E_{6} GUT with 3 Generations from Strings

Sanefumi Moriyama

Nagoya-KMI/Math

Phenomenological Requirements

- \boldsymbol{E}_{6} Unification Group
- Adjoint Higgs Fields
- 3 Families
- $4 \mathrm{D} \boldsymbol{\mathcal { N }}=1$ SUSY
"Translate each requirement into the string setup!!"

String Setup

- Lattice Engineering Technique
- A Higher Kac-Moody Level from Diagonal Embedding Method
- Level-3 with Shift Action ?
- Rotation of Right-Movers satisfying the SUSY Condition ($\boldsymbol{E}_{\mathbf{6}}$ Coxeter Element, $\mathbb{Z}_{\mathbf{1 2}}$ Orbifold Theory for $\boldsymbol{E}_{\mathbf{6}}$ Lattice)

Strategy

(1) We prepare a $(22,6)$-dim lattice with 3 -copies of \boldsymbol{E}_{6} lattices. (Lattice Engineering Technique)
(2) We perform an orbifold action which includes ...

- Left-movers:

Permutation of $3 \boldsymbol{E}_{\mathbf{6}}$'s with shift actions (Diagonal Embedding)

- Right-movers:

Rotation with the $\boldsymbol{E}_{\mathbf{6}}$ Coxeter element
(3) We find out \#(Generations)!!

We shall explain these setups using partition functions.

Contents

(1) Introduction
(2) Partition Function
(Lattice Partition Function

- Lattice Engineering Technique
- Diagonal Embedding with Shifts
- Shifts in \boldsymbol{A}_{2} Lattice
- Summary

Contents

(1) Introduction
(2) Partition Function
(3) Lattice Partition function

- Summary

Partition Function

One-loop vacuum diagram of the closed strings
(\simeq generating function of the spectrum)

$$
Z(\tau)=\operatorname{Tr}_{\mathcal{H}} q^{H} \quad q=e^{2 \pi i \tau}
$$

$$
\begin{gathered}
\text { Worldsheet }=\text { Torus } \\
(=\text { Parallelogram with two pairs of sides identified })
\end{gathered}
$$

Moduli Transformation

Torus

- Characterized by moduli $\boldsymbol{\tau}$.
- Different moduli may represent the same torus.

Modular transformation

Invariance Under Modular Transformation

Modular transformation

$$
\mathcal{T}: \tau \mapsto \tau+1 \quad \mathcal{S}: \tau \mapsto-1 / \tau
$$

Partition function should also be invariant under the modular transformation.

$$
Z(\tau+1)=Z(\tau) \quad Z(-1 / \tau)=Z(\tau)
$$

Orbifold Theory (Symmetric or Asymmetric)

(1) Project out the unwanted string states.
(2) Recover the modular invariance by adding twisted strings.

Partition Function of Orbifold Theory

$(\boldsymbol{\alpha}, \boldsymbol{\beta})$ Sector
$\boldsymbol{\alpha}$: Twisted boundary condition $\quad \boldsymbol{\beta}$: Projection

$$
Z\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau)=\operatorname{Tr}_{\mathcal{H}_{\alpha}} q^{H} \theta^{\beta}
$$

Expected modular tranformation:
$Z\left[\begin{array}{l}\alpha \\ \beta\end{array}\right](\tau+1)=Z\left[\begin{array}{c}\alpha \\ \beta+\alpha\end{array}\right](\tau) \quad Z\left[\begin{array}{l}\alpha \\ \beta\end{array}\right](-1 / \tau)=Z\left[\begin{array}{c}\beta \\ -\alpha\end{array}\right](\tau)$

Spectrum of Bosonic String

$$
\begin{array}{lll}
\alpha_{-3}^{i}|0\rangle & \alpha_{-2}^{i} \alpha_{-1}^{j}|0\rangle & \alpha_{-1}^{i} \alpha_{-1}^{j} \alpha_{-1}^{k}|0\rangle \\
\alpha_{-2}^{i}|0\rangle & \alpha_{-1}^{i} \alpha_{-1}^{j}|0\rangle & \\
\alpha_{-1}^{i}|0\rangle & & \\
|0\rangle & &
\end{array}
$$

