Topological Phases of Eternal Inflation

Yasuhiro Sekino (Okayama Institute for Quantum Physics)

w/ Stephen Shenker (Stanford), Leonard Susskind (Stanford), Phys. Rev. D81, 123515 (2010), arXiv:1003.1347[hep-th]

The problem addressed in this work:

What happens when gravity is coupled to a theory with metastable vacuum?

e.g. scalar field which has a false vacuum and a true vacuum V(Φ_F)>0, V(Φ_T)=0

- If we ignore gravity, first order phase transition:
 - Nucleation of bubbles of true vacuum (Callan, Coleman, ...)
 - The whole space eventually turns into true vacuum.

False vacuum: de Sitter space

• De Sitter space: hyperboloid in $R^{4,1}$

$$ds^2 = -dt^2 + H^{-2}\cosh^2(Ht)d^2\Omega_3$$

Hubble parameter (expansion rate)

$$H^2={8\pi G\over 3}V(\phi_F)$$

- Causal structure: Two points separated by > H⁻¹ are causally disconnected.
- Inflation in false vacuum leads to a completely different picture than the case without gravity.

Motivation

- There is evidence that string theory has metastable de Sitter vacua. ("String Landscape")
- But presently, we are not able to study physics in de Sitter by string theory.

In this work we use semi-classical gravity, and try to understand the physics as much as we can.

Goals:

- Construct a holographic dual formulation
- Find observational signature (our universe: true vacuum)

Bubble of true vacuum

Described by Coleman-De Luccia instanton (Euclidean "bounce" solution).

Euclidean geometry:

- Interpolates between true and false vacua
- Deformed S⁴ (Euclidean de Sitter is S⁴)
- Rotationally symmetric: SO(4)
- Nucleation rate: $\Gamma \sim e^{-(S_{\rm cl} S_{\rm deSitter})}$

Lorentzian geometry: given by analytic continuation

Lorentzian geometry: given by analytic continuation

- SO(3,1) symmetric
- Bubble wall is constantly accelerated.
- Spacetime: flat space and de Sitter patched across a domain wall.
- Open FRW universe (shaded region) inside the bubble. Spatial slice: H³

 $ds^2 \sim -dt^2 + t^2 (dR^2 + \sinh^2 R d\Omega^2)$

 Beginning of FRW universe: non-singular (equivalent to Rindler horizon)

Eternal inflation

- A single bubble does not cover the whole space. (Fills only the horizon volume).
- Many bubbles will form in the de Sitter region with the rate Γ (per unit physical 4-volume).
 (Bubble collisions are inevitable.)

 But if Γ ≪ H⁴, bubble nucleation cannot catch up the expansion of space, and false vacuum exists forever ("Eternal Inflation"; Guth, Linde, Vilenkin, ...).

Outline

- There are three phases of eternal inflation, depending on the nucleation rate.
- Phases are characterized by the existence of percolating structures (lines, sheets) of bubbles in de Sitter space. (First proposed by Winitzki, '01.)
- The cosmology of the true vacuum region is qualitatively different in each phase.

View from the future infinity

• Consider conformal future of de Sitter. (future infinity in comoving coordinates)

$$ds^2 \sim rac{-d\eta^2 + d\overrightarrow{x}^2}{H^2\eta^2} \qquad (-\infty < \eta < 0)$$

- A bubble: represented as a sphere cut out from de Sitter.
- "Scale invariant" distribution of bubbles Bubbles nucleated earlier: appear larger: radius $\sim H^{-3}|\eta|^3$ rarer: volume of nucleation sites $\sim |\eta|^{-3}$

Model for eternal inflation

- Mandelbrot model (Fractal percolation)
 - Start from a white cell.
 (White: inflating, Black: non-inflating Cell: One horizon volume)
 - Divide the cell into cells with half its linear size. (The space grows by a factor of 2. Time step: $\Delta t = H^{-1} \ln 2$)

Picture of the 2D version

- Paint each cell in black with probability P. (P ~ $\Gamma V_{hor}\Delta t$ = nucleation rate per horizon volume: constant)
- Subdivide the surviving (white) cells, and paint cells in black w/ probability P. Repeat this infinite times.

Mandelbrot model (Fractal percolation)

- Start from a white cell.
 (White: inflating, Black: non-inflating Cell: One horizon volume)
- Divide the cell into cells with half its linear size.
 (The space grows by a factor of 2. Time step: Δt = H⁻¹ ln 2)

Picture of the 2D version

- Paint each cell in black with probability P. ($P \sim \Gamma V_{hor} \Delta t$ = nucleation rate per horizon volume: constant)
- Subdivide the surviving (white) cells, and paint cells in black w/ probability P. Repeat this infinite times.

