this comparison, we find δ2 = 5. A detail analysis suggests that δn may be given

by 1
2n(n + 3) for the 1

8 -BPS sector. Thus, our formula indeed gives the correct finite N

corrections up to the expected order. Although we could go on to the multiple wrapping,

next, we will apply the analysis for the single wrapping to the superconformal index.

Before the ending of this section, there are some comments for other BPS sectors. In

fact, the analysis for 1
2 -BPS and 1

4 -BPS sectors immediately obtained by setting x = y = 0

and z = 0, respectively. The effect of tachyonic terms may become δn = 1
2n(n + 1) and

1
2n(n+2) for the 1

2 -BPS and 1
4 -BPS sectors. It is worthwhile to mention that the analysis

for the 1
2 -BPS sector can be done in all orders of the fugacity, including the all wrapped

D3-branes. Hence we can exactly show that δn = 1
2n(n+ 1) for the 1

2 -BPS sector.

3.2 Superconformal index

This section aims to reproduce the superconformal index of the N = 4 U(N) SYM by

considering wrapped D3-branes on the AdS side, as we did in the last section for the BPS

partition function. We will calculate the finite N corrections to the superconformal index

by using the same technique in the previous section.

In the last chapter, we first calculated the BPS partition function on the AdS side.

Then only KK modes contributed to the BPS partition function. On the other hand,

there were contributions from not only the KK modes but also their superpartners in the

case of the superconformal index. Thus, in order to include all the contributions to the

superconformal, what we have to do is to perform the supersymmetric completion of the

primary scalar modes.

3.2.1 Supersymmetry on wrapped D3-branes

Let us consider the Z = 0 configuration of the wrapped D3-brane as in the BPS partition

function. According to the Mikhailov discussion [36], this configuration is 1
2 -BPS. We give

the conserved supercharges for Z = 0 as well as X = 0 and Y = 0 in Table 3.1.

The N = 4 supersymmetry is partially broken on the wrapped D3-brane Z = 0. In

particular, there is no P and K symmetries. The SO(6) R-symmetry is also broken to

SO(4)XY × SO(2)Z = SU(2)R × SU(2)R × U(1)Z because of a choice of the Z = 0

configuration. The Cartan generators are

R =
1

2
(RX −RY ), R =

1

2
(RX +RY ), RZ , (3.54)

respectively. The supercharge quartet of SO(6)R is then broken to two doublets of SU(2)R
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Configurations Supercharges

X = 0 Q3,4, Q1,2

Y = 0 Q2,4, Q1,3

Z = 0 Q2,3, Q1,4

Table 3.1 The preserved supercharges on X = 0, Y = 0, and Z = 0 configurations
of the wrapped D3-brane, respectively. Due to the loss of part of supercharges in
the N = 4 superalgebra, we have no longer P and K symmetries on the wrapped
D3-brane.

QI and QI RX RY RZ R R
Q4 1

2
1
2 − 1

2 0 1
2

Q3 1
2 − 1

2
1
2

1
2 0

Q2 − 1
2

1
2

1
2 − 1

2 0
Q1 − 1

2 − 1
2 − 1

2 0 − 1
2

Q1
1
2

1
2

1
2 0 1

2

Q2
1
2 − 1

2 − 1
2

1
2 0

Q3 − 1
2

1
2 − 1

2 − 1
2 0

Q4 − 1
2 − 1

2
1
2 0 − 1

2

Table 3.2 The R-charges of supercharges. From this, we can find that (Q2, Q3)

form a doublet in SU(2)R with RZ = 1
2
and (Q1, Q4) form a doublet in SU(2)R with

RZ = 1
2
on Z = 0 configuration. The plus sign of the RZ charge is consistent because

Z = 0 is not an anti-holomorphic surface but a holomorphic surface.

and SU(2)R as

QI
α : 4 ∈ SO(6)R → (2, 1) 1

2
⊕ (1, 2)− 1

2
∈ SU(2)R × SU(2)R × U(1)Z . (3.55)

We summarize R-charges of supercharges in Table 3.2.

Let A and Ȧ be the indicies of SU(2)R and SU(2)R, respectively. We define

QA
α = (QA=1

α , QA=2
α ) = (QI=2

α , QI=3
α ), (3.56a)

Q
α̇

Ȧ = (Q
α̇

Ȧ=1̇, Q
α̇

Ȧ=2̇) = (Q
α̇

I=1, Q
α̇

I=4). (3.56b)

Then the unbroken algebra among fermionic generators becomes

2{Sα
A, Q

B
β } = δαβ δ

B
A (H −RZ) + 2δBAJ

α
β + 2δαβR

B
A, (3.57a)

2{Qα̇

Ȧ, S
Ḃ

β̇ } = δα̇
β̇
δḂ
Ȧ
(H −RZ)− 2δḂ

Ȧ
J
α̇

β̇ − 2δα̇
β̇
R

Ḃ

Ȧ. (3.57b)

This can be derived from N = 4 supersymmetry algebra (2.51) by restricting the super-

charges to those on Z = 0 configuration.
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In the algebra (3.57), we can obtain the bounds

2{Sα=2
A=2, Q

B=2
β=2 } = E − 2jL − (2R+RZ) ≥ 0, (3.58)

2{Qα̇=1̇

Ȧ=1̇, S
Ḃ=1̇

β̇=1̇ } = E − 2jR − (2R+RZ) ≥ 0, (3.59)

The lower bound (3.59) is the same as our BPS bound (2.53), if we rewrite the R- and

R-charges by (3.54). So we construct a representation starting from the primary scalar

mode. Since we have already seen that the modes ϕ
(l)

indeed reproduce the BPS partition

function in the finite N region, it turns out that these modes correspond to the primary

scalar operators on the CFT side. On the AdS side, ϕ
(l)

should also be the superconformal

primary of the superconformal algebra. Thus we can construct a representation of the

algebra (3.57) starting from ϕ
(l)
.

3.2.2 Superconformal index of wrapped D3-brane

Since we have obtained the symmetry algebra (3.57), we can construct a representation

of modes on the wrapped D3-brane to find the superconformal index. Since ϕ
(l)

is the

superconformal primary, it satisfies

[Sα
A, ϕ

(l)
] = [S

Ȧ

α̇ , ϕ
(l)
] = 0. (3.60)

The superpartners are obtained by acting supercharges QA
α and Q

α̇

Ȧ to this scalar mode.

Let us adopt the notation [jL, jR]
(R,R,RZ)
E to represent these modes. Then we obtain

ϕ
(l)

: [0, 0]
( l
2 ,

l
2 ,−1)

l−1

QA
α−−→ [ 12 , 0]

( l−1
2 , l

2 ,−
1
2 )

l− 1
2

⊕ [ 12 , 0]
( l+1

2 , l
2 ,−

1
2 )

l− 1
2

, (3.61)

ϕ
(l)

: [0, 0]
( l
2 ,

l
2 ,−1)

l−1

Q
α̇
Ȧ−−→ [0, 12 ]

( l
2 ,

l−1
2 ,− 1

2 )

l− 1
2

⊕ [0, 12 ]
( l
2 ,

l+1
2 ,− 1

2 )

l− 1
2

. (3.62)

The second representation in the right hand side actually corresponds a null state. Thus

we have only the first representation. We denote these fermionic modes as ψ and χ.

Namely, we find

ϕ
(l) QA

α−−→ ψ(l) : [ 12 , 0]
( l−1

2 , l
2 ,−

1
2 )

l− 1
2

, ϕ
(l) Q

α̇
Ȧ−−→ χ(l) : [0, 12 ]

( l
2 ,

l−1
2 ,− 1

2 )

l− 1
2

. (3.63)

By repeating this process, we have a multiplet of the massless modes on the wrapped

D3-brane Z = 0. We summarize all the modes in Table 3.3 and the structure of the

multiplet in Fig. 3.1.

We have finished the classification of the massless modes on the wrapped D3-brane.

Next, let us compute the single-particle index of the worldvolume theory on the wrapped
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Modes E [jL] [jR] [R] [R] RZ

ϕ
(l)

l − 1 0 0 [ l2 ] [ l2 ] −1

χ(l) l − 1
2 0 [ 12 ] [ l2 ] [ l−1

2 ] − 1
2

F
(l)

l 0 0 [ l2 ] [ l−2
2 ] 0

ψ(l) l − 1
2 [ 12 ] 0 [ l−1

2 ] [ l2 ] − 1
2

w(l) l [ 12 ] [ 12 ] [ l−1
2 ] [ l−1

2 ] 0

ψ
(l)

l + 1
2 [ 12 ] 0 [ l−1

2 ] [ l−2
2 ] 1

2

F (l) l 0 0 [ l−2
2 ] [ l2 ] 0

χ(l) l + 1
2 0 [ 12 ] [ l−2

2 ] [ l−1
2 ] 1

2

ϕ(l) l + 1 0 0 [ l−2
2 ] [ l−2

2 ] 1

Table 3.3 The massless modes arising in the worldvolume theory on the wrapped
D3-brane Z = 0. [j] stands for a spin j representation of a corresponding SU(2).
Some of these modes saturate the BPS bound (3.59).

ϕ
↗ ↖

ψ χ
↗ ↖ ↗ ↖

F w F
↖ ↗ ↖ ↗

χ ψ
↖ ↗

ϕ

Fig. 3.1 The multiplet structure of the massless modes on the wrapped D3-brane
Z = 0. The right diagonal up arrow stands for the action of QA

α , and the left diagonal

up arrow stands for the action of Q
α̇

Ȧ.

D3-brane. Here it is convenient to rewrite (2.52) in terms of R and R as

I = tr[(−1)Fx∆qE+jRy2jLu2RvR−R−RZ ]. (3.64)

Then all we have to do is to sum up the contributions of the BPS modes of modes shown

in Table 3.3. From this table, we find the BPS modes shown in Table 3.4.

The single-particle index obtained from Table 3.4 is

iZ=0
sp = 1−

(1− v
q )(1− yq

3
2 )(1− y−1q

3
2 )

(1− uq)(1− v
uq)

. (3.65)

This is just the index of a U(1) theory realized on the Z = 0 wrapped D3-brane. Thus
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[jL, jR]
(R,R,RZ)
E Condition Range of R Contribution

[0, 0]
([ l2 ],

l
2 ,−1)

l−1 l ≥ 0 − l
2 → l

2 ql−1u2Rv
l
2−R+1

[0, 12 ]
([ l2 ],

l−1
2 ,− 1

2 )

l− 1
2

l ≥ 1 − l
2 → l

2 −qlu2Rv l−1
2 −R+ 1

2

[[ 12 ], 0]
([ l−1

2 ], l
2 ,−

1
2 )

l− 1
2

l ≥ 1 − l−1
2 → l−1

2 −ql− 1
2χJ

1u
2Rv

l
2−R+ 1

2

[[ 12 ],
1
2 ]

([ l−2
2 ], l−1

2 ,0)

l l ≥ 1 − l−1
2 → l−1

2 ql+
1
2χJ

1u
2Rv

l−1
2 −R

[0, 0]
([ l−2

2 ], l
2 ,0)

l l ≥ 2 − l−2
2 → l−2

2 qlu2Rv
l
2−R

[0, 12 ]
([ l−2

2 ], l−1
2 , 12 )

l+ 1
2

l ≥ 2 − l−2
2 → l−2

2 −ql+1u2Rv
l−1
2 −R− 1

2

Table 3.4 The BPS massless modes arising on the wrapped D3-brane. Summing up
all contributions shown here, we find the single-particle index for the fluctuations of
the wrapped D3-brane Z = 0.

the multi-particle index is the plethystic exponential of (3.65):

ID3
Z=0 = (v−1q)NPexp(iZ=0

sp ), (3.66)

where the factor (v−1q)N is the classical contribution obtained by (3.29) and (3.30). Again,

we have a tachyonic mode and zero modes in the single-particle index as in the case of

the BPS partition function:

isp =
1

v−1q
+

(
u

v−1
+
u−1v

v−1

)
+O(q

1
2 ). (3.67)

Actually, these modes come from the modes l = 0, 1 in [0, 0]
( l
2 ,

l
2 ,−1)

l−1 shown in the first line

of Table 3.4. Since these modes contributed to the BPS partition function, the situation

is the exactly same as the BPS partition function (3.39). Hence we take the analytic

continuation for the tachynic mode,

Pexp

(
1

v−1q

)
=

1

1− (v−1q)−1
= − v−1q

1− v−1q
= −v−1qPexp(v−1q) (3.68)

as (3.40), and perform the Weyl completion

ID3 = ID3
X=0 + ID3

Y=0 + ID3
Z=0. (3.69)

Note that this summation becomes the Weyl character formula of the SU(3)R character.