Formal sum, for each direction

$$
\begin{aligned}
& \text { Hilbert space }=\left(1 \oplus \alpha_{-1} \oplus \alpha_{-1}^{2} \oplus \cdots\right) \\
& \qquad \otimes\left(1 \oplus \alpha_{-2} \oplus \alpha_{-2}^{2} \oplus \cdots\right) \otimes \cdots \\
& \quad \otimes\left(1 \oplus \alpha_{-n} \oplus \alpha_{-n}^{2} \oplus \cdots\right) \otimes \cdots|0\rangle
\end{aligned}
$$

Partition Function

Partition function of bosonic strings without the zero modes

$$
Z^{\prime}(\tau)=\frac{1}{\eta(\tau)^{24}}
$$

are given in terms of Dedekind eta function $\boldsymbol{\eta}(\boldsymbol{\tau})$:

$$
\eta(\tau)=q^{1 / 12} \prod_{n=1}^{\infty}\left(1-q^{n}\right)=q^{1 / 12} \sum_{n} q^{\pi(n)}
$$

Example: $3=2+1=1+1+1 \Rightarrow \pi(3)=3$

Beautiful Moduli Transformation Property

$$
\begin{aligned}
& \eta(\tau+1)=e^{2 \pi i(1 / 24)} \eta(\tau) \\
& \eta(-1 / \tau)=\sqrt{-i \tau} \eta(\tau)
\end{aligned}
$$

Interpretation

- $e^{2 \pi i(1 / 24)}: 24$-Dim of the light-cone bosonic string
- $\sqrt{-\boldsymbol{i \tau}}$: Cancellation with the zero-mode contribution

Beautiful because ...
Construction of the modular invariant partition function is possible.

Jacobi theta Function

Definition

$$
\begin{aligned}
\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] & =\sum_{n} \exp (-\pi(n+\alpha)(-i \tau)(n+\alpha)+2 \pi i(n+\alpha) \beta) \\
& =\sum_{n} q^{(n+\alpha)^{2} / 2} e^{2 \pi i(n+\alpha) \beta} \\
& =\eta(\tau) q^{\cdots} e^{2 \pi i \cdots} \prod_{n=1}^{\infty}\left(1+q^{n+\alpha-\frac{1}{2}} e^{2 \pi i \beta}\right)\left(1+q^{n-\alpha-\frac{1}{2}} e^{-2 \pi i \beta}\right)
\end{aligned}
$$

$\boldsymbol{\alpha}$: Shifts from integers $\boldsymbol{\beta}$: Projections

Modular Transformation

Modular transformation properties are not so beautiful:

$$
\begin{aligned}
& \vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau+1)=e^{\pi i \alpha(1-\alpha)} \vartheta\left[\begin{array}{c}
\alpha \\
\beta+\alpha-1 / 2
\end{array}\right](\tau) \\
& \vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](-1 / \tau)=\sqrt{-i \tau} e^{2 \pi i \alpha \beta} \vartheta\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right]
\end{aligned}
$$

Not-so-beautiful because ...
Interpretation of factors is unclear.

Attempt at Beauty

Redefinition

$$
\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=e^{-\pi i \alpha \beta} \boldsymbol{v}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

Moduli transformation properties are improved:

$$
\begin{aligned}
& \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau+1)=e^{\pi i \alpha / 2} \Theta\left[\begin{array}{c}
\alpha \\
\beta+\alpha-1 / 2
\end{array}\right](\tau) \\
& \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](-1 / \tau)=\sqrt{-i \tau} \Theta\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right]
\end{aligned}
$$

However, they are still not beautiful enough!

