Volume of Moduli Space of Vortices and Localization Formula

Kazutoshi Ohta Meijigakuin University

Working with A. Miyake and N. Sakai

Riken Symposium 2010, Short Version, 2010/12/17

Introduction

Topic:

* Calculation of the volume of the moduli space of BPS solitons

Moduli space?

* Kähler or hyper-Kähler quotient space

{Solutions of F & D-term constraints} / {Gauge symmetry}

BPS soliton

* Abelian/non-Abelian vortex on a *compact* Riemann surface with genus $h(\Sigma_h)$

Introduction

BPS equations ($G=U(N_c)$ and N_f flavors):

$$\mu_r \equiv F - \frac{g^2}{2} (c - HH^{\dagger})\omega = 0$$
$$\mu_{\bar{z}} \equiv \mathcal{D}_{\bar{z}}H = 0$$
$$\mu_z \equiv \mathcal{D}_z H^{\dagger} = 0$$

where g:gauge coupling, c: FI parameter, ω :Kähler 2-form on Σ_h , $H:N_c \times N_f$ matrix.

$$\mathcal{M}_k \equiv \frac{\{\text{Solutions of } \mu_r = \mu_z = \mu_{\bar{z}} = 0 \text{ with } \frac{1}{2\pi} \int F = k\}}{U(N_c)}$$

Volume of \mathcal{M}_k ?

Introduction

The volume of moduli space of the BPS solitons relates to

- Non-perturbative corrections in supersymmetric gauge theory (Nekrasov's formula)
- Thermodynamical partition function of the BPS solitons (Manton et al.)

$$Z = \frac{1}{\hbar^{2k}} \int d^k p d^k x \, e^{-\frac{1}{2T}g^{ij}p_i p_j} = \left(\frac{2\pi^2 T}{\hbar^2}\right)^k \operatorname{Vol}(\mathcal{M}_k)$$

The volume of moduli space of the BPS solitons (supersymmetric systems) is a key to understand the non-perturbative dynamics and dualities in gauge/string theory

Method

Straightforwardly,

BPS eqs. \Rightarrow BPS solutions \Rightarrow effective action \Rightarrow metric \Rightarrow volume

Instead, we define the field theoretical partition function to obtain the volume of the moduli space [Moore-Nekrasov-Shatashvili (1997)]:

$$\mathcal{Z}_{k}^{N_{c},N_{f}}(\Sigma_{h}) = \int \mathcal{D}\Phi \mathcal{D}^{2}A \mathcal{D}^{2}\lambda \mathcal{D}^{2}H \mathcal{D}^{2}\psi \mathcal{D}^{2}Y \mathcal{D}^{2}\chi e^{-S_{0}-S_{1}}$$

where

$$S_{0} = \int_{\Sigma_{h}} \operatorname{Tr} \left[i\Phi \left\{ F - \frac{g^{2}}{2} (c - HH^{\dagger})\omega \right\} + \frac{1}{2}\lambda \wedge \lambda + \frac{g^{2}}{2}\psi\psi^{\dagger}\omega \right]$$
$$S_{1} = \int_{\Sigma_{h}} d^{2}z \operatorname{Tr} \left[g^{z\bar{z}} (Y_{z}Y_{\bar{z}} + i\Phi\chi_{z}\chi_{\bar{z}}) \right] + \cdots$$

Method

This is essentially a constrained system on the moduli space of the vortex

$$\begin{aligned} \mathcal{Z}_k^{N_c,N_f} &= \int \mathcal{D}^2 A \mathcal{D}^2 H \,\delta(\mu_r) J_r \,\delta(\mu_z) J_z \,\delta(\mu_{\bar{z}}) J_{\bar{z}} \cdots \\ &= \operatorname{Vol}(\mathcal{M}_k^{N_c,N_f}) \end{aligned}$$

We can perform the path integral, which reduces to residue integrals over zero modes of Lagrange multiplier field Φ

$$\mathcal{Z}_{k}^{N_{c},N_{f}}(\Sigma_{h}) = \sum_{\sum_{a}k_{a}=k} (-1)^{\sigma} \int \prod_{a} \frac{d\phi_{a}}{2\pi} \frac{\prod_{a} (1 + \frac{N_{f}}{2\pi i \phi_{a}})^{h} \prod_{a < b} (i\phi_{a} - i\phi_{b})^{2-2h}}{\prod_{a} (i\phi_{a})^{N_{f}(1-h+k_{a})}}$$
$$\times e^{2\pi i \sum_{a} \phi_{a}(\frac{g^{2}c}{4\pi}\mathcal{A} - k_{a})}$$