We expect that (3.69) gives the first non-trivial finite N corrections to the index on

the AdS side. Since we only consider the single wrapped D3-branes, there should be the

error coming from the double wrapping contributions. The energy of D3-branes of double
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wrapping is about 2N . Then the index on the AdS side is

IAdS
N = IKK(1 + ID3) +O(q2N ). (3.70)

We conjecture that this index is equivalent to that on the CFT side, namely

ICFT
U(N) = IKK(1 + ID3) +O(q2N ), (3.71)

where ICFT
U(N) is given by (2.58).

3.2.3 Comparison with the CFT side

Let us consider the comparison with the CFT side to check the correctness of our formula

(3.70) for N = 1, 2, 3. The results on the CFT side was already given in (2.59), (2.60) and

(2.61). Comparing these results with our formula (3.70), we find

IAdS
N=1 = (· · · identical terms with (2.59) · · · )

+ 2(1 + χ(2,2) + χ(6,0))q
6 +O(q

13
2 ), (3.72)

IAdS
N=2 = (· · · identical terms with (2.60) · · · )

+ 2(χ(0,4) + χ(2,0) + χ(4,2) + χ(8,0))q
8 +O(q

17
2 ), (3.73)

IAdS
N=3 = (· · · identical terms with (2.61) · · · )

+ 2(χ(0,2) + χ(2,4) + χ(4,0) + χ(6,2) + χ(10,0))q
10 +O(q

21
2 ). (3.74)

There results are consistent with our conjecture (3.71). Furthermore, the results suggest

that the relation of the index between the CFT side and the AdS side is

ICFT
U(N) = IKK(1 + ID3) +O(q2N+4) (3.75)

rather than (3.71). The shift q2N → q2N+4 of the error may be interpreted as the effect

of the tachyonic modes in the double wrapping contributions. Let us consider the specific

configuration given by Z2 = 0 as an example of a double wrapping configuration. Roughly

speaking, the finite N corrections coming from this configuration is the U(2) index with

the single-particle index (3.65). Thus we have

ID3
Z2=0 = (v−1q)2N

∮
|z|=1

dz

2πiz
Pexp[iZ=0

sp (z−1 + 2 + z)]

∼
∮
|z|=1

dz

2πiz

(v−1q)2N

(1− 1
v−1q )

2(1− 1
v−1q z)(1−

1
v−1q z

−1)
· · · ∼ (v−1q)2N+4 + · · · ,

(3.76)

and this is consistent with the shift q2N → q2N+4.
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In summary, we confirmed that our formula (3.69) and (3.70) does work at least for

N = 1, 2, 3, up to the double wrapping configurations. We expect that the formula works

even for arbitrary N . In the next chapter, we apply the formula to the S-fold theories to

find the BPS partition function and the superconformal index.
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Chapter 4

Four-Dimensional S-fold

Theories

It is well known that any N = 3 theories that have the weak coupling limit automatically

have the N = 4 supersymmetry. Then, an N = 3 theory that never has the N =

4 supersymmetry is called a genuine N = 3 theory. In the paper [38], Aharony and

Evtikhiev discussed some properties of genuine N = 3 theories under the assumption

that genuine N = 3 theories exist. After their work, Garcia-Etxebarria and Regalado

discovered explicit examples of genuine N = 3 theories [18] as a generalization of the

orientifold theory. We call these theories S-fold theories following [20].

In this chapter, we investigate the S-fold theories by using the AdS/CFT correspon-

dence. In particular, we compute the BPS partition function and the superconformal

index following the author’s and his collaborators’ papers [22, 23]. Since the S-fold theo-

ries have no weak coupling limit, namely no marginal deformation, we cannot use the free

field counting. Alternatively, we use the method developed in the last chapter to calculate

the finite N corrections to the index. After the calculation, we do the consistency check.

It was conjectured in [20] that some of the S-fold theories are equivalent to N = 4 SYM

with a certain gauge group. Then we can compare our result with that of the correspond-

ing N = 4 SYM. Also, recently Zafrir found the UV Lagrangian for some of the S-fold

theories and calculated the index [21]. So we compare our results with Zafrir’s result.

4.1 N = 4 orientifold theory

Before discussing the S-fold theories, we would like to review the orientifold and the

AdS/CFT correspondence regarding the orientifold.

An orientifold action in type II string theory is defined by I · Ω · J , where I is the sign

flip of coordinates of R9−p, Ω is the orientation reversal of the worldsheet of strings, and J

is the fermion number operator (−1)FL of left moving spacetime fermions for p = 2, 3, 6, 7,

otherwise the identity operator. Then an orientifold p-plane (Op-plane) is defined as a

fixed plane under the orientifold action. In other words, an Op-plane is a p+1-dimensional
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plane of type II string theory on R1,p ×R9−p/(I ·Ω · J). We consider the p = 3 case here.

Let us see the orientifold action for p = 3 in more detail. We consider an O3-plane is

embedded in R1,3 ×C3, where C3 is orthogonal to the O3-plane. Unlike the orbifold, the

orientifold acts on fields as well as coordinates. First, the orientifold acts on the transverse

coordinates X,Y, Z ∈ C3 as

(X,Y, Z) → (−X,−Y,−Z). (4.1)

Since SO(6)R is the rotation symmetry of the transverse direction of D3-branes, this

transformation can be realized by −1 ∈ SO(6)R.

Second, the orientifold acts on the massless fields in type IIB string theory as*1(
C2

B2

)
→
(
−C2

−B2

)
, (4.2)

and other bosonic fields are invariant. Therefore, the orientifold action can be realized by

taking M = −1 in the SL(2,R) transformation (2.87). Note that if we take account of

the flux quantization (2.75), SL(2,R) is broken to SL(2,Z).

4.1.1 AdS/CFT correspondence in the orientifold background

The AdS/CFT correspondence in the presence of the O3-plane is first discussed by Witten

[39]. To discuss it, we place N D3-branes parallel to O3-plane. The realized 4d theory on

D3-branes should be invariant under the orientifold action. Since the orientifold action has

the orientation reversal, we expect that the realized theory is N = 4 with the SO or Sp

type gauge group. If we take the near horizon limit, the geometry becomes AdS5×S5/Z2

due to the orientifold action (4.1).

Let H3 and F3 be the field strength of B2 and C2, respectively. In the presence of the

O3-plane, H3 and F3 are not globally defined 3-form fields but twisted 3-form fields. Then

these twisted 3-form fields are classified by the twisted sheaf cohomology

H3(S5/Z2, Z̃⊕ Z̃) = Z2 ⊕ Z2, (4.3)

where Z̃ is a twisted sheaf of integers. This is called the discrete torsion of 3-form fields

H3 and F3. The realizable theories on N D3-branes are now classified by Z2 ⊕ Z2.

Let us call the two types of discrete torsion θNS and θRR. The four possible models

correspond to values

(θNS, θRR) = (0, 0), (1, 0), (0, 1), (1, 1). (4.4)

It is clear that θNS and θRR form a doublet under SL(2,Z). Then a model with

*1 The massless fields of type IIB string theory are listed in Table 2.7.
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(θNS, θRR) Gauge group
(0, 0) SO(2N)
(1, 0) Sp(N)
(0, 1) SO(2N + 1)
(1, 1) Sp(N)

Table 4.1 A table of the classification of the discrete torsion (θNS, θRR) with corre-
sponding gauge groups.

(θNS, θRR) = (0, 0) corresponds to the N = 4 SO(2N) SYM because this theory is self

dual under SL(2,Z) (known as the Montonen-Olive duality [40]). Other models can also

be classified in this way. We summarized the correspondence between (θNS, θRR) and the

gauge group in Table 4.1.

In summary, we have found the following AdS/CFTs [39]:

4d N = 4 SO, Sp gauge theory ⇐⇒ Type IIB string theory on AdS5 × S5/Z2.

(4.5)

Pfaffian operators and wrapped D3-branes

In Chapter 3, we analyzed wrapped D3-branes on three-cycle in S5, and they indeed gave

the finite N corrections to the BPS partition function and the superconformal index. In

the orientifold theory, these wrapped D3-branes also have an essential role in finding the

finite N corrections.

Actually, Witten pointed out that a Pfaffian operator on the CFT side corresponds to

a wrapped D3-brane on a non-trivial three-cycle in S5/Z2 [39]. The Pfaffian operator is

defined as N adjoint scalars contracted by an epsilon tensor. In the N = 4 SO(2N) SYM,

this is given by

Pf(Φ) =
1

N !
ϵi1···i2N (Φ)i1i2 · · · (Φ)i2N−1i2N , (4.6)

where Φ is one of the adjoint scalars X,Y,Z. It is possible to generalize this definition,

including different types of fields, for example, ϵXY · · ·Z. Then we refer to this type of

operator as the Pfaffian type operator. We can also consider the composite operators of

Pfaffians and trace operators. From the definition (4.6), it turns out that the Pfaffian

operators exist only for N = 4 SO(2N) SYM.

Note that the square of the Pfaffian operator is the determinant operator*2: Pf(Φ) ∝
detΦ. This is reminiscent of Z2 structure. In fact, the wrapped D3-branes on three-cycle

*2 As we pointed out in subsection 2.1.3, the determinant operators can be written by trace operators.
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in S5/Z2 are classified by the third homology group

H3(S
3/Z2,Z) = Z2. (4.7)

Its charge is called the winding number (mod 2) of the wrapped D3-brane.

As a final comment in this subsection, the wrapped D3-branes on trivial cycles are

always present because they correspond to the trace operators on the CFT side [19]. For

example, the double wrapping is allowed to exist because they have a trivial charge of

H3(S
5/Z2,Z) = Z2. This implies that the first non-trivial finite N corrections come from

the double wrapping for N = 4 SO(2N+1) and Sp(N) SYMs. This is beyond our purpose

in this thesis, and we leave it for future work.

4.1.2 BPS partition function

Now, we give a short explanation about the BPS partition function of the interacting

N = 4 SO(N) and Sp(N) SYMs. The calculation on the AdS side will be given later.

1
2 -BPS partition function

First let us consider the 1
2 -BPS partition function. The single-particle 1

2 -BPS partition

function is given by the Coulomb branch operators of the theory, namely the Casimir

operators. The Casimir operators of SO(2N + 1) and Sp(N) group have a conformal

dimension 2, 4, · · · , 2N . They correspond to the 1
2 -BPS operators {TrZ2n|n = 1, · · · , N}.

Thus the 1
2 -BPS partition function is

Z
1
2 -BPS

SO(2N+1)(z) = Z
1
2 -BPS

Sp(N) (z) = Pexp

(
N∑

n=1

x2n

)
=

N∏
n=1

1

1− x2n
. (4.8)

The equality of SO(2N + 1) and Sp(N) is consistent with the SL(2,Z) duality. This

result is the same as the U(N) 1
2 -BPS partition function with the replacement z → z2.

Therefore, the grand partition function is also obtained by the same replacement for (2.47)

as follows:

Ξ
1
2 -BPS

SO(odd)(z; t) = Ξ
1
2 -BPS

U(∗) (z2; t) =
∞∏

n=0

1

1− tz2n
≡ Pexp

(
IZ2
m=0(z)t

)
, (4.9)

where the single-particle grand partition function IZ2
m=0 is given by

IZ2
m=0(z) =

1

1− z2
=

1

2

(
1

1− z
+

1

1 + z

)
. (4.10)

On the other hand, N = 4 SO(2N) SYM has not only trace operators but also a Pfaffian

operator Pf(Z), the conformal dimension of them are 2, 4, · · · , 2N − 2 and N . Note that

the trace operator TrZ2N is constructed by Pf(Z)2, it is not the independent operator,
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and we do not consider it. Then the 1
2 -BPS partition function is obtained by removing a

factor (1− x2N )−1 and multiplying a factor (1− xN )−1 to (4.8). Thus we have

Z
1
2 -BPS

SO(2N)(z) =
1− x2N

1− xN
Z

1
2 -BPS

SO(2N+1)(z) = (1 + xN )Z
1
2 -BPS

SO(2N+1)(z). (4.11)

The latter part, xNZ
1
2 -BPS

SO(2N+1)(z), is the contributions from the Pfaffian type operators.

xN is the contribution from Pf(Z) and Z
1
2 -BPS

SO(2N+1)(z) receives the contributions from other

trace operators. Now we can immediately find the grand partition function from (4.9):

Ξ
1
2 -BPS

SO(even)(z; t) =
∞∑

N=0

Z
1
2 -BPS

SO(2N)(z)t
N =

∞∑
N=0

(1 + xN )Z
1
2 -BPS

SO(2N+1)(z)t
N

= Ξ
1
2 -BPS

SO(odd)(z; t) + Ξ
1
2 -BPS

SO(odd)(z; zt) ≡ Pexp(IZ2
m=0(z)t) + Pexp(IZ2

m=1(z)t),

(4.12)

where

IZ2
m=1(z) =

z

1− z2
=

1

2

(
1

1− z
− 1

1 + z

)
. (4.13)

In summary, the 1
2 -BPS partition function can be unified into the following form

Ξ
1
2 -BPS

SO(∗) (z; t) =
∑
pm=0

Pexp(IZ2
m (z)t), (4.14)

where m = 0, 1. p = 0 corresponds to the trivial discrete torsion, and p = 1 corresponds

to the non-trivial torsion.