Further Attempt

Applying formula valid for $\boldsymbol{n} \in \mathbb{Z}$

$$
\Theta\left[\begin{array}{c}
\alpha \\
\beta+n
\end{array}\right]=e^{\pi i \alpha n} \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

to a non-integral case $n=1 / 2(!)$,
we end up with beautiful BUT incorrect modular transformation properties:

$$
\begin{aligned}
& \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau+1) \simeq \Theta\left[\begin{array}{c}
\alpha \\
\beta+\alpha
\end{array}\right](\tau) \\
& \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](-1 / \tau)=\sqrt{-i \tau} \Theta\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right]
\end{aligned}
$$

To Justify The Cheating

- Fermion Partition Function
- Twisted Boson Partition Function

Fermion Partition Function

Let's add the $1 / 2$-shifted terms from the beginning.

$$
\begin{gathered}
\Theta_{(\phi)}^{\mathrm{F}}\left[\begin{array}{l}
\alpha \\
\boldsymbol{\beta}
\end{array}\right]=\frac{e^{-\pi i(\alpha \phi) \cdot(\beta \phi)}}{2 \eta^{4}} \times \\
\left\{\prod_{i=0}^{3} \vartheta\left[\begin{array}{c}
\alpha \phi^{i} \\
\boldsymbol{\beta} \phi^{i}
\end{array}\right]-\prod_{i=0}^{3} e^{-\pi i \alpha \phi^{i}} \vartheta\left[\begin{array}{c}
\alpha \phi^{i} \\
\boldsymbol{\beta} \phi^{i}+1 / 2
\end{array}\right]-\prod_{i=0}^{3} \vartheta\left[\begin{array}{c}
\alpha \phi^{i}+1 / 2 \\
\beta \phi^{i}
\end{array}\right]\right\}
\end{gathered}
$$

ϕ^{i} : Rotation angles of the orbifold action
The first two terms: NS-sector The last term: R-sector

Modular Transformation

Beautiful and correct modular transformation properties:

$$
\begin{aligned}
& \Theta_{(\phi)}^{\mathrm{F}}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau+1)=e^{2 \pi i(16 / 24)} \Theta_{(\phi)}^{\mathrm{F}}\left[\begin{array}{c}
\alpha \\
\beta+\alpha
\end{array}\right](\tau) \\
& \Theta_{(\phi)}^{\mathrm{F}}\left[\begin{array}{c}
\alpha \\
\boldsymbol{\beta}
\end{array}\right](-1 / \tau)=\Theta_{(\phi)}^{\mathrm{F}}\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right](\tau)
\end{aligned}
$$

Partition functions lead to understanding of the GSO projection.

Similarly, Twisted Boson Partition Function

$$
\Theta_{(\phi)}^{\mathrm{B}}\left[\begin{array}{l}
\boldsymbol{\alpha} \\
\boldsymbol{\beta}
\end{array}\right]=\frac{\eta}{\vartheta\left[\begin{array}{c}
\alpha \phi+1 / 2 \\
\beta \phi-1 / 2
\end{array}\right]}
$$

Modular transformation properties:

$$
\begin{aligned}
& \Theta_{(\phi)}^{\mathrm{B}}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau+1)=e^{2 \pi i(2 / 24)} \Theta_{(\phi)}^{\mathrm{B}}\left[\begin{array}{c}
\alpha \\
\beta+\alpha
\end{array}\right](\tau) \\
& \Theta_{(\phi)}^{\mathrm{B}}\left[\begin{array}{l}
\alpha \\
\boldsymbol{\alpha}
\end{array}\right](-1 / \tau)=i \sqrt{-i \tau} \Theta_{(\phi)}^{\mathrm{B}}\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right](\tau)
\end{aligned}
$$

Mostly beautiful except the extra factor i in the S-transformation.

