Multiple M5－branes＇theory with Lie 3－algebra

高エネルギ一加速器研究機構 素粒子原子核研究所
柴 正太郎

2010年12月17日
（共同研究者：本間 良則氏，小川 盛郎氏）

Construction of BLG model

1. Conjecture the supersymmetry transformation for multiple M2-branes' system.
\checkmark The clues are provided by that of a single M2-brane's and multiple D2-branes' (3-dim super Yang-Mills) system.
\checkmark To do this, Lie 3-algebra is naturally introduced as the gauge symmetry algebra.
2. Obtain the equations of motion, by checking the closure of this transformation.
3. Write down the action which reproduces these equations of motion.

Action of BLG model

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2} h^{a b} D_{\mu} X_{a}^{I} D_{\mu} X_{b}^{I}+\frac{i}{2} h^{a b} \bar{\Psi}_{a} \Gamma^{\mu} D_{\mu} \Psi_{b}+\frac{i}{4} h^{a e} f^{b c c}{ }_{e} \bar{\Psi}_{a} \Gamma_{I J} X_{b}^{I} X_{c}^{J} \Psi_{d} \\
& -\frac{1}{12} h^{g h} f^{a b c}{ }_{g} f^{d e f}{ }_{h} X_{a}^{I} X_{b}^{J} X_{c}^{K} X_{d}^{I} X_{e}^{J} X_{f}^{K} \\
& +\frac{1}{2} \epsilon^{\mu \nu \lambda}\left(h^{d e} f^{a b c}{ }_{e} A_{\mu a b} \partial_{\nu} A_{\lambda c d}+\frac{2}{3} h^{b h} f^{c d a}{ }_{g} f^{e f g}{ }_{h} A_{\mu a b} A_{\nu c d} A_{\lambda e f}\right)
\end{aligned}
$$

The fields on M2-branes' worldvolume are...
\checkmark scalars (transverse directions) - 8 d.o.f. $/$ mass dim. $=1 / 2$ spinors -8 d.o.f. $/$ mass dim. $=1$
metric
Chern-Simons gauge field - 0 d.o.f.
The Lie 3-algebra is denoted as...

$$
\begin{aligned}
\left\langle T^{a}, T^{b}\right\rangle & =h^{a b} \\
{\left[T^{a}, T^{b}, T^{c}\right] } & =f^{a b c}{ }_{d} T^{d}
\end{aligned}
$$

Lambert-Papageorgakis model

[Lamber-Papageorgakis '10]
By similar procedure to BLG model, a model of multiple M5-branes' system can be constructed:

$$
\begin{aligned}
D^{2} X_{a}^{I}+\frac{i}{2}\left[\bar{\Psi}, C^{\mu}, \Gamma_{\mu} \Gamma^{I} \Psi\right]_{a}-\left[C^{\mu}, X^{J},\left[C_{\mu}, X^{J}, X^{I}\right]\right]_{a} & =0 \\
\Gamma^{\mu} D_{\mu} \Psi_{a}+\Gamma_{\mu} \Gamma^{I}\left[C^{\mu}, X^{I}, \Psi\right]_{a} & =0 \\
D_{[\mu} H_{\nu \rho \rho] a}+\frac{1}{4} \epsilon_{\mu \nu \rho \sigma \lambda \tau}\left[C^{\lambda}, X^{I}, D^{\tau} X^{I}\right]_{a}-\frac{i}{8} \epsilon_{\mu \nu \rho \sigma \lambda \tau}\left[\bar{\Psi}, C^{\lambda}, \Gamma^{\tau} \Psi\right]_{a} & =0 \\
\tilde{F}_{\mu \nu}{ }^{b}{ }_{a}-C_{c}^{\rho} H_{\mu \nu \rho, d} f^{c d b}{ }_{a} & =0 \\
D_{\mu} C_{a}^{\nu} & =0
\end{aligned}
$$

$$
C_{c}^{\mu} D_{\mu} X_{d}^{I} f^{\text {cab }}{ }_{a}=C_{c}^{\mu} D_{\mu} \Psi_{d} f^{c d b}{ }_{a}=C_{c}^{\mu} D_{\mu} H_{\mu \rho \sigma, d} f^{c d b}{ }_{a}=C_{c}^{\mu} C_{d}^{\nu} f^{c d b}{ }_{a}=0
$$

\checkmark The action cannot be written down, unfortunately.