1
8 -BPS partition function

Next, let us consider the 1
8 -BPS partition function. In the interacting theory, we can find

the 1
8 -BPS partition function by considering the chiral ring. Then, all the adjoint scalars

are commutable, and they are valued in the Cartan subgroup of the gauge group. Thus

the 1
8 -BPS partition function should be the invariant series under the Weyl group.

First, let us see the SO(2N + 1) case. Then we choose the Cartan basis as

X = diag(ix1σ2, · · · , ixNσ2, 0), σ2 =

(
0 −i

i 0

)
, (4.15)

where the last component 0 is a 1× 1 block matrix and others are 2× 2 block matrices. Y

and Z have the same structure. The Weyl transformation contains a sign flip xk → −xk
(k = 1, · · · , N) as well as the permutation of xk’s. This sign flip is realized by SO(3) ⊂
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SO(2N + 1), whose action is xk
−xk

0

 SO(3)−−−−→

 −xk
xk

0

 . (4.16)

To make the BPS partition function invariant under this sign flip and the permutation,

we modify the single grand particle index of U(N) theory I(x, y, z) as follows:

I(x, y, z) → 1

2
(I(x, y, z) + I(−x,−y,−z)) ≡ IZ2

m=0(x, y, z). (4.17)

Then the grand partition function is

Ξ
1
8 -BPS

SO(odd)(x, y, z; t) = Pexp(IZ2
0 (x, y, z)t). (4.18)

When x = y = 0, it reproduces the 1
2 -BPS grand partition function of N = 4 SO(2N +1)

SYM. The 1
8 -BPS partition function of Sp(N) is the same as (4.18).

Next let us see the SO(2N) case. In this case, the Cartan valued adjoint scalar fields

are given by removing the last zero component from (4.15). Thus, there is no longer

an SO(3) transformation like (4.16). However, we can perform an SO(4) transformation

whose action is

(xk, xl) → (−xk,−xl) (4.19)

for arbitrary xk and xl with k ̸= l. Since this transformation flips the sign of two variables

simultaneously, the single-particle grand partition function does not have to be invariant

under (4.19). Therefore, in addition to IZ2
m=0, we can consider

IZ2
m=1 =

1

2
(I(x, y, z)− I(−x,−y,−z)). (4.20)

So we find the 1
8 -BPS partition function for N = 4 SO(2N) SYM:

Ξ
1
8 -BPS

SO(even)(x, y, z; t) = Pexp(IZ2
0 (x, y, z)t) + Pexp(IZ2

1 (x, y, z)t). (4.21)

Again, setting x = y = 0, it reproduces the 1
2 -BPS grand partition function (4.12).

In summary, similarly to the 1
2 -BPS grand partition function (4.14), we can write the

1
8 -BPS partition function for N = 4 SO(N) and Sp(N) SYMs as

Ξ
1
8 -BPS

SO(∗) (x, y, z; t) =
∑
pm=0

Pexp(IZ2
m (x, y, z)t). (4.22)

The large N limit of the BPS partition function can be obtained by the formula (2.99).
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The result is

Z
1
8 -BPS

SO(∞)(x, y, z) = Pexp(IZ2
0 (x, y, z)− 1). (4.23)

It seems that the IZ2
m=1 is absent in the large N limit. The reason is as follows. In the large

N limit, the number of indices in the epsilon tensor is infinite. So we cannot define the

Pfaffian operators. In other words, the conformal dimension of the Pfaffian operator is of

order N . Then they decouple from the BPS partition function in N → ∞. That is why

the corresponding term IZ2
m=1 does not appear. This is consistent because the wrapped

D3-branes are not the physical objects in the large N limit because their mass is of order

N .

Consistency check

Before going on, let us do a consistency check of our result (4.22). This can be done by

using the group theory isomorphisms. We know the following isomorphisms:

SO(2) ≃ U(1), SO(3) ≃ SU(2), SO(4) ≃ SU(2)× SU(2), SO(6) ≃ SU(4). (4.24)

Thus the BPS partition functions should be the same as those of theories with these gauge

groups. The BPS partition functions of these gauge theories are obtained by (4.22), and

we can check the following facts:

Z
1
8 -BPS

SO(2) = Z
1
8 -BPS

U(1) , Z
1
8 -BPS

SO(3) = Z
1
8 -BPS

SU(2) , Z
1
8 -BPS

SO(4) = (Z
1
8 -BPS

SU(2) )
2, Z

1
8 -BPS

SO(6) = Z
1
8 -BPS

SU(4) .

(4.25)

4.1.3 Superconformal index

Let us consider the superconformal index for N = 4 SO(N) SYM as well. The calculation

of the index on the CFT side can be performed by the free field counting. The different

point of the index from the N = 4 U(N) SYM is only the gauge group. Thus, all we have

to do is to replace the character of the adjoint representation and the Haar measure by

those of SO(N).

The characters of the adjoint representation of SO(2N) and SO(2N + 1) are given by

χ
SO(2N)
adj (za) = N +

∑
a̸=b

za
zb

+
∑
a>b

(
zazb +

1

zazb

)
, (4.26)

χ
SO(2N+1)
adj (za) = N +

∑
a̸=b

za
zb

+
∑
a>b

(
zazb +

1

zazb

)
+

N∑
a=1

(
za +

1

za

)
, (4.27)

where za (a = 1, · · · , N) are the gauge fugacities. The Haar measure can be found from

the formula (1.83).
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For convenience, we give examples of the index up to rank three.

ISO(2) = 1 + χ(1,0)q − χJ
1 q

3
2 + (χ(2,0) − χ(0,1))q

2 + (χ(3,0) − χ(1,1) + 1− χJ
2 )q

3 +O(q
7
2 ),

ISO(4) = 1 + 2χ(2,0)q
2 − 2χJ

1χ(1,0)q
5
2 + (2− 2χ(1,1))q

3 + 2χJ
1 (χ(0,1) + χ(2,0))q

7
2

+ (−2χJ
2χ(1,0) + χ(0,2) + χ(2,1) + 3χ(4,0))q

4 − 4χJ
1 (χ(1,1) + χ(3,0))q

9
2

+ (χJ
2 (3χ(0,1) + 3χ(2,0)) + χ(0,1) − 2χ(1,2) + χ(2,0) − 4χ(3,1))q

5 +O(q
11
2 ),

ISO(6) = 1 + χ(2,0)q
2 − χJ

1χ(1,0)q
5
2 + (1− χ(1,1) + χ(3,0))q

3 + χJ
1χ(0,1)q

7
2

+ (χ(0,2) + χ(1,0) − χJ
2χ(1,0) − χ(2,1) + 2χ(4,0))q

4 + χJ
1 (−χ(1,1) − χ(3,0))q

9
2

+ (−χ(0,1) + 2χJ
2χ(0,1) + 2χ(2,0) − χ(3,1) + χ(5,0))q

5

+ (χJ
1 (χ(0,2) + χ(1,0) + χ(2,1))− χJ

3χ(1,0))q
11
2

+ (1− 2χ(1,1) + χ(3,0) − χ(4,1) + 3χ(6,0) + χJ
2 (−1− 2χ(1,1) − χ(3,0)))q

6

+ (χJ
1 (−χ(0,1) + χ(2,0) − 2χ(5,0)) + χJ

3 (2χ(0,1) + χ(2,0)))q
13
2

+ (−χJ
4χ(1,0) + χJ

2 (2χ(0,2) + 2χ(1,0) + χ(2,1))

+ χ(1,0) + χ(4,0) − 2χ(5,1) + 2χ(7,0))q
7 +O(q

15
2 ), (4.28)
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ISO(3) = 1 + χ(2,0)q
2 − χJ

1χ(1,0)q
5
2 + (1− χ(1,1))q

3 + χJ
1 (χ(0,1) + χ(2,0))q

7
2

+ (−χJ
2χ(1,0) + χ(4,0))q

4 +O(q
9
2 ),

ISO(5) = 1 + χ(2,0)q
2 − χJ

1χ(1,0)q
5
2 + (−χ(1,1) + 1)q3 + χJ

1 (χ(2,0) + χ(0,1))q
7
2

+ (2χ(4,0) + χ(0,2) − χJ
2χ(1,0))q

4 − χJ
1 (−2χ(1,1) − 2χ(3,0))q

9
2

+ (2χJ
2χ(0,1) − χ(0,1) − χ(1,2) + χ(2,0) + χ(5,0))q

5

+ (−χJ
3χ(1,0) + χJ

1 (2χ(0,2) + χ(1,0) + 4χ(2,1) + 2χ(4,0)))q
11
2

+ (χJ
2 (−1− 4χ(1,1) − 3χ(3,0))− 1 + χ(0,3) − 3χ(1,1) + χ(2,2) + χ(4,1)

+ 2χ(6,0))q
6 +O(q

13
2 ),

ISO(7) = 1 + χ(2,0)q
2 − χJ

1χ(1,0)q
5
2 + (1− χ(1,1))q

3 + χJ
1 (χ(0,1) + χ(2,0))q

7
2

+ (−χJ
2χ(1,0) + χ(0,2) + 2χ(4,0))q

4 + χJ
1 (−2χ(1,1) − 2χ(3,0))q

9
2

+ (χJ
2 (2χ(0,1) + χ(2,0))− χ(1,2) + 2χ(2,0) − 2χ(3,1))q

5

+ (−χJ
3χ(1,0) + χJ

1 (2χ(0,2) + χ(1,0) + 4χ2,1) + 2χ(4,0)))q
11
2

+ (χJ
2 (−1− 4χ(1,1) − 3χ(3,0)) + χ(0,3) − 3χ(1,1) + 2χ(2,2) + χ(4,1) + 3χ(6,0))q

6

+ (χJ
3 (2χ(0,1) + 2χ(2,0)) + χJ

1 (−χ(0,1) − 5χ(1,2) − χ(2,0) − 6χ(3,1) − 4χ(5,0)))q
13
2

+ (χJ
4 (−χ(1,0)) + χJ

2 (5χ(0,2) + 4χ(1,0) + 8χ(2,1) + 4χ(4,0)) + 3χ(0,2) + 4χ(1,0)

− 2χ(1,3) + 4χ(2,1) − 3χ(3,2) + 3χ(4,0) − 4χ(5,1))q
7 +O(q

15
2 ). (4.29)

Finally, we calculate the index in the large N limit. Like the BPS partition function,

the large N index is the same for SO(2N) and SO(2N +1) because we cannot distinguish

these two theories in N → ∞. The procedure of the calculation process is almost the

same as that of the U(N) theory: the saddle point method. This analysis is given in [19],

and the result is

ICFT
SO(∞) = Pexp(iSO(∞)

sp ), iSO(∞)
sp =

1

2
iKK
sp +

(1− isp(q, y, u, v))
2

4(1− isp(q2, y2, u2, v2))
− 1

4
, (4.30)

where iKK
sp is defined in (2.113), and isp is defined in (2.57).

4.2 S-fold theories

In this section, we would like to define the S-fold theories and investigate the properties

of the S-fold theories.

An S-fold action is defined as the Zk generalization of the orientifold action [18]. First,
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the S-fold action acts on the coordinates as

(X,Y, Z) → (ω−1
k X,ωkY, ωkZ), ωk = exp

(
2πi

k

)
. (4.31)

This is actually the Zk generalization of (4.1). This transformation is realized by

exp

(
2πi

k
S

)
∈ SO(6)R, S = −RX +RY +RZ , (4.32)

where RX , RY , and RZ are the SO(6)R Catran generators defined by (2.1).

To define the S-fold action for massless fields in type IIB string theory, it is convenient

to regard the type IIB supergravity with the axio-dilaton field τ as the SL(2,R)/U(1)

non-linear sigma model [41,42]. In this formalism, we introduce an SL(2,R)-valued scalar

field

V =

(
vx2 vy2
vx1 vy1

)
∈ SL(2,R). (4.33)

It is also useful to define complex scalar fields va (a = 1, 2) as

va = vxa + ivya (4.34)

The scalar field V is transformed under the global SL(2,R) symmetry and the local

U(1) ≃ SO(2) symmetry as

V → gV, g ∈ SL(2,R), (4.35)

V → V h−1, h ∈ SO(2). (4.36)

Although there are unphysical degrees of freedom in the scalar field V in this formalism,

we can remove them by the gauge fixing of the local U(1) symmetry. The axio-dilaton

field is given by the gauge invariant combination

τ =
v2
v1
. (4.37)

Let V̂ be the expectation value of V . It breaks SL(2,R) × U(1) into U(1)Y . This

symmetry is determined by the equation

V̂ = gV̂ h−1. (4.38)

This global U(1)Y symmetry plays a significant role in the S-fold action. The fermionic

fields in type IIB string theory are transformed non-trivially under U(1)Y , while the

bosonic fields are invariant. We summarize the charge of each field under U(1)Y in Table

4.2.
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fields Y
va=1,2 −2
λML −1
χR −3

Table 4.2 U(1)Y charges of each massless field of type IIB string theory. We only
show the fields with non-trivial U(1)Y charges.

k τ
2 any

3 e
πi
3

4 i

6 e
2πi
3

Table 4.3 The value of τ for each S-fold theory. In k = 2, τ can take any value, and
this is consistent to the orientifold theories.