Contents

(1) Introduction
(2) Partition Function
(Lattice Partition Function

- Lattice Engineering Technique
- Diagonal Embedding with Shifts
- Shifts in A_{2} Lattice
(0) Summary

Lattice Partition Function

Before orbifolding

$$
\vartheta_{M}(\tau)=\sum_{n_{i}} \exp \left(2 \pi i \tau\left(n_{i} e^{i}\right)^{2} / 2\right)=\sum_{\vec{n}} \exp (-\pi \vec{n} \cdot(-i \tau M) \vec{n})
$$

$M^{i j}=\left\langle e^{i}, e^{j}\right\rangle$: Inner product of the lattice basis e^{i}
To satisfy the modular invariance

$$
\begin{aligned}
\boldsymbol{\vartheta}_{M}(\tau+1) & =\vartheta_{M}(\tau) \\
\boldsymbol{\vartheta}_{M}(-1 / \tau) & =\sqrt{-i \tau}^{\operatorname{dim} M} \vartheta_{M}(\tau)
\end{aligned}
$$

we have to require the following conditions for the lattice:

- Even

$$
\left(n_{i} e^{i}\right)^{2}=\vec{n} \cdot M \vec{n} \in 2 \mathbb{Z}
$$

- Self-Dual $\left(\widetilde{e}^{i} \cdot e^{j}=\delta^{i j}\right)$

$$
\left\{n_{i} e^{i} \mid n_{i} \in \mathbb{Z}\right\}=\left\{m_{i} \widetilde{e}^{i} \mid m_{i} \in \mathbb{Z}\right\}
$$

Lie Lattice

In the case of the root lattice for Lie algebra

- $e^{i}=\alpha^{i}$ (Root Vector)
- $M=C$ (Cartan Matrix)

Modular invariance conditions

- Even: Valid for every simply-laced Lie algebra
- Even and Self-Dual: Valid only for \boldsymbol{E}_{8}

E_{8} Lattice

Modular invariant partition function

$$
\mathcal{E}(\tau+1)=\mathcal{E}(\tau) \quad \mathcal{E}(-1 / \tau)=\sqrt{-i \tau}^{8} \mathcal{E}(\tau)
$$

Let's decompose it into the $\boldsymbol{E}_{\mathbf{6}} \times \boldsymbol{A}_{\mathbf{2}}$ lattice:

$$
\mathcal{E}(\tau)=E(\tau) A(\tau)+e(\tau) a(\tau)+e(\tau) a(\tau)
$$

- A similar decomposition in the representation theory.

$$
248=(78 \times 1+1 \times 8)+27 \times 3+\overline{27} \times \overline{3}
$$

- $($ Conjugacy Class $)=($ Weight Lattice $) /($ Root Lattice $)$ In both cases of $\boldsymbol{E}_{\mathbf{6}}$ and $\boldsymbol{A}_{\mathbf{2}}, \#($ Conjugacy Class) $=3$
- \boldsymbol{E} and \boldsymbol{A} : Partition functions of root lattices
\boldsymbol{e} and \boldsymbol{a} : Partition functions of root lattices shifted by a weight

Modular Transformation Properties

$$
\begin{array}{rlrl}
E(\tau+1) & =E(\tau) & E(-1 / \tau) & =\sqrt{-i \tau}^{6} \frac{1}{\sqrt{3}}(E+2 e)(\tau) \\
e(\tau+1) & =\omega^{-1} e(\tau) & e(-1 / \tau) & =\sqrt{-i \tau}^{6} \frac{1}{\sqrt{3}}(E-e)(\tau) \\
A(\tau+1) & =A(\tau) & A(-1 / \tau) & =\sqrt{-i \tau}^{2} \frac{1}{\sqrt{3}}(A+2 a)(\tau) \\
a(\tau+1) & =\omega a(\tau) & a(-1 / \tau) & =\sqrt{-i \tau}^{2} \frac{1}{\sqrt{3}}(A-a)(\tau) \\
& & (\omega=\exp (2 \pi i / 3))
\end{array}
$$