Integrals are localized at poles (Localization formula)

Results

N_c=*N_f*=1 (Abrikosov–Nielsen–Olesen vortex)

$$\mathcal{Z}_{k}^{1,1}(\Sigma_{h}) = (2\pi)^{k-h} \sum_{j=0}^{h} \frac{h!}{j!(k-j)!(h-j)!} \left(\frac{g^{2}c}{4\pi}\mathcal{A} - k\right)^{k-j}$$

We find

$$\mathcal{A} \ge rac{4\pi}{g^2 c} k$$
 Bradlow limi

For *h*=0 (sphere)

$$\mathcal{Z}_{k}(S^{2}) = \frac{(2\pi)^{k}}{k!} \left(\frac{g^{2}c}{4\pi}\mathcal{A} - k\right)^{k} \xrightarrow{\mathcal{A} \to \infty} \operatorname{Vol}((S^{2})^{k}/\mathcal{S}_{k}) \sim \frac{\mathcal{A}^{k}}{k!}$$

Eq of state: $P\left(\mathcal{A} - \frac{4\pi}{g^{2}c}k\right) = kT$

t

Results

N_c=2, *N_f* (non-Abelian *semi-local* vortex) on the sphere

$$\begin{aligned} \mathcal{Z}_{0}^{2,N_{f}}(S^{2}) &= \frac{2!}{(N_{f}-1)!(N_{f}-2)!}(2\pi\tilde{\mathcal{A}})^{2(N_{f}-2)} \\ \mathcal{Z}_{1}^{2,N_{f}}(S^{2}) &= \frac{(2\pi)^{3N_{f}-4}}{(2N_{f}-1)(N_{f}-1)!(2N_{f}-3)!}\tilde{\mathcal{A}}^{N_{f}-3}(\tilde{\mathcal{A}}-1)^{2N_{f}-3} \\ &\times \left((N_{f}-2)\tilde{\mathcal{A}}^{2}+2(N_{f}+1)\tilde{\mathcal{A}}+(N_{f}-2)\right) \\ \mathcal{Z}_{2}^{2,N_{f}}(S^{2}) &= 2(2\pi)^{4N_{f}-4} \left[\frac{-2}{(N_{f}-1)!(3N_{f}-1)!}\tilde{\mathcal{A}}^{N_{f}-3}(\tilde{\mathcal{A}}-2)^{3N_{f}-3} \\ &\times \left((2N_{f}^{2}-2N_{f}+1)\tilde{\mathcal{A}}^{2}+2(2N_{f}+1)(N_{f}-1)\tilde{\mathcal{A}}+2(N_{f}-1)(N_{f}-2)\right) \\ &+ \frac{1}{(2N_{f}-1)!(2N_{f}-2)!}(\tilde{\mathcal{A}}-1)^{4N_{f}-4}\right] \end{aligned}$$

where $\tilde{\mathcal{A}} \equiv \frac{g^2 c}{4\pi} \mathcal{A}$

Comments

On the sphere, *k*=0 (perturbative part) gives the volume of the vacuum moduli space

$$\mathcal{Z}_0^{N_c,N_f}(S^2) = N_c! \times \operatorname{Vol}(G_{N_c,N_f}) \tilde{\mathcal{A}}^{N_c(N_f-N_c)}$$

Vol. of Grassmannian

The case of $N_c = N_f$ (non-Abelian *local* vortex) is rather special

$$\mathcal{Z}_{0}^{2,2}(S^{2}) = 2$$

$$\mathcal{Z}_{1}^{2,2}(S^{2}) = 2 \times (2\pi)^{2} (\tilde{\mathcal{A}} - 1)$$

$$\mathcal{Z}_{2}^{2,2}(S^{2}) = 2 \times \frac{(2\pi)^{4}}{2!} \left(\tilde{\mathcal{A}}^{2} - \frac{20}{6} \tilde{\mathcal{A}} + \frac{17}{6} \right)$$

In the limit of $\mathcal{A} \to \infty$, the divergence comes from the position moduli only

Conclusion

- We evaluate the volume of the moduli space of BPS vortices on the Riemann surface by using the localization formula
- We can see not only the volume itself but also the geometrical structure of the moduli space
- Using the deconstruction, we can also apply the localization method to the solitons in the Chern-Simons-Higgs system, etc.
- The volume of the moduli space (aka localization formula) is a key to understand the dualities between gauge theories, string theories, matrix models, and more!