The non-trivial U(1)Y charge of the gravitino λML implies that the supercharges also

carry the non-trivial U(1)Y charge. Let Y be the U(1)Y generator. The commutation

relation between Y and QI , which generates the N = 4 supersymmetry on the CFT side,

is given by

[Y,QI ] = −QI . (4.39)

If we take into account the flux quantization for the 3-form fluxes (2.75), U(1)Y is broken

to its discrete subgroup Zk. Let qa, a = 1, 2 be the magnetic charges of the (p, q)-string

associated with the 3-form fields:

q1 =
1

2π

∫
H3, q2 =

1

2π

∫
F3, (4.40)

where the H3 and F3 are the 3-form fluxes associated with the R-R 2-form fields C2 and

B2. Then the quantized charge qC = v̂aq
a form the charge lattice with modulus τ = v̂2/v̂1.

Now the charge lattice must be invariant under Zk. k = 2 is possible for the generic value

of τ while k = 3, 4, 6 are possible only for

τ = exp

(
iπ
k − 2

k

)
. (4.41)

We classify the value of τ in Table 4.3 and show an example of the invariant charge lattice

for k = 3 in Fig. 4.1.
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Re

Im

C

v1

v2

Fig. 4.1 An example of the invariant string charge lattice defined by qC = v̂aq
a for

k = 3. To make the lattice invariant under Z3, the modulus τ = v̂2/v̂1 must be e
πi
3

fixed.

Now we define the Zk S-fold action R for k = 3, 4, 6 as [18]

R = exp

[
2πi

k

(
S − Y

2

)]
, (4.42)

where S is defined in (4.32).

4.2.1 AdS/CFT correspondence in the S-fold background

Let us consider a stack of N parallel D3-branes in the S-fold background defined by

R1,3×C3/R, where R is the S-fold action (4.42). We define a 4d rank N Zk S-fold theory

as the worldvolume theory on the D3-branes [18]. If we take the near horizon limit, the

geometry becomes AdS5 × S5/Zk due to the S-fold action (4.31).

As in the orientifold case, there are several variants of S-fold theories due to the discrete

torsion. In the S-fold background, the discrete torsion associated with the 3-form fluxes

is given by [19,20]

H3(S5/Zk, Z̃⊕ Z) =


Z3 for k = 3,

Z2 for k = 4,

Z1 for k = 6.

(4.43)

For k = 3, the torsion group is Z3, so we have three variants about the Z3 S-fold. The-

ories corresponding to non-trivial elements of Z3 are related by the S-duality, as in the

orientifold case. For k = 4, there are two variants. However, for k = 6, there is only one

variant. We summarize this knowledge in Table 4.4.

Then an S-fold theory is specified by the value of k, N , and discrete torsion. We denote
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k discrete torsion # of variants
2 Z2 ⊕ Z2 4
3 Z3 3
4 Z2 2
6 Z1 1

Table 4.4 A table for the discrete torsion for S-fold theories. As in the orientifold
case, the two variants with the non-trivial torsion in the Z3 S-fold are related by the
S-duality.

the theory by S(N, k, p), where p = 0, 1. p = 0 corresponds to the trivial torsion, and

p = 1 corresponds to a non-trivial torsion. The AdS/CFT correspondence regarding S-fold

theories is [19,20]

4d Zk S-fold theory ⇐⇒ Type IIB string theory on AdS5 × S5/Zk. (4.44)

for k = 3, 4, 6.

Like the orientifold case, there are also Pfaffian-like operators in the S-fold theories with

the trivial torsion, called the generalized Pfaffian operators [20]. Corresponding objects

are the wrapped D3-branes on a non-trivial three-cycle in S5/Zk, and they are classified

by the third homology group

H3(S
5/Zk,Z) = Zk. (4.45)

Corresponding charge to Zk is called the winding number of wrapped D3-branes. These

wrapped D3-branes give the finite N corrections to the index [19].

4.2.2 Properties of S-fold theories

In this subsection, we review some remarkable properties of S-fold theories summarized

as follows:

• S-fold theories have N = 3 supersymmetry [18].

• S-fold theories have no marginal deformation [18, 38]*3. Then, the Lagrangian of

S-fold theories is not known.

• It was conjectured that the rank one and two S-fold theories are equivalent to N = 4

SYMs with rank one and two gauge groups [20] (Aharony-Tachikawa conjecture).

Let us see these properties in more detail below.

*3 Precisely speaking, marginal deformations that do not respect N = 3 supersymmetry are not
prohibited. In fact, the marginal deformation that breaks N = 3 to N = 1 was discussed in [21].
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RX RY RZ S Y S − Y/2

Q1
1
2

1
2

1
2

1
2 1 0

Q2
1
2 − 1

2 − 1
2 − 3

2 1 −2
Q3 − 1

2
1
2 − 1

2
1
2 1 0

Q4 − 1
2 − 1

2
1
2

1
2 1 0

Table 4.5 S and Y charges of supercharges of an N = 4 supersymmetry, where
S = −RX + RY + RZ . If we impose the Zk identification generated by (4.42) for

supercharges, Q2 and Q2 are projected out, and an N = 3 supersymmetry is realized.
The removed charge is just a convention, and if we use another convention for S,
corresponding another supercharge would be removed.

N = 3 supersymmetry

The S-fold theories are obtained by imposing the invariance under the S-fold action (4.42)

on the worldvolume theory on N D3-branes, namely N = 4 SYM. The behavior of the

N = 4 supercharges QI are shown in Table 4.5. From this table, if we impose the

S-fold invariance on supercharges, we see that Q2 is projected out. Then the N = 3

supersymmetry is realized in S-fold theories.

No marginal deformation

It is known that genuine N = 3 theories have no marginal deformation [38]. Thus the

S-fold theories also have no marginal deformation, and it was shown in [18]. Then, the

S-fold theories are not connected to a free theory, and the Lagrangian is not known. This

fact is consistent with the fixing of the complex coupling constant τ defined in (2.15).

Note that marginal deformations that do not respect N = 3 supersymmetry are allowed.

Aharony-Tachikawa conjecture

It is known that if a genuine N = 3 theory has a Coulomb branch operator with di-

mension one or two, the N = 3 supersymmetry is non-trivially enhanced to the N = 4

supersymmetry [38]. This is also the case for some of the S-fold theories. To see this, let

us investigate the Coulomb branch operators of S-fold theories following [20].

As we saw in subsection 2.1.2, the Coulomb branch operators parametrize the Coulomb

branch of a theory. In N = 4 U(N) SYM, the Coulomb branch is C/WU(N), where

WU(N) = SN is the Weyl group of U(N). From the viewpoint of the N D3-branes

system, the Weyl transformation is regarded as the exchanging of N D3-branes located

at zi ∈ C ⊂ C3 (i = 1, · · · , N). In the S-fold case, C3 is replaced by C3/Zk, and the Weyl
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transformation is given by [20]

(zi, zj) ↔ (zj , zi), (4.46a)

(zi, zj) → (ωkzi, ω
−1
k zj), (4.46b)

zi → ωr
kzi, (4.46c)

where r is a divisor of k. r = k corresponds to the trivial discrete torsion and r ̸= 0

corresponds to a non-trivial torsion. Now the first transformation is SN generated by the

symmetric polynomials
∑

σ∈SN
zσ(i). However, in order to make polynomials invariant

under (4.46b) and (4.46c) as well, we need zi → zki . We also find that (z1z2 · · · zN )l is

invariant, where l = k/r. Thus the dimension of Coulomb branch operators is [20]

k, 2k, 3k, · · · , (N − 1)k;Nl. (4.47)

Let us consider the non-trivial supersymmetry enhancement of S-fold theories. From

the list of the dimension of the Coulomb branch operators (4.47), we find that the super-

symmetry enhancement always occurs for k = 2, and this is consistent with the orientifold.

We also find that for N = 1, 2 with k = 3, 4, 6 and l = 1, or equivalently r = k there

exists the Coulomb branch operators with dimension two. All these S-fold theories have

the trivial discrete torsion. Thus, we expect that (N, k, l) = (1, k, 1), (2, k, 1) cases are

equivalent to certain N = 4 theories*4. In terms of the notation S(N, k, p) introduced in

subsection 4.2.1, (1, k, 1), (2, k, 1) cases are S(1, k, 0) and S(2, k, 0). Since it is believed

that any N = 4 theory is an N = 4 SYM, these S-fold theories may be equivalent to

certain N = 4 SYM.

For N = 1, namely the rank one case, the only possible gauge group is U(1). So it is

expected that a rank one S-fold theories with trivial torsion are equivalent to the N = 4

Maxwell theory. In order to determine the gauge group of rank two case, let us focus on

the dimension of all independent single-particle Coulomb branch operators:

ECBO =


2, 3 for k = 3,

2, 4 for k = 4,

2, 6 for k = 6.

(4.48)

These spectra agree with those of SU(3), SO(5), and G2, respectively. Therefore, it is

expected that rank two S-fold theories with the trivial torsion are equivalent to N = 4

SYMs with the gauge group SU(3), SO(5), and G2 (shown in Table 4.6). This was con-

jectured by Aharony and Tachikawa in [20], so we call this conjecture Aharony-Tachikawa

(AT) conjecture. We will confirm AT conjecture by using the BPS partition function and

the superconformal index.

*4 We can always construct the Coulomb branch operators with dimension two from those with di-
mension one.
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theory G ECBO

S(1, k, 0) U(1) 1
S(2, 3, 0) SU(3) 2,3
S(2, 4, 0) SO(5) 2,4
S(2, 6, 0) G2 2,6

Table 4.6 A list of the gauge group and corresponding S-fold theories. For rank one,
all S-fold theories with trivial torsion are enhanced to the N = 4 Maxwell theory.
For the rank two case, we can obtain the corresponding gauge group by comparing
the spectrum of the Coulomb branch operators.

4.3 BPS partition function of S-fold theories

In this section, we find the BPS partition function of S-fold theories by generalizing the

results of N = 4 SO(N) SYM. This analysis is not on the AdS side but the CFT side. This

is possible even though the Lagrangian is unknown because the BPS partition function

is constructed as the invariant polynomial under the Weyl transformation. However, this

is not the case for the superconformal index. In general, we have no idea to find the

superconformal index on the CFT side. We have to use the AdS/CFT correspondence to

obtain the index of S-fold theories.

Since the BPS partition function counts the primary scalars of the theory, it is enough

to consider the Zk orbifold (4.31). In N = 3 we no longer use the term 1
2 ,

1
4 ,

1
8 -BPS

because the number of supercharges were changed. Instead of these terms, we simply call

the BPS partition function with three variables (x, y, z) as the BPS partition function,

and the BPS partition function with the specialization of z = 0 and x = y = 0 called the

Higgs branch Hilbert series and the Coulomb branch Hilbert series.

Let us generalize the Weyl transformation (4.46) for three coordinates (xi, yi, zi) ∈
C3/Zk. Each of variables specifies the location of N D3-branes in the S-fold backgrounds.

The generalization is simply given by

{(xi, yi, zi), (xj , yj , zj)} ↔ {(xj , yj , zj), (xi, yi, zi)}, (4.49a)

{(xi, yi, zi), (xj , yj , zj)} → {(ω−1
k xi, ωkyi, ωkzi), (ωkxj , ω

−1
k yj , ω

−1
k zj)}, (4.49b)

(xi, yi, zi) → (ω−p
k xi, ω

p
kyi, ω

p
kzi), (4.49c)

where p is a divisor of k again.

Let us remind that the oscillator formalism we have used in subsection 2.1.3, in which

we interpret (xi, yi, zi) as coordinates of each oscillator. The first transformation is simply

SN , so this indicates that we can treat each oscillator as a boson. The second condition
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requires that all single wave functions should satisfy a common boundary condition

Ψ(ω−1
k x, ωky, ωkz) = ωm

k Ψ(x, y, z), (4.50)

where m ∈ {1, 2, · · · , k − 1}. It specifies to which element of Zk corresponds. Thus the

invariant single-particle BPS partition function can be calculated as

IZk
m (x, y, z) =

∑
−nx+ny+nz=m mod k

xnxynyznz

=
1

k

k−1∑
l=0

ω−ml
k

(1− ω−l
k x)(1− ωl

ky)(1− ωl
kz)

, (4.51)

where nx, ny, nz ≥ 0. Note that IZk
m (x, y, z) satisfies

IZk
m (ω−1

k x, ωky, ωkz) = ωm
k I

Zk
m (x, y, z). (4.52)

To obtain the grand partition function, we finally have to take the third condition

(4.49c) into account. Actually, this condition is related to the discrete torsion. If p = k

corresponding to the trivial torsion, the condition (4.49c) does not make sense. It requires

pm = 0 mod k. Thus we have

ΞS(∗,k,p)(x, y, z; t) =
∑
pm=0

Pexp(IZk
m t), (4.53)

where we adopt p = 0 instead of p = k for the trivial torsion. S(N, k, p) is a label of a rank

N Zk S-fold theory with p, which corresponds to the discrete torsion. This expression

indeed reproduces the orientifold case (4.22). We can interpret the non-zero m sectors as

the contributions from the generalized Pfaffians.