Matrix Form

$$
\mathcal{E}(\tau)=\left(\begin{array}{lll}
E & e & e
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{A} \\
a \\
a
\end{array}\right)
$$

\mathcal{S}-transformation

$$
\begin{aligned}
\mathcal{S} \cdot\left(\begin{array}{l}
E \\
e \\
e
\end{array}\right) & ={\sqrt{-i \tau^{6}} \frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)\left(\begin{array}{l}
E \\
e \\
e
\end{array}\right)}_{\mathcal{S} \cdot\left(\begin{array}{l}
A \\
a \\
a
\end{array}\right)}=\sqrt{-i \tau^{2}} \frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right)\left(\begin{array}{l}
A \\
a \\
a
\end{array}\right)
\end{aligned}
$$

Lessons

$\boldsymbol{E}_{\mathbf{6}}$ lattice and $\boldsymbol{A}_{\mathbf{2}}$ lattice transform oppositely.
More generally, a lattice transforms oppositely as its complement lattice in the even self-dual \boldsymbol{E}_{8} lattice.
Conjugacy classes also relate to those in the complement lattice.

Lattice Engineering Technique

We can always replace a left-moving lattice by the complement right-moving lattice (denoted with an asterisk).

$$
\boldsymbol{A}_{2} \Rightarrow\left[\boldsymbol{E}_{6}\right]^{*} \xrightarrow{\text { decomp }}\left[\left(\boldsymbol{A}_{2}\right)^{3}\right]^{*} \Rightarrow\left(\boldsymbol{E}_{6}\right)^{3}
$$

Hence, $\left(\boldsymbol{E}_{6}\right)^{3}$ lattice can be obtained from any $\boldsymbol{A}_{\mathbf{2}}$ lattice!! Explicit correspondence of conjugacy classs reads

$$
\begin{aligned}
& 0 \longrightarrow(0,0,0) \oplus(1,1,1) \oplus(2,2,2) \\
& 1 \longrightarrow(0,1,2) \oplus(1,2,0) \oplus(2,0,1) \\
& 2 \longrightarrow(0,2,1) \oplus(2,1,0) \oplus(1,0,2)
\end{aligned}
$$

Setup

(1) Starting point: $\boldsymbol{E}_{6} \times\left[\boldsymbol{E}_{6}\right]^{*}$
(2) Decomposition: $\left(\boldsymbol{A}_{2}\right)^{3} \times\left[\boldsymbol{E}_{6}\right]^{*}$
(3) Finally: $\left[\left(\boldsymbol{A}_{2}\right)^{2} \times\left(\boldsymbol{E}_{6}\right)^{3}\right] \times\left[\boldsymbol{E}_{6}\right]^{*}$

Contents

(1) Introduction
(2) Partition Function
(3) Lattice Partition Function

- Lattice Engineering Technique
- Diagonal Embedding with Shifts
- Shifts in \boldsymbol{A}_{2} Lattice
(4) Summary

Diagonal Embedding Method

- A higher Kac-Moody level is necessary for adjoint Higgs fields.
- We raise the level by the diagonal embedding method (an orbifold action which permutes 3 copies of \boldsymbol{E}_{6} 's) so that only the diagonal \boldsymbol{E}_{6} remains phaseless.
Besides, shift action has to be introduced simultaneously to break symmetry between chiral matters and anti-chiral matters.

Study from Partition Function

Orbifold projection by permutation

- States in the $\left(\boldsymbol{E}_{6}\right)^{3}$ lattice take the form $\left|\boldsymbol{p}, \boldsymbol{p}^{\prime}, \boldsymbol{p}^{\prime \prime}\right\rangle$.
- $\mathbb{Z}_{\mathbf{3}}$ orbifold action by permuting 3 copies of $\boldsymbol{E}_{\mathbf{6}}$'s reduces to the states $|p, p, p\rangle$.