Lambert-Papageorgakis model

$$
\begin{aligned}
& \underline{D^{2}} X_{a}^{I}+\frac{i}{2}\left[\bar{\Psi}, \underline{C^{\mu}}, \Gamma_{\mu} \Gamma^{I} \Psi\right]_{a}-\left[\underline{C^{\mu}}, X^{J},\left[\underline{C_{\mu}}, X^{J}, X^{I}\right]\right]_{a}=0 \\
& \Gamma^{\mu} \underline{D_{\mu}} \Psi_{a}+\Gamma_{\mu} \Gamma^{I}\left[\underline{C^{\mu}}, X^{I}, \Psi\right]_{a}=0 \\
&\left.\underline{D_{[\mu}} H_{\nu \rho \sigma] a}+\frac{1}{4} \epsilon_{\mu \nu \rho \sigma \lambda \tau} \underline{\left[C^{\lambda}\right.}, X^{I}, D^{\tau} X^{I}\right]_{a}-\frac{i}{8} \epsilon_{\mu \nu \rho \sigma \lambda \tau}\left[\bar{\Psi}, \underline{C^{\lambda}}, \Gamma^{\tau} \Psi\right]_{a}=0 \\
& \underline{\tilde{F}_{\mu \nu}{ }_{a}-C_{c}^{\rho} H_{\mu \nu \rho, d} f^{c d b}{ }_{a}}=0 \\
& \underline{D_{\mu} C_{a}^{\nu}}=0 \\
& \hline
\end{aligned}
$$

The fields on M5-branes' worldvolume are...
\checkmark scalars - 5 d.o.f. $/$ mass dim. $=2$
\checkmark spinors -8 d.o.f. $/$ mass dim. $=5 / 2$
\checkmark 2-form field $B-3$ d.o.f. / mass dim. $=2$ (only $H=d B$ appears above.)
\checkmark gauge field -0 d.o.f.? / mass dim. $=1$ (closely related to 2 -form field.)
\checkmark new field $C-0$ d.o.f.? / mass dim. $=-1$ (needed for comformality.)

M5 to D4 / meaning of field C ?

\square Lie 3-algebra for reproduction of D4-branes $\left\{T^{i}, u, v\right\}$

$$
\left[u, T^{i}, T^{j}\right]=f_{k}^{i j} T^{k}, \quad\left[T^{i}, T^{j}, T^{k}\right]=-f^{i j k} v, \quad[v, *, *]=0 .
$$

\checkmark This reproduces D2-branes in BLG model. [Ho-Imamura-Matsuo ${ }^{\text {0 }} 0$]]
\checkmark This is related to the compactification of M-direction.
\square VEV's for u-component fields can be set, without breaking supersymmetry and gauge symmetry.

$$
C_{u}^{\mu}=\lambda \delta_{5}^{\mu} . \quad \text { otherwise }=0 \text { and } C_{i}^{\mu}=C_{v}^{\mu}=0
$$

$\square \quad$ The new field C seems to relate to the gauge fixing of worldvolume coordinates:
[Honma-Ogawa-SS, to appear]

$$
X^{\mu}(\sigma)=\sigma^{\mu} \mathbf{1}+C_{a}^{\mu} T^{a} \text { instead of } X^{\mu}(\sigma)=\sigma^{\mu}
$$

M5 to Dp / U-duality?

[Honma-Ogawa-SS, to appear]
ㅁ Lie 3-algebra for reproduction of Dp-branes on Tp-4 (a kind of central extension of Kac-Moody algebra) $\left\{T_{\vec{m}}^{i}, u, v, u_{a}, v_{a}\right\}$ $f^{u_{a}(i \vec{m})(j \vec{n})}=m_{a} \delta^{i j} \delta_{\vec{m}+\vec{n}}, \quad f^{(i \vec{m})(j \vec{n})(k \vec{l})}=f^{i j k} \delta_{\vec{m}+\vec{n}+\vec{l}} ; \quad\left\langle u_{a}, v_{b}\right\rangle=\delta_{a b}$.
\checkmark This reproduces Dp-branes on Tp-2 in BLG model.
\checkmark This is related to the compactification of M-direction and T-duality. [Ho-Matsuo-SS '08][Kobo-Martsuo-SS '08]
\square VEV's can be set as $C_{u}^{\mu}=\lambda \delta_{5}^{\mu}$) $X_{u_{a}}^{I}=\lambda_{a}^{I}$, otherwise $=0$.
Field redefinition is needed like $\Phi_{i}(x, y)=\sum_{\vec{m}} \Phi_{i \vec{m}}(x) e^{i \vec{m} \vec{y}}$
\square U-duality \supset relation among M5-branes and Dp-branes on Tp-4 T-duality, T-transformation, S-duality can be discussed...