Let us find the BPS partition function of S-fold theories in the large N limit. By using

the formula (2.99), we immediately obtain

ZS(∞,k,p)(x, y, z) = Pexp(IZk
0 (x, y, z)− 1). (4.54)

Let us find the BPS partition function of S-fold theories in the large N limit. By using the

formula (2.99), we immediately obtain (4.54). The non-zero m sectors decouple because

the generalized Pfaffians have a conformal dimension larger than or equal to N . On the

AdS side, this means that the corresponding wrapped D3-branes becomes too heavy to

participate in the physics.

Supersymmetry enhancement

Let us check the supersymmetry enhancement in terms of the BPS partition function. To

see this, we pick up N = 1, 2 BPS partition functions from the grand partition function.
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For N = 1, we have

ZS(1,k,0)(x, y, z) =
k−1∑
m=0

IZk
m = I(x, y, z) = ZU(1)(x, y, z). (4.55)

Thus this is consistent with the supersymmetry enhancement of rank one S-fold theories.

For N = 2, we must obtain the BPS partition functions of N = 4 SYM with

SU(3), SO(5), G2 gauge groups. The results obtained from the grand partition function

(4.53) are

ZS(2,3,0) =
1

6(1− x)2(1− y)2(1− z)2
+

1

2(1− x2)(1− y2)(1− z2)

+
1

3(1 + x+ x2)(1 + y + y2)(1 + z + z2)
, (4.56)

ZS(2,4,0) =
1

8(1− x)2(1− y)2(1− z)2
+

1

8(1 + x)2(1 + y)2(1 + z)2

+
1

2(1− x2)(1− y2)(1− z2)
+

1

4(1 + x2)(1 + y2)(1 + z2)
, (4.57)

ZS(2,6,0) =
1

12(1− x)2(1− y)2(1− z)2
+

1

12(1 + x)2(1 + y)1(1 + z)2

+
1

2(1− x2)(1− y2)(1− z2)
+

1

6(1− x+ x2)(1− y + y2)(1− z + z2)

+
1

6(1 + x+ x2)(1 + y + y2)(1 + z + z2)
, (4.58)

and they are indeed equal to ZSU(3), ZSO(5), ZG2
, respectively. The ZG2

can be calculated

by the Mölien series. Therefore, we checked the supersymmetry enhancement in terms of

the BPS partition function.

4.4 Large N limit on the AdS side

Before going to the calculation of the finite N corrections to the BPS partition function

and the superconformal index of S-fold theories, we need to find the expression of the large

N limit as a zeroth correction. In the case of the BPS partition function, we can compare

with the results calculated in the last section. On the other hand, the superconformal

index is non-calculable on the CFT side, the result on the AdS side is the unique expression

we can find. The analysis of the index on the large N limit was already done by Imamura

and Yokoyama [19], then we review it.
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4.4.1 BPS partition function

Now let us consider the BPS partition function of S-fold theories in the large N limit on

the AdS side. As in the case of U(N), the contributions in the large N limit come from

the KK modes on S5/Zk in Zk S-folds. Since the BPS partition functions count only the

primary scalars and they form an (n, 0, 0) representation of SO(6)R which is real, it is

enough to consider the effect of Zk orbifold (4.31).

To realize the Zk orbifold for the BPS partition function, we impose the Zk invariance

of the single-particle BPS partition function of KK modes on S5: I(x, y, z)−1. For x, y, z

fugacities, the Zk orbifold is defined as

(x, y, z) → (ω−1
k x, ωky, ωkz). (4.59)

The single-particle BPS partition function of KK modes should be invariant under Zk

orbifold. Thus we have

PkI(x, y, z)− 1 =
1

k

k−1∑
m=0

I(ω−1
k x, ωky, ωkz)− 1 = IZk

0 (x, y, z)− 1, (4.60)

where the orbifold projection Pk is defined by

Pkf(x, y, z) =
1

k

k−1∑
m=0

f(ω−1
k x, ωky, ωkz). (4.61)

Its plethystic exponential agrees with (4.54). Therefore we proved that the BPS partition

function of S-fold theory in the large N limit is the same on both sides.

4.4.2 Superconformal index

Now let us consider the superconformal index of S-fold theories in the large N limit on the

AdS side. For calculations of the index, we adopt the same technique as the BPS partition

function calculated in the last subsection. Namely, we perform the S-fold projection for

the single-particle index of KK modes on S5 given in (2.113).

However, there is a different point from the last subsection: we count not only primary

scalars but also other fields constructed by the supersymmetric completion in the index.

The problem is that other fields are in general charged under Zk ⊂ U(1)Y because super-

charges have a non-trivial charge under U(1)Y . Thus we have to use R given in (4.42)

when the projection. To do it, we add a new fugacity η regarding R to the single-particle

index and define the “refined” single-particle index

ĩsp(η) = trsp[(−1)Fx∆qE+jRy2jLuRX−RY vRY −RZηS−Y/2], (4.62)
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where S = −RX + RY + RZ . Before the S-folding, the supersymmetry is N = 4, so we

may expect that the refined index would respect the SU(3)R ⊂ SU(4)R symmetry, which

is generated by RX −RY and RY −RZ . However, S does not commute with this SU(3)R,

and the refined index is not represented by SU(3)R characters. To avoid this troublesome

calculation, we split S into SU(3)R Cartan parts and an SU(3)R invariant part as follows:

S = −RX +RY +RZ = −4

3
(RX −RY )−

2

3
(RY −RZ) +

1

3
(RX +RY +RZ), (4.63)

where RX + RY + RZ is invariant under SU(3)R. Then we can write the refined index

(4.62) in the form respecting SU(3)R:

ĩsp(η) = trsp

[
(−1)Fx∆qE+jRy2jL

(
uη−

4
3

)RX−RY
(
vη−

2
3

)RY −RZ

ηT
]
, (4.64a)

T ≡ 1

3
(RX +RY +RZ) +

Y

2
. (4.64b)

So we use the variables uη−
4
3 and vη−

2
3 instead of u and v for SU(3)R characters.

Now we can calculate the refined single-particle index of KK modes from the Table 2.10

and the T charges. We list T charges in Table 4.7 as well as Y charges, corresponding to

KK modes listed in Table 2.10. The result is

ĩKK
sp (η) =

1

(1− η
uq)(1−

vη
u q)(1−

η
v q)(1− q

3
2 y)(1− q

3
2 y−1)

×
[(

u

η
+
vη

u
+
η

v

)
q − η(y + y−1)q

3
2 − (1 + η)

(
v

η
+

u

vη
+
η

u

)
q2

+ (η−1 + 1 + 2η + η2)q3 + (y + y−1)

(
v +

u

v
+
η2

u

)
q

7
2

−
(
u+

vη2

u
+
η2

v

)
q4 − (1 + η)(y + y−1)q

9
2 + ηq6

]
. (4.65)

Then the single-particle index of KK modes in a Zk S-fold theory labeled by S(∞, k, p) is

obtained as

iKK
S(∞,k,p) = Pk ĩ

KK
sp , (4.66)

where Pk is a projection operator defined as

Pkf(η) =
1

k

k−1∑
l=0

f(η = ωl
k). (4.67)
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[jL, jR]
(RX ,RY ,RZ)
E Y T

[0, 0]
(n,0,0)
n 0 n

3

[ 12 , 0]
(n− 1

2 ,
1
2 ,

1
2 )

n+ 1
2

−1 n+2
3

[0, 12 ]
(n− 1

2 ,
1
2 ,−

1
2 )

n+ 1
2

1 n−2
3

[0, 1]
(n−1,0,0)
n+1 2 n−4

3

[0, 0]
(n−1,1,1)
n+1 −2 n+4

3

[ 12 ,
1
2 ]

(n−1,1,0)
n+1 0 n

3

[ 12 , 1]
(n− 3

2 ,
1
2 ,

1
2 )

n+ 3
2

1 n−2
3

[0, 12 ]
(n− 3

2 ,
3
2 ,

1
2 )

n+ 3
2

−1 n+2
3

[0, 1]
(n−2,1,1)
n+2 0 n

3

Table 4.7 A table for T charges and Y charges for KK modes listed in Table 2.10.

T commutes with SU(3)R symmetry, and we use the variables uη− 4
3 and vη− 2

3 for
SU(3)R characters.

The multi-particle index is now

IKK
S(∞,k,p) = Pexp(iKK

S(∞,k,p)). (4.68)

Note that the difference of the discrete torsion is absent in the large N limit, so the result

is the same for all possible p.

We give some comments for each k = 2, 3, 4, 6 following.

k = 2 orientifold

If we take k = 2, this is the orientifold case. Then we can compare the KK index with

the index on the CFT side in the large N limit. Actually, we can show that

IAdS
S(∞,k=2,p) = ICFT

SO(∞), (4.69)

where the right hand side is given by (4.30).

k = 3, 4, 6 S-fold

In this case, the index has a different behavior from the index of N = 4 theories. In

N = 4 theories, there is the SU(4)R symmetry, and the index respects SU(3)R due to

the choice of the supercharge which is used to define the index. However, now, there is

only an N = 3 supersymmetry. Then the index respects U(2)R ⊂ U(3)R and the index

is represented by the U(2)R character χn(u
−1v, v−1) defined by (A.31). Indeed, the KK
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indices for k = 3, 4, 6 up to q
13
2 become

IKK
S(∞,3,p) = 1 + uχ1q

2 − uχJ
1 q

5
2 + (−1 + u3 − uχ2 + χ3)q

3 + χJ
1 (2uχ1 − χ2)q

7
2

+ (−uχJ
2 − u+ 2χ1 − u3χ1 −

1

u
χ2 + 2u2χ2)q

4

+ χJ
1 (−2 + u3 +

1

u
χ1 − 2u2χ1 − uχ2 + χ3)q

9
2

+ (χJ
2 (2uχ1 − χ2)−

1

u
+ 3u2 − 2uχ1 + 2u4χ1 − 2u2χ3 + 2uχ4)q

5

+ (−uχJ
3 + χJ

1 (3u− 2u4 + χ1 − u3χ1 −
1

u
χ2 + 5u2χ2 − 3uχ3))q

11
2

+ (χJ
2 (−2 + u3 +

1

u
χ1 − 4u2χ1 + χ3) + 1− 3u3 + 2u6 − 1

u
χ1 − 4u2χ1

+
1

u2
χ2 + 7uχ2 − 3u4χ2 − 4χ3 + 4u3χ3 − 2uχ5 + 2χ6)q

6

+O(q
13
2 ), (4.70)

IKK
S(∞,4,p) = 1 + uχ1q

2 − uχJ
1 q

5
2 + (−1− uχ2)q

3 + 2uχJ
1χ1q

7
2

+ (−u+ u4 − uχJ
2 + χ1 + 2u2χ2 + χ4)q

4

+ χJ
1 (−2− 2u2χ1 − uχ2 − χ3)q

9
2

+ (2uχJ
2χ1 + 2u2 − 2uχ1 − u4χ1 + χ2 −

1

u
χ3 − 2u2χ3)q

5

+ (−uχJ
3 + χJ

1 (3u+ u4 + χ1 +
1

u
χ2 + 5u2χ2 + χ4))q

11
2

+ (χJ
2 (−2− 4u2χ1 − uχ2 − χ3) + u3 − 1

u
χ1 − 4u2χ1 + 2u5χ1

+ 4uχ2 + 3u2χ3 + 2uχ5)q
6 +O(q

13
2 ), (4.71)

IKK
S(∞,6,p) = 1 + uχ1q

2 − uχJ
1 q

5
2 + (−1− uχ2)q

3 + 2uχJ
1χ1q

7
2

+ (−u− χJ
2 + χ1 + 2u2χ2)q

4 + χJ
1 (−2− 2u2χ1 − uχ2)q

9
2

+ (2u2 − 2uχ1 + 2uχJ
2χ1 − 2u2χ3)q

5

+ (−uχJ
3 + χJ

1 (3u+ χ1 + 5u2χ2))q
11
2

+ (χJ
2 (−2− 4u2χ1 − uχ2) + u6 − 4u2χ1 + 4uχ2 + 3u2χ3 + χ6)q

6

+O(q
13
2 ). (4.72)

The fact that the index is represented by the U(2)R character indicates that the corre-

sponding theory has N = 3 supersymmetry. Namely, we can read off the supersymmetry
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of the theory from the characters of the R-symmetry.