In terms of the partition function

- Originally

$$
\begin{aligned}
(0,0,0) \oplus(1,1,1) \oplus(2,2,2) & \Rightarrow[E(\tau)]^{3}+2[e(\tau)]^{3} \\
(0,1,2) \oplus(1,2,0) \oplus(2,0,1) & \Rightarrow 3 E(\tau) e(\tau)^{2} \\
(0,2,1) \oplus(2,1,0) \oplus(1,0,2) & \Rightarrow 3 E(\tau) e(\tau)^{2}
\end{aligned}
$$

- After orbifold projection: $E(3 \tau)+2 e(3 \tau)$

Matrix Form

$$
\left.\begin{array}{l}
\text { In the matrix form } \\
\\
\\
1 \square \\
0 \\
2 \square \\
0
\end{array}\right)
$$

Not \boldsymbol{e} but \boldsymbol{E} appears in the twisted sectors. Reason?
Nothing to break to symmetry between chiral and antichiral matters.

Shift

If we introduce the shift action, conjugacy class $1 \& 2$ acquire phases. Then, we find $\left(E+\omega e+\omega^{2} e\right)(3 \tau)=(E-e)(3 \tau)$ instead of $(E+e+e)(3 \tau)=(E+2 e)(3 \tau)$ in the untwisted sector.

$$
\left[\begin{array}{ccc}
& (-i)^{3} \frac{\sqrt{3}}{27} e\left(\frac{\tau}{3}\right) & i^{3} \frac{\sqrt{3}}{27} e\left(\frac{\tau}{3}\right) \\
(E-e)(3 \tau) & (-i)^{3} \frac{\sqrt{3}}{27} e\left(\frac{\tau+1}{3}\right) & i^{3} \omega^{2} \frac{\sqrt{3}}{27} e\left(\frac{\tau+2}{3}\right) \\
(-1)^{3}(E-e)(3 \tau) & (-i)^{3} \frac{\sqrt{3}}{27} e\left(\frac{\tau+2}{3}\right) & i^{3} \frac{\sqrt{3}}{27} e\left(\frac{\tau+1}{3}\right)
\end{array}\right]
$$

Thus, asymmetry between chiral and antichiral matters apears.

Contents

(1) Introduction
(2) Partition Function
(Lattice Partition Function

- Lattice Engineering Technique
- Diagonal Embedding with Shifts
- Shifts in \boldsymbol{A}_{2} Lattice
(0) Summary

Generalization

To incooperate the shift transformation, let us define a generalized theta function.

$$
\begin{gathered}
\vartheta_{C}\left[\begin{array}{c}
\vec{\alpha} \\
\vec{\beta}
\end{array}\right](\tau)=\sum_{\vec{n}} \exp (-\pi(\vec{n}+\vec{\alpha}) \cdot(-i \tau C)(\vec{n}+\vec{\alpha}) \\
+2 \pi i(\vec{n}+\vec{\alpha}) \cdot C \overrightarrow{\boldsymbol{\beta}})
\end{gathered}
$$

Modular transformation properties:

$$
\begin{aligned}
& \vartheta_{C}\left[\begin{array}{c}
\vec{\alpha} \\
\overrightarrow{\boldsymbol{\beta}}
\end{array}\right](\tau+1)=e^{-\pi i \vec{\alpha} \cdot C \vec{\alpha}} \vartheta_{C}\left[\begin{array}{c}
\vec{\alpha} \\
\vec{\beta}+\vec{\alpha}
\end{array}\right](\tau) \\
& \vartheta_{C}\left[\begin{array}{l}
\vec{\alpha} \\
\vec{\beta}
\end{array}\right](-1 / \tau)=\frac{\sqrt{-i \tau} \operatorname{dim} C}{\sqrt{\operatorname{det} C}} e^{2 \pi i \vec{\alpha} \cdot C \vec{\beta}} \vartheta_{C^{-1}}\left[\begin{array}{c}
C \overrightarrow{\boldsymbol{\beta}} \\
-C \vec{\alpha}
\end{array}\right](\tau)
\end{aligned}
$$