4.5 Finite N corrections

Let us go to the topic of the finite N corrections to the BPS partition function and

superconformal index of S-fold theories. First, we consider the finite N corrections to the

BPS partition function. After that, we move on to the discussion of the superconformal

index.

4.5.1 BPS partition function

We consider the finite N corrections to the BPS partition functions of S-fold theories

by considering the single wrapped D3-branes on S3/Zk ⊂ S5/Zk. Fortunately, we know

the BPS partition functions on the CFT side exactly, and we can compare the finite N

corrections with the CFT results. Note that wrapped D3-branes are only present when

the discrete torsion is trivial: p = 0, so we only consider the trivial torsion case here. The

discussions are based on the author’s and his collaborators’ paper [22].

In the last chapter, we have already done the analysis of finite N corrections for the

N = 4 U(N) SYM, in which a generic configuration of the single wrapped D3-branes is

given by

f(X,Y, Z) = aX + bY + cZ = 0. (4.73)

Then the complex coefficients (a, b, c) form CP 2 as a phase space of single-wrapped D3-

branes. Actually, the following analysis is similar to N = 4 U(N) SYM case.

Now, we have an additional constraint for the holomorphic surface f(X,Y, Z) = 0 in the

S-fold background. Since the overall factor does not affect the shape of the holomorphic

surface, a Zk S-fold identification gives a constraint

f(ω−1
k X,ωkY, ωkZ) = ωm

k f(X,Y, Z), (4.74)

where an integer m is the winding number of wrapped D3-branes. This is classified by

H3(S
5/Zk,Z) = Zk, so m is an integer modulo k.

In fact, the constraint (4.74) restricts the possible form of the holomorphic function,

that is, the possible shape of wrapped D3-branes, depending on the value of k. In what

follows, we consider k = 2 orientifold and k = 3, 4, 6 S-folds separately.

k = 2 orientifold

In this case, the most general form of the single-wrapping holomorphic surface satisfying

the constraint (4.74) is

aX + bY + cZ = 0. (4.75)
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This is actually the same as the AdS5 × S5 case. Thus the discussion is almost the same.

We can expect that the single-particle BPS partition function has at least two zero modes

because the phase space is CP 2. And the total BPS partition function may be obtained

by the summation over the X = 0, Y = 0, and Z = 0 configurations.

Let us check these expectations. The single-particle BPS partition function of the Z = 0

configuration can be derived by the projection (4.61) with k = 2 for (3.37):

iBPS, Z2

Z=0 = P2i
BPS
sp =

x+ y

z(1− q2x2)(1− q2y2)

=
(x
z
+
y

z

)
+O(q2). (4.76)

We found two zero modes. This is consistent with the fact that the phase space is CP 2.

We have already analyzed this situation in the last chapter, and we know that in this

case, the summation over the X = 0, Y = 0, and Z = 0 configurations give the total BPS

partition function. The BPS partition function of these configurations are related each

other by the Weyl completion (x, y, z) → (y, z, x) and (x, y, z) → (z, x, y).

A different point from the AdS5 × S5 case is the absence of a tachyonic mode. This

can be understood as the effect of the orientifold. In the S5 case, the configuration X = c

can exist, and this is the lower energy configuration than X = 0, where c is a non-

zero constant. However, in the orientifold case, such configurations are forbidden by the

orientifold projection. That is why a tachyonic mode is absent.

Now the finite N corrections to the BPS partition function of the single wrapping is

given by

ZD3
Z2

= (qx)NPexp(iBPS, Z2

X=0 ) + (qz)NPexp(iBPS, Z2

Y=0 ) + (qz)NPexp(iBPS, Z2

Z=0 ), (4.77)

and the BPS partition function on the AdS side is

ZAdS
Z2

= ZKK
Z2

(1 + ZD3
Z2

), (4.78)

where ZKK
Z2

= Pexp(IZ2
0 − 1). ZKK

Z2
ZD3
Z2

must correspond to the Pfaffian sector of the

BPS partition function of N = 4 SO(2N) SYM. We checked the following relation up to

N = 3:

ZCFT
S(N,2,1) = ZAdS

Z2
+O(q2N+2). (4.79)

k = 3, 4, 6 S-folds

In fact, the constraint (4.74) restricts the possible form of the holomorphic function, that

is, the possible shape of wrapped D3-branes. Then the most general single wrapped
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D3-branes are represented by holomorphic surfaces

X = 0, (4.80)

bY + cZ = 0, (4.81)

and we cannot consider aX + bY + cZ = 0 because it does not satisfy (4.74). The first

configurations have the winding number m = −1, and the second one has m = 1.

First, let us see the configuration given by (4.80). The first task is to find the single-

particle BPS partition function on the wrapped D3-brane X = 0. Actually, this is very

easy to do. All we have to do is to perform the projection (4.61) to the single-particle

BPS partition function of X = 0:

(qx)−1

(1− qy)(1− qz)
. (4.82)

Thus we have

iBPS, Zk

X=0 = Pk

(
(qx)−1

(1− qy)(1− qz)

)
=

1

k

k−1∑
m=0

(qω−1
k x)−1

(1− qωky)(1− qωkz)
. (4.83)

Hence the total contribution is obtained by its plethystic exponential and the classical

contribution (qx)N :

ZZk

X=0 = (qx)NPexp(iBPS, Zk

X=0 ). (4.84)

Let us check whether the tachyonic mode and zero modes exist or not for k = 3 as an

example. The expansion of (4.83) with k = 3 is

iBPS, Z3

X=0 =
(y2 + yz + z2)q

x(1− q3y3)(1− q3z3)
=
y2 + yz + z2

x
q +O(q2). (4.85)

Thus there are only zero modes. This is, in fact, the natural result because the presence

of configurations with energy smaller than X = 0 is forbidden by the constraint (4.74).

Second, we consider the configuration (4.81). Let us focus on the Y = 0 by taking

(b, c) = (1, 0). Then the single-particle BPS partition function can be derived by the Weyl

completion (x, y, z) → (y, z, x) before the projection (4.61). The result is

iBPS, Zk

Y=0 = Pk

(
(qy)−1

(1− qz)(1− qx)

)
=

1

k

k−1∑
m=0

(qωky)
−1

(1− qωkz)(1− qω−1
k x)

. (4.86)

Let us check the presence of tachyonic and zero modes in the single-particle BPS partition
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function. The expansion of the k = 3 case as an example is

iBPS, Z3

Y=0 =
z + x2q + xz2q2

y(1− q3z3)(1− q3x3)
=
z

y
+
x2

y
q +O(q2). (4.87)

Now we found a zero mode. When we perform the plethystic exponential, this term with

the classical contribution gives a factor

(qy)NPexp

(
z

y

)
=

(qy)N

1− z
y

= qN
(
yN + yN−1z + · · ·+ yzN−1 + zN + y−1zN+1 + · · ·

)
.

(4.88)

This is evaluated in the region | zy | < 1. The infinite series includes unphysical terms.

However, they are canceled by the Z = 0 contribution in the same fugacity region | zy | < 1:

(qz)NPexp
(y
z

)
= −qN (y−1zN+1 + · · · ). (4.89)

Then the summation over these terms gives

qN
(
yN + yN−1z + · · ·+ yzN−1 + zN

)
. (4.90)

These terms are summarized into the U(2) character χN (y, z). This is an analogy of the

fact that the summation over the X = 0, Y = 0, and Z = 0 configurations gave the U(3)

character in the orientifold and S5 cases. Here the summation over the contributions

of Y = 0 and Z = 0 configurations gives all the single wrapping contributions with the

winding number m = 1.

We have seen that the k = 3 case as an example. We can also do the same analysis for

k = 4, 6 cases. Finally, we find the same expression of the final result as the orientifold

and S5 case:

ZD3
Zk

= (qx)NPexp(iBPS, Zk

X=0 ) + (qz)NPexp(iBPS, Zk

Y=0 ) + (qz)NPexp(iBPS, Zk

Z=0 ), (4.91)

where the first term gives rise to m = −1 sector, and other terms give m = 1 sector. We

can also check the following result up to N = 3.

ZCFT
S(N,3,1) = ZAdS

Zk
+O(q2N+1), (4.92)

ZCFT
S(N,4,1) = ZAdS

Zk
+O(q2N ), (4.93)

ZCFT
S(N,6,1) = ZAdS

Zk
+O(q2N ). (4.94)
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Modes [jL, jR]
(R,R,RZ)
E Y Contribution

ϕ
(l)

[0, 0]
([ l2 ],

l
2 ,−1)

l−1 0 ql−1(uη−2)2Rv
l
2−R+1η−1

χ(l) [0, 12 ]
([ l2 ],

l−1
2 ,− 1

2 )

l− 1
2

1 −ql(uη−2)2Rv
l−1
2 −R+ 1

2 η−1

ψ(l) [[ 12 ], 0]
([ l−1

2 ], l
2 ,−

1
2 )

l− 1
2

−1 −ql− 1
2χJ

1 (uη
−2)2Rv

l
2−R+ 1

2

w(l) [[ 12 ],
1
2 ]

([ l−2
2 ], l−1

2 ,0)

l 0 ql+
1
2χJ

1 (uη
−2)2Rv

l−1
2 −R

F (l) [0, 0]
([ l−2

2 ], l
2 ,0)

l −2 ql(uη−2)2Rv
l
2−Rη

χ(l) [0, 12 ]
([ l−2

2 ], l−1
2 , 12 )

l+ 1
2

−1 −ql+1(uη−2)2Rv
l−1
2 −R− 1

2 η

Table 4.8 The BPS massless modes arising on the wrapped D3-brane. Summing all
contributions shown here, we find the refined single-particle index for the fluctuations
of the wrapped D3-brane Z = 0.

4.5.2 Superconformal index

Here we consider the finite N corrections to the superconformal index of S-fold theories.

Unlike the BPS partition function, there is no general formula to find the index of S-fold

theories due to the lack of the Lagrangian, so our analysis is the first predictions of the

index.

The strategy is almost the same as that of the BPS partition function. The only problem

we have to solve is to obtain the refined single-particle index of wrapped D3-branes for

X = 0, Y = 0, and Z = 0 configurations. Then all we have to do is to find the U(1)Y
charges for the fluctuation modes on wrapped D3-branes, which are listed in Table 3.3.

To find the U(1)Y charges for massless modes on wrapped D3-branes, let us focus on

the Z = 0 configuration. We know all the massless modes shown in Table 3.3 and the

structure of the supersymmetry multiplet shown in Fig. 3.1. So it is enough to find the

U(1)Y charge of ϕ
l
. Because ϕ

l
has already appeared in the BPS partition function, its

transformation low is the Zk orbifold projection. It states that there is no U(1)Y charge

for ϕ
l
. From this fact, we can find the U(1)Y charge for all massless fields on Z = 0, as

shown in Table 4.8.

The refined single-particle index of the Z = 0 configuration, obtained from the infor-

mation of Table 3.3 and Table 4.8, is then

ĩZ=0
sp (η) =

v
η q

−1 − (y + y−1)q
1
2 − ( u

η2 + v
u )q + (y + y−1)q

3
2 + v(η−1 + η)q2 − ηq3

(1− u
η q)(1−

vη
u q)

.

(4.95)
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The single-particle index of the Z = 0 configuration in a Zk S-fold background is

iZk

Z=0 = Pk ĩ
Z=0
sp (η). (4.96)

ForX = 0 and Y = 0 configurations, the refined single-particle index cannot be obtained

by the ordinary Weyl completion for the refined single-particle index due to the existence

of the η fugacity. This is because the corresponding generator to the η fugacity is −RX +

RY +RZ−Y/2, and it does not commute with SU(3)R generators RX−RY and RY −RZ .

Instead of the SU(3)R character, we define the “refined SU(3)R character” by including

the η fugacity as

χ′
(m,n)(u, v, η) = tr[uRX−RY vRY −RZη−RX+RY +RZ−Y/2]. (4.97)

Then the refined character corresponding to the representation to which (Q2, Q3, Q4)

belong is

χ′
(1,0)(u, v, η) =

u

η2
+
v

u
+

1

v
. (4.98)

This implies that our new Weyl completion should be defined as follows:

Z = 0 → X = 0 :

(
u

η2
,
v

u
,
1

v

)
→
(
v

u
,
1

v
,
u

η2

)
, (4.99)

Z = 0 → Y = 0 :

(
u

η2
,
v

u
,
1

v

)
→
(
1

v
,
u

η2
,
v

u

)
. (4.100)

By using this rule, we can obtain the refined single-particle index of X = 0 and Y = 0

configurations:

ĩX=0
sp (η) =

η
uq

−1 − (y + y−1)q
1
2 − ( vu + 1

v )q + (y + y−1)q
3
2 + u−1(η + η3)q2 − ηq3

(1− vη
u q)(1−

η
v q)

,

(4.101)

ĩY=0
sp (η) =

u
vη q

−1 − (y + y−1)q
1
2 − ( 1v + u

η2 )q + (y + y−1)q
3
2 + u

v (η
−1 + η)q2 − ηq3

(1− η
v q)(1−

u
η q)

.