Orbifold Partition Function

Using the mudular transformation properties, let us define the orbifold partition function as

$$
\Theta_{A}\left[\begin{array}{ll}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{cl}
& \frac{-i}{\sqrt{3}} \widehat{\Theta}_{A}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\frac{i}{\sqrt{3}} \widehat{\Theta}_{A}\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
\widehat{\Theta}_{A}\left[\begin{array}{l}
0 \\
1
\end{array}\right] & \frac{-i}{\sqrt{3}} \widehat{\Theta}_{A}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\frac{i}{\sqrt{3}} \widehat{\Theta}_{A}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
-\widehat{\Theta}_{A}\left[\begin{array}{l}
0 \\
2
\end{array}\right] & \frac{-i}{\sqrt{3}} \widehat{\Theta}_{A}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\frac{i}{\sqrt{3}} \widehat{\Theta}_{A}\left[\begin{array}{l}
2 \\
2
\end{array}\right]
\end{array}\right]
$$

Various Quantities

$$
\begin{aligned}
& \widehat{\Theta}_{A}\left[\begin{array}{c}
0 \\
\beta \neq 0
\end{array}\right]=\vartheta_{A}\left[\begin{array}{c}
\overrightarrow{0} \\
\beta \vec{s}
\end{array}\right] \\
& \widehat{\Theta}_{A}\left[\begin{array}{c}
\alpha \neq 0 \\
\beta
\end{array}\right]=\sum_{k=0}^{2} e^{\pi i \beta\left(\alpha^{-1} f k^{2}-\alpha \vec{s} \cdot A \vec{s}\right)} \vartheta_{A}\left[\begin{array}{c}
\alpha \vec{s}+k \vec{F} \\
\beta \vec{s}
\end{array}\right] \\
& A=\frac{1}{3}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad \vec{F}=\frac{1}{3}\binom{2}{-1} \quad f=\frac{2}{3}
\end{aligned}
$$

\vec{s} : Shift vector

- Introducing phases in the untwisted sectors
- Raising shift actions in the twised sectors

Modular Transformation

Modular transformation

$$
\begin{aligned}
& \Theta_{A}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau+1)=\Theta_{A}\left[\begin{array}{c}
\alpha \\
\beta+\alpha
\end{array}\right](\tau) \\
& \Theta_{A}\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right](-1 / \tau)=i \sqrt{-i \tau}^{2} \Theta_{A}\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right](\tau)
\end{aligned}
$$

Lesson: Shift action does not affect the modular transformation. Due to periodic condition in $\mathbb{Z}_{\boldsymbol{N}}$ orbifold theories $(N=12)$

$$
\begin{aligned}
& Z^{\text {total }}\left[\begin{array}{c}
\alpha \\
\beta+N
\end{array}\right]=Z^{\text {total }}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& 12 \sum_{i=1}^{2}(\text { norm })_{i}-\frac{12 / 3}{3} \in \mathbb{Z}
\end{aligned}
$$

Shift Action

Shift satisfying

$$
12 \vec{s}=0 \quad(\bmod \text { Root Lattice })
$$

can be expressed as

$$
\vec{s}=\frac{m_{1} \alpha_{1}+m_{2} \alpha_{2}}{12} \quad\left(m_{1}, m_{2} \in \mathbb{Z}\right)
$$

Periodic condition requires the sum of norms

$$
\text { norm }=\frac{1}{2}\left\|m_{1} \alpha_{1}+m_{2} \alpha_{2}\right\|^{2}=m_{1}^{2}-m_{1} m_{2}+m_{2}^{2}
$$

in two \boldsymbol{A}_{2} lattices to be $4 \bmod 12$.

Classification of Shifts

Since possible values of norms are

$$
\text { norm }=0,1,3,4,7,9 \quad(\bmod 12)
$$

the combinations can be $\{4,0\},\{1,3\},\{7,9\}$.
There seem lots of possibilities. However, many of them are related by Weyl group.

```
norm-4: (2, 0),(6, 8), (4, 0)
norm-0: (0, 0), (4, 8), (6, 0), (10, 2)
norm-1: (1, 0), (5, 8), (5, 0),(9, 8)
norm-3: (3, 6), (7, 2), (11, 10)
norm-7: (1, 6), (5, 2), (9, 10)
norm-9: (3, 0), (7, 8)
```


Moreover

- Two shifts with the difference belonging to the weight lattice should also be identified because ...
- $\alpha=0 \bmod 3: 3 \times$ Shift vectors \in Root lattice
- $\alpha \neq 0$ mod 3 : Right-movers are twisted nontrivially.
- $(1,0)$ and $(5,0)$ should also be identified because the same spectrum only comes from different sectors.

Finally, combining with the possibility of rotation, we are left with

$$
\begin{gathered}
\{(2,0),(4,0), \text { "rot" }\} \otimes\{(0,0),(6,0)\} \\
\quad(1,0) \otimes(3,6), \quad(1,6) \otimes(3,0)
\end{gathered}
$$

$3 \times 2+1 \times 1+1 \times 1=8$ consistent models.

Contents

(1) Introduction
(2) Partition Function
(3) Lattice Partition Function

- Summary

Setup

Lattice

$$
E_{6} \times\left[E_{6}\right]^{*} \Rightarrow\left(A_{2}\right)^{3} \times\left[E_{6}\right]^{*} \Rightarrow\left[\left(A_{2}\right)^{2} \times\left(E_{6}\right)^{3}\right] \times\left[E_{6}\right]^{*}
$$

Orbifold Action

- Permutation of three copies of \boldsymbol{E}_{6} 's
- Coxeter element of $\left[\boldsymbol{E}_{6}\right]^{*}$
- Shift action of $\boldsymbol{A}_{\mathbf{2}}$

"Modular Multiplets"

Different coefficients depending on $\operatorname{GCD}(\boldsymbol{\alpha}, \boldsymbol{\beta}, 12)$:

$$
\left[\begin{array}{cccccccccc}
& \circ & \circ & \triangle & \square & \circ & \bigcirc & \circ & \square & \cdots \\
\circ & \cdots \\
\circ & \cdots \\
\triangle & \circ & \circ & \triangle & \circ & \circ & \triangle & \circ & \circ & \cdots \\
\square & \circ & \circ & \circ & \square & \circ & \circ & \circ & \square & \cdots \\
\circ & \cdots \\
\bigcirc & \circ & \circ & \triangle & \circ & \circ & \bigcirc & \circ & \bigcirc & \cdots \\
\circ & \cdots \\
\square & \circ & \circ & \circ & \square & \circ & \circ & \circ & \square & \cdots \\
\vdots & \ddots
\end{array}\right]
$$

Phases of Fixed Points

(1) We rewrite the partition functions in terms of the modular-invariant theta functions into "physical" theta functions (which exhibit the state counting explicitly).
(2) Coefficients

$\alpha \backslash \beta$	0	1	2	3	4	5	6
2	1	-1	1	-1	1	-1	1
4	3	1	-1	1	3	1	-1
6	2	1	-1	-2	-1	1	2

(3) Interpretation as phases of fixed points $\sum_{k} e^{2 \pi i \beta \varphi_{k}}$

α	phases of fixed points
2	$1 / 2$
4	$0, \pm 1 / 4$
6	$0, \pm 1 / 6$
$E_{\text {a }}$	

States Without Phases

Spectrum comes from states with various contributions of phases canceled.

- fermion
- twisted bosons
- lattice
- fixed points

Generations

Out of 8 models

- $3: \#$ (generations) $=0$
- $3: \#$ (generations) $=3$
- $2: \#$ (generations) $=9$

To summarize

- Two New \boldsymbol{E}_{6} Models As A Result
- Systematic Construction Of String Phenomenology