(4.102)

In what follows, we see the orientifold case and k = 3, 4, 6 S-fold cases separately.

k = 2 orientifold

Actually, the flow of the discussion is the same as the BPS partition function. The most

general configuration of the single wrapping is aX+bY +cZ = 0, and the summation over

X,Y, Z = 0 gives the SU(3)R character corresponding to the fact that the phase space is
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CP 2. Then the index of the wrapped D3-branes is given by

ID3
Z2

= (qu)NPexp(P2ĩ
X=0
sp (η)) +

(
q
v

u

)N
Pexp(P2ĩ

Y=0
sp (η)) +

(
q
1

v

)N

Pexp(P2ĩ
Z=0
sp (η)).

(4.103)

Then the superconformal index on the orientifold background is

IAdS
S(N,2,0) = IKK

Z2
(1 + ID3

Z2
), (4.104)

where IKK
Z2

ID3
Z2

should correspond to the Pfaffian sector on the CFT side. We checked the

following relations up to N = 3:

ICFT
SO(2N) = IAdS

S(N,2,0) +O(q2N+1). (4.105)

k = 3, 4, 6 S-folds

Again, the procedure to find the finite N corrections to the index is the same as the BPS

partition function. In this case there is two winding sectors m = −1 and m = 1. The first

one and second one correspond to X = 0 and bY + cZ = 0 configuration, respectively.

Since the phase space of m = 1 sector is CP 1, the single-particle index for Y = 0 and

Z = 0 has the corresponding zero mode, and summation over two configurations of m = 1

gives the U(2)R character χn(u
−1v, v−1) defined in (A.31). This fact reflects an N = 3

supersymmetry of S-fold theories for k = 3, 4, 6.

Our formula of the finite N corrections for a Zk S-fold background is now given by

IAdS
S(N,k,0) = IKK

Zk
(1 + ID3

Zk
), (4.106)

ID3
Zk

= (qu)NPexp(Pk ĩ
X=0
sp (η)) +

(
q
v

u

)N
Pexp(Pk ĩ

Y=0
sp (η)) +

(
q
1

v

)N

Pexp(Pk ĩ
Z=0
sp (η)).

(4.107)

This formula gives the prediction of the index for S-fold theories up to an order from

which the double wrapping starts.

Let us make sure that the index is indeed written by the U(2)R character as evidence

of an N = 3 supersymmetry. We take up S(3, 3, 0) as an example here. Then our formula
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gives

IAdS
S(3,3,0) = 1 + uχ1q

2 − uχJ
1 q

5
2 + (−1 + 2u3 − uχ2 + 2χ3)q

3

+ χJ
1 (2uχ1 − 2χ2)q

7
2 + (−u− uχJ

2 + 3χ1 − 2u3χ1 − 2u−1χ2 + 4u2χ2)q
4

+ χJ
1 (−2 + 2u3 + 2

1

u
χ1 − 4u2χ1 − uχ2 + 2χ3)q

9
2

+ (χJ
2 (2uχ1 − 2χ2) + 6u2 − 4uχ1 + 4u4χ1 − 4u2χ3 + 4uχ4)q

5

+ (5uχJ
1 − 4u4χJ

1 − uχJ
3 − χJ

1χ1 − 2u3χJ
1χ1 − 2u−1χJ

1χ2

+ 9u2χJ
1χ2 − 6uχJ

1χ3)q
11
2

+ (2− 6u3 + 4u6 + 2u3χJ
2 − 4u−1χ1 − 5u2χ1 + 2u−1χJ

2χ1

− 6u2χJ
2χ1 + 3u−2χ2 + 14uχ2 − 6u4χ2 + uχJ

2χ2 − 8χ3

+ 8u3χ3 + 2χJ
2χ3 + u−1χ4 − 4uχ5 + 4χ6)q

6

+ (6u−1χJ
1 + 3u2χJ

1 + u2χJ
3 − 3u−2χJ

1χ1 − 17uχJ
1χ1

+ 12u4χJ
1χ1 + 2uχJ

3χ1 + 16χJ
1χ2 − 12u3χJ

1χ2 − 2χJ
3χ2

− 4u−1χJ
1χ3 − 6u2χJ

1χ3 + 12uχJ
1χ4 − 5χJ

1χ5)q
13
2 +O(q7). (4.108)

This index is never unified into the SU(3)R character. Thus a theory S(3, 3, 0) indeed has

an N = 3 supersymmetry.

4.6 Consistency check

Let us check the consistency with some known results. We can do two checks. The first one

is to check the supersymmetry enhancement in terms of the index. If the enhancement

occurs, the index should be unified into the SU(3)R characters rather than the U(2)R
character. The second check is to compare our result of S(3, 3, 0) with Zafrir’s result

calculated recently. He proposed an N = 1 model is dual to S(3, 3, 0), and calculated the

index of this model. So his calculation should agree with our prediction given in (4.108).

4.6.1 Supersymmetry enhancement

First, let us consider the supersymmetry enhancement of rank one and two S-fold theories.

It is expected from the general discussion of an N = 3 superconformal algebra, and

Aharony and Tachikawa conjectured that the rank one and two S-fold theories with k =

3, 4, 6 are equivalent to the N = 4 SYM with the gauge group U(1), SU(3), SO(5) and

G2.

Here we focus on the S(2, 6, 0) as an example. It is expected that this theory is equivalent
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to the N = 4 G2 SYM. Our formula (4.107) gives the following amazing result:

IAdS
S(2,6,0) = 1 + (u2 + uχ1 + χ2)︸ ︷︷ ︸

χ(2,0)

q2 − χJ
1 (u+ χ1)︸ ︷︷ ︸

χ(1,0)

q
5
2 − (u−1χ1 + u2χ1 + uχ2)︸ ︷︷ ︸

χ(1,1)−1

q3

+ χJ
1 (u−1 + u2 + 2uχ1 + χ2)︸ ︷︷ ︸

χ(0,1)+χ(2,0)

q
7
2

+ (−uχJ
2 + χ1 + u3χ1 − χJ

2χ1 + 2u2χ2 + uχ3)q
4

− χJ
1 (2 + u3 + u−1χ1 + 3u2χ1 + 3uχ2)q

9
2

+ (−u−1 + u−1χJ
2 + u2χJ

2 + 3uχJ
2χ1 − 3χ2 − 2u3χ2 + χJ

2χ2 − 2u2χ3 − uχ4)q
5

+ ((3u+ 7χ1 + 4u3χ1 + 5u2χ2 + 4uχ3)χ
J
1 − (u+ χ1)χ

J
3 )q

11
2

+ (−4− 2u3 + u6 − 5χJ
2 − 2u3χJ

2 + (3u−1 + u5 − u−1χJ
2 − 5u2χJ

2 )χ1

+ (−u+ 2u4 − 6uχJ
2 )χ2 + (2 + 4u3)χ3 + 2u2χ4 + uχ5 + χ6)q

6 +O(q
13
2 ).

(4.109)

The first few terms are indeed summarized into the SU(3)R characters. We expect that the

double wrapping starts from q4 because the double wrapping has an order of 2N (N = 2)

energy. If we take into account the multiple wrapping, the index would be written in

terms of SU(3)R characters more. Note that the summarizing way is quite non-trivial.

In the level of the phase space of holomorphic surfaces, N = 4 supersymmetry could not

appear. However, the enhancement is indeed present. We can also show that

IAdS
S(2,6,0) = ICFT

G2
+O(q4). (4.110)

Thus, we confirmed the Aharony-Tachikawa conjecture in the terms of the superconformal

index.

We also confirmed the following relations:

IAdS
S(1,3,0) = ICFT

U(1) +O(q3), (4.111)

IAdS
S(1,4,0) = ICFT

U(1) +O(q2), (4.112)

IAdS
S(1,6,0) = ICFT

U(1) +O(q2), (4.113)

IAdS
S(2,3,0) = ICFT

SU(3) +O(q5), (4.114)

IAdS
S(2,4,0) = ICFT

SO(5) +O(q4). (4.115)

All results are consistent with the emergence of the double wrapping.

4.6.2 Comparison with Zafrir’s result

Very recently, Zafrir discovered certain Lagrangian theories that flow to N = 3 SCFTs

with a free chiral field [21]. Since the superconformal index is an RG flow invariant, it

Soryushiron Kenkyu



122 Chapter 4 Four-Dimensional S-fold Theories

is possible to calculate the index of the system, including an N = 3 SCFT and a free

field. Then we need to remove the latter contribution. This can be done by using the

procedure given in [43]. Note that the procedure given by Zafrir is not applicable to all

N = 3 theories. He showed the cases of S(3, 1, 1) and S(3, 3, 0). The latter case is the

rank 3 Z3 S-fold theory with the trivial torsion, so we compare our result (4.108) with the

result given in [21]. The Zafrir’s result of the S(3, 3, 0) theory is given by [21]

IZafrir =1 + 2(pq)
2
3 − (pq)

1
3 (p+ q) + 6pq − 2(pq)

2
3 (p+ q) + 6(pq)

4
3 − (pq)

1
3 (p2 + q2)

+ (pq)(p+ q) + 8(pq)
5
3 − 2(pq)

2
3 (p2 + q2)− 9(pq)

4
3 (p+ q)− (pq)

1
3 (p3 + q3)

+ 29(pq)2 + 5(pq)(p2 + q2)− 6(pq)
5
3 (p+ q)− (pq)

2
3 (p3 + q3) + · · · . (4.116)

This is written in the “standard notation” [44,45]. In order to compare it with (4.108), we

need the following replacement from the standard notation (p, q) to our notation (q, y, u, v)

with u = v = 1:

p→ q
3
2 y, q → q

3
2 y−1. (4.117)

Then we find the agreement

IS(3,3,0)|u=v=1 = IZafrir +O(q6), (4.118)

where IS(3,3,0) is given in (4.108). The error is consistent with the double wrapping con-

tributions. This is the first non-trivial confirmation of our predictions for S-fold theories

and ensures the correctness of our calculations of the finite N corrections to the index for

S=fold theories.
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Chapter 5

Conclusions and Discussions

In this chapter, we give the conclusions of this thesis and the discussions.

In this thesis, we developed the calculation method of the superconformal index on the

AdS side in the finite N region of the AdS/CFT correspondence. Then we applied our

method to the S-fold theories whose Lagrangian is not known. For this purpose, we started

from the review of basic concepts of the partition function, Witten index, superconformal

symmetry, superconformal index, and the BPS partition function in Chapter 1.

In Chapter 2, we reviewed N = 4 SYM and type IIB string theory to discuss the

AdS/CFT correspondence between these theories. We also gave the concrete expressions

of the superconformal index and the BPS partition function of N = 4 U(N) SYM. Then

we gave the precise statement of the AdS/CFT correspondence. We also performed the

calculation of the index and the BPS partition function on the AdS side in the large N

limit and confirmed the agreement with those on the CFT side.

In Chapter 3, we studied the finite N corrections to the BPS partition function and

the superconformal index. It is expected that D3-branes wrapped on three-cycles in S5

give the finite N corrections [17, 19, 29]. Then we analyzed the single wrapped D3-brane

by considering massless fields living on the wrapped D3-brane. First, we considered the

finite N corrections to the BPS partition function to study the structure of the finite N

corrections on the AdS side. We calculated the single-particle BPS partition function of

three single wrapped D3-branes whose configurations are X = 0, Y = 0, and Z = 0. We

found that there are a tachyonic term and two zero modes. The tachyonic term is the

negative power of the fugacity q, and we needed the special treatment as

Pexp(q−1) =
1

1− q−1
= − q

1− q
= −qPexp(q). (5.1)

The zero modes are related to the U(3)R symmetry and have the unphysical infinite

contributions. These contributions are canceled each other by summing the contributions

from X = 0, Y = 0, and Z = 0. The significant observation is that the summation

of these three contributions is just the Weyl character formula. Then we proposed the
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formula which gives the finite N corrections to the BPS partition function as

ZAdS
finite N = ZAdS

large N (1 + ZD3
X=0 + ZD3

Y=0 + ZD3
Z=0) +O(q2N+5). (5.2)

We confirmed that results obtained by this formula agree with the results on the CFT side

up to q2N+5. It is expected that the error comes from the double wrapping contributions.

After the computation of the BPS partition function, we considered the superconformal

index. The same technique as the case of the BPS partition function can be applied, and

we proposed a similar formula to (5.2):

IAdS
finite N = IAdS

large N (1 + ID3
X=0 + ID3

Y=0 + ID3
Z=0) +O(q2N+4). (5.3)

We also confirmed that the results given by this formula on the AdS side agree with the

results on the CFT side up to the expected order of the fugacity q.

In Chapter 4, we investigated the orientifold theories and the S-fold theories. First, we

reviewed the orientifold in type IIB string theory, and after that, we defined the S-fold

action and the S-fold theories. We constructed the BPS partition functions for S-fold

theories by using the oscillator formalism that we developed in Chapter 2. Moreover, we

applied our formula (5.3) with the minor modification due to the S-fold invariance. In [20],

it is expected that the rank one S-fold theories are equivalent to N = 4 U(1) Maxwell

theory and rank two S-fold theories for k = 3, 4, 6 are equivalent to N = 4 SYM with

SU(3), SO(5), and G2 gauge groups, respectively (Aharony-Tachikawa (AT) conjecture).

We confirmed the agreement of the index for these S-fold theories with the index for these

N = 4 theories. The UV Lagrangian for S(3, 3, 0) S-fold theories was found, and the

index of this theory was calculated by Zafrir [21]. So we finally confirmed the agreement

of our prediction with the result given in [21].

There are many unsolved problems. First, we have no clear physical explanation of the

treatment of the tachyonic mode (5.1). To ensure the convergence of the left-hand side of

(5.1), we need the condition q > 1, while we need q < 1 for the right-hand side of (5.1).

Up to now, all we can do is to regard this treatment as the analytic continuation. We

hope that there is a certain physical meaning of this treatment.

Second, the multiple wrapping contributions are not included in the formula (5.3). For

AdS/CFT regardingN = 4 U(N) SYM, we expect that contributions of the n-ple wrapped

D3-branes may be obtained by considering the U(n) gauge theory on the wrapped D3-

branes. However, it is necessary to perform the gauge integral like (3.76), and the pole

selection rule of this integral is unclear.

If we consider the Schur limit [46] of the superconformal index defined by

ISchur(q, u) = lim
y→q−

1
2 ,v→1

I(q, y, u, v), (5.4)

the structure of the gauge integral becomes much simpler. The index (5.4) is called the

Schur index. Then the analysis of the multiple wrapped D3-branes is simplified, and we
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performed the analysis in the author’s and his collaborators’ paper [47]. Our analysis

shows that there are “the intersection string contributions” as well as the multiple wrap-

ping contributions. Note that in the Schur limit, the contributions from the configurations

including Z vanish. Let us consider the configuration Xn−kY k = 0. Then we have the

U(n − k) × U(k) gauge theory. The intersection string between Xn−k = 0 and Y k = 0

corresponds to the bi-fundamental field of the U(n−k)×U(k) theory. Roughly speaking,

the contributions of the n-ple wrapped D3-branes is then

ID3
n,N = qnN

n∑
k=0

∫
U(n−k)×U(k)

dµPexp(iX=0
sp χ

U(n−k)
adj + iY=0

sp χ
U(k)
adj + iintsp χbi-fund), (5.5)

where iintsp is the single-particle index of the contributions from the intersection string. We

confirmed that the results up to n = 4 completely agree with the CFT results [47]. We

expect that the same structure holds even for the superconformal index.

There are also various extensions of our analysis [22] that are not contained in this

thesis. These extensions were given by the author’s and his collaborators’ papers [48–50].

The significant benefit of our method to compute the finite N corrections is that it

is applicable for any AdS/CFT in principle. The simplest extension is the quiver gauge

theories realized on D3-branes put on Abelian orbifolds. AdS/CFT for orbifold S5/Γ

was suggested in [51, 52]. Thus we can apply our formula to this AdS/CFT to calculate

the superconformal index. Since the quiver gauge theories have the explicit Lagrangian,

the index is calculable. That is, our task is the confirmation of the agreement of the

index on both sides. In particular, the D3-branes wrapped on the non-trivial three-

cycles in S5/Γ correspond to the baryonic operators defined as operators including the

determinant operator. This situation is quite similar to the S-fold theories. Then, the

wrapped D3-brane contributions may be obtained by an appropriate projection of ID3

associated with the orbifold. In fact, our analysis with the orbifold projection does work,

and the agreement up to the double wrapping contributions was confirmed in [48].

We also generalized the analysis of the orbifold quiver gauge theories to the toric quiver

gauge theories [49]. The toric quiver gauge theories are realized on D3-branes put on a

toric Calabi-Yau (CY) three-fold. The realized gauge theory depends on toric CY three-

folds, and there is a systematic prescription [53, 54] to determine the gauge theory from

the toric data of the CY three-fold. The corresponding AdS dual is given by type IIB

string theory on AdS5×SE5, where SE5 is the five-dimensional Sasaki-Einstein manifold.

The simple example is the Klebanov-Witten theory [55] and its AdS dual is type IIB string

theory on AdS5 × T 1,1. The index is also calculable for toric quiver gauge theories, so

the task is also the confirmation of the agreement of the index on both sides. Note that

N = 4 U(N) SYM and the orbifold quiver gauge theories are simple examples of toric

quiver gauge theories. Thus we can guess the relationship between our method presented

in this thesis and the toric data. In fact, we proposed the generalization of our method to

the toric CY cases and showed that all the results are consistent with the CFT results [49].

Our method is also applicable in other dimensions. In [50], we analyzed the
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three-dimensional Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [56] and the

six-dimensional (6d) N = (2, 0) theories. The ABJM theory is realized on M2-branes in

M-theory, while 6d N = (2, 0) theories are realized on M5-branes. The corresponding

AdS duals are M-theory on AdS4 × S7 and AdS7 × S4. We calculated the finite N

corrections to the index as contributions from M5-branes in S7. Because the Lagrangian

of the ABJM theory is known, and we confirmed the agreement of the index on both

sides. On the other hand, the Lagrangian of 6d N = (2, 0) theories are unknown, so we

predicted the index from the contributions of M2-branes in S4. For the rank one theory

(realized on one M5-brane), it is known that the theory is free, and we can calculate the

index. In this case, we confirmed the agreement of the index on both sides.

All of these analyses show that our method is very powerful in calculating the index for

various AdS/CFTs.

There are various future directions. Up to now, our results of S-fold theories are still

the prediction except for few examples. Thus the check of our results is important.

A way to do it is to use the N = 2 SCFT/chiral algebra correspondence [57]. This

correspondence comes from the fact that the four-dimensional N = 2 superconformal

algebra contains the two-dimensional chiral algebra. Concretely, the Schur index of an

N = 2 SCFT is equivalent to the vacuum character of the corresponding two-dimensional

chiral algebra [57]. This means that if we identify the chiral algebra corresponding to

S-fold theories, we may be able to calculate the Schur index of S-fold theories from the

vacuum character. Our prediction for the Schur index is also given in [22], so we can

compare these results. Note that the chiral algebra corresponding to rank one S-fold

theories were already given in [58]. However, the rank one S-fold theory with the trivial

torsion is the free theory, and we need the chiral algebras corresponding to higher rank

S-fold theories.

Another future direction is to apply our method to AdS/CFT regarding AD theories.

Some of the AdS dual to AD theories are given in [59, 60]. Then we may be able to

calculate the finite N corrections to the index as well as the contributions of KK modes.

Another interesting example is AdS/CFT regarding TN theories [61]. The superconformal

index of TN theories has not been given yet, and we may be able to calculate the index

for these theories by using their AdS dual given in [62].
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Appendix A

Conventions and Notations

In this appendix we summarize the spinor conventions for four-dimensional theories and

the notations for group theory.

A.1 Spinor convention for four-dimensional theories

In this section we would like to explain our spinor notation. Our spinor convention is

almost the same as that used in [63].

In four-dimensional (4d) theories, the four-vector xµ (µ = 0, 1, 2, 3) is the position

vector. The flat Minkowski metric is denoted by ηµν . We use the following convention:

ηµν = diag(−1, 1, 1, 1). (A.1)

The 4d gamma matrices γµ satisfy the Clifford algebra

{γµ, γν} = −2ηµν . (A.2)

Let ψα be a left-handed two component Weyl spinor and let χα̇ be a right-handed

two-component Weyl spinor. The Hermite conjugate of Weyl spinors are

(ψα)
† = ψα̇, (χα̇)† = χα. (A.3)

The contractions of spinors are given by

ψξ = ψαξα, χζ = χα̇ζ
α̇
. (A.4)

The anti-symmetric epsilon tensor raises and lowers the spinor indices as

ψα = ϵαβψβ , ψα = ϵαβψ
β , (A.5)

χα̇ = ϵα̇β̇χ
β̇ , χα̇ = ϵα̇β̇χβ̇ , (A.6)
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where the anti-symmetric epsilon tensor satisfies

ϵ12 = ϵ21 = −1, (A.7)

ϵ12 = ϵ21 = 1 (A.8)

ϵαβϵ
βγ = ϵγβϵβα = δγα, (A.9)

ϵα̇β̇ϵ
β̇γ̇ = ϵγ̇β̇ϵβ̇α̇ = δγ̇α̇. (A.10)

The four-Pauli matrices σµ and σµ are defined by

(σµ)αα̇ = (1, σi), (σµ)α̇α = (1,−σi), (A.11)

where

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.12)

The four-Pauli matrices satisfy

(σµ)αα̇(σµ)
β̇β = −2δβαδ

β̇
α̇. (A.13)

The gamma matrices γµ are related with the four-Pauli matrices as

γµ =

(
0 σµ

σµ 0

)
. (A.14)

It is convenient to define the anti-symmetric gamma and four-Pauli matrices as

γµν =
1

2
[γµ, γν ] =

(
σµν 0

0 σµν

)
, (A.15)

(σµν)α
β
=

1

2
(σµσν − σνσµ)α

β
, (A.16)

(σµν)α̇β̇ =
1

2
(σµσν − σνσµ)α̇β̇ . (A.17)

The four-component Dirac spinor ΨD is made of a left-handed Weyl spinor ψα and a

right-handed Weyl spinor χα̇ as

ΨD =

(
ψα

χα̇

)
. (A.18)

The Dirac conjugate ΨD is defined as

ΨD = Ψ†
Dγ

0. (A.19)
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The Majorana condition is defined by

ΨD = ΨT
DC, C =

(
−ϵαβ 0

0 −ϵα̇β̇

)
= −iγ2γ0. (A.20)

The Majorana spinor satisfying the Majorana condition is

ΨM =

(
ψα

ψ
α̇

)
. (A.21)

The Dirac and Majorana kinetic terms are given by

LD = iΨDγ
µ∂µΨD ∼ iψσµ∂µψ + iχσµ∂µχ, (A.22)

LM =
i

2
ΨMγ

µ∂µΨM ∼ iψσµ∂µψ, (A.23)

where the symbol “∼” means that we neglect total derivatives.

A.2 Notations of group theory

Here we would like to define and fix the notations for group theory. We only consider Lie

groups.

A.2.1 Dynkin label

Let us consider a Lie group G with simple roots αj (j = 1, · · · , rankG). Let µj be the

fundamental weight satisfying

2αj · µk

(αj)2
= δjk. (A.24)

Then the highest weight of an arbitrary irreducible representation of a Lie group G can

always be written as

µ =
rankG∑
j=1

ℓjµj , (A.25)

where ℓj is a non-negative integer called the Dynkin label. Thus we can label an irreducible

representation by the Dynkin label. We often use the notation

(ℓ1, · · · , ℓrankG) (A.26)

to express an irreducible representation with the highest weight µ =
∑

j ℓ
jµj of G.
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A.2.2 Character formula

A character χR(u) of a representation R of a Lie group G is defined by

χR(u) = trR

rankG∏
j=1

u
Hj

j

 , (A.27)

where Hj is the Cartan generator of G. There is a formula to calculate the character for

a given representation R with the highest weight µ. It is given by

χR(u) =

∑
σ∈W sign(σ)uσ(µ+ρ)∏
α∈R+

(u
α
2 − u−

α
2 )

, (A.28)

where R+ is a set of positive roots and W is a set of Weyl reflections. ρ is defined by

ρ =
1

2

∑
α∈R+

α. (A.29)

We used the vector notation

uµ =
rankG∏
j=1

u
µj

j . (A.30)

The formula (A.28) is called the Weyl character formula.

For convenience, we show the Weyl character formula for U(2) and U(3). The U(2)

character χn(a, b) is given by

χn(a, b) =
an+1 − bn+1

a− b
. (A.31)

The U(3) character χ(m,n)(a, b, c) is given by

χ(m,n)(a, b, c) = − abc

(a− b)(b− c)(c− a)

∣∣∣∣∣∣
am+1 1 a−n−1

bm+1 1 b−n−1

cm+1 1 c−n−1

∣∣∣∣∣∣ . (A.32)

Then the SU(2) character χn(u) and the SU(3) character χ(m,n)(u, v) are given by

χn(u) = χn(u, u
−1), (A.33)

χ(m,n)(u, v) = χ(m,n)(u, u
−1v, v−1). (A.34)
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