Mandelbrot model defines a fractal

- If P > 1 (1/2)³ =7/8, the whole space turns black, since (the rate of turning black) > (the rate of branching).
 (No eternal inflation)
- If P < 7/8, white region is a fractal. Non-zero fractal dimension d_F (rate of growth of the cells):

$$N_{
m cells} = 2^{nd_F}, \quad d_F = 3 - |\log(1-P)|/\log 2$$

 $(n: \# \ {
m of \ steps})$

Physical volume of de Sitter region grows. (Eternal inflation)

[Fractals in eternal inflation: noted by Vilenkin, Winitzki, ..]

Three phases of eternal inflation

From the result on the 3D Mandelbrot model

[Chayes et al, Probability Theory and Related Fields 90 (1991) 291] In order of increasing P (or Γ), there are (white = inflating, black = non-inflating)

- <u>Black island phase</u>: Black regions form isolated clusters;
 ³ percolating white sheets.
- <u>Tubular phase</u>: Both regions form tubular network;
 ³ percolating black and white lines.
- <u>White island phase</u>: White regions are isolated;
 - \exists percolating black sheets.

Geometry of the true vacuum region

- Mandelbrot model: the picture of the de Sitter side. (de Sitter region outside the light cone of the nucleation site is not affected by the bubble.)
- To find the spacetime in the non-inflating region inside (the cluster of) bubbles, we need to understand the dynamics of bubble collisions.
- In the following, we study this using the intuition gained from simple examples of bubble collisions.

Black island phase (isolated cluster of bubbles)

Small deformations of open FRW universe.

- Basic fact: A collision of two bubbles (of the same vacuum) does not destroy the bubble
 [c.f. Bousso, Freivogel, Yang, '07]
 - Spatial geometry approaches smooth H³ at late time.
 - Residual symmetry SO(2,1): spatial slice has H² factor
 - Negative curvature makes the space expand.

Collision of two bubbles

• <u>De Sitter space</u>: hyperboloid in $R^{4,1}$

 $-X_0^2 + X_1^2 + X_2^2 + X_3^2 + X_4^2 = \ell^2$

- <u>One bubble</u>: plane at $X_4 = \text{const.} = \sqrt{\ell^2 r_0^2}$
- <u>Second bubble</u>: plane at $X_3 = \text{const.} = \sqrt{\ell^2 r_0^2}$ Residual sym: SO(2,1)

$$ds^{2} = -f^{-1}(t)dt^{2} + f(t)dz^{2} + t^{2}dH_{2}^{2}$$
$$f(t) = 1 + t^{2}/\ell^{2}, \quad (0 \le z \le 2\pi\ell)$$
$$\left(X_{a} = tH_{a} \ (a = 0, 1, 2), \quad X_{3} = \sqrt{t^{2} + \ell^{2}}\cos(z/\ell), \quad X_{4} = \sqrt{t^{2} + \ell^{2}}\sin(z/\ell)\right)$$

• Parametrization of flat space:

$$ds^2 = -dt^2 + dz^2 + t^2 dH_2^2$$

• Profile of domain wall in (t, z) space (H^2 is attached)

$$\label{eq:general} \begin{array}{c|c} & \mbox{flat} & \mbox{flat} & \mbox{flat} & \mbox{ds} & \mbox{$$

• Energy on the domain wall decays at late time

$$\rho = \rho_0 / t^2 \quad \text{(for dust wall)}$$

• The spatial geometry approach smooth H³

Tubular phase (tube-like structure of bubbles)

In the late time limit: spatial slice is a negatively curved space whose boundary has infinite genus.

Late time geometry: $ds^2 = -dt^2 + t^2 ds^2_{H/\Gamma}$

- Negatively curved space with non-trivial boundary topology:
 H³ modded out by discrete elements of isometry
- Boundary genus = # of elements

$$ds^2_{H^3}=rac{dx^2+dy^2+dz^2}{z^2}
onumber \ (x,y,z)\sim\lambda(x,y,z)$$

Genus 1 case

- Simpler example: true vacuum with toroidal boundary [Bousso, Freivogel, YS, Shenker, Susskind, Yang, Yeh, '08]
 - Ring-like initial configuration of bubbles (with the hole larger than horizon size)
 - Solve a sequence of junction conditions

$$ds^{2} = -f(t)dt^{2} + f^{-1}(t)dz^{2} + t^{2}dH_{2}^{2}$$

$$f(t) = 1 + t^{2}/\ell^{2} \quad (\text{de Sitter})$$

$$f(t) = 1 - t_{n}/t \quad (\text{in region } n; t_{n}: \text{ const.})$$

White island phase (isolated inflating region)

- <u>An observer in the black region is "surrounded" by the white</u> region (contrary to the intuition from Mandelbrot model).
- Simple case: two white islands (with S² symmetry) [Kodama et al '82, BFSSSYY '08]

Global slicing (S³) of de Sitter

Penrose diagram

 An observer can see only one boundary; the other boundary is behind the black hole horizon. [c.f. "non-traversability of a wormhole", "topological censorship"]

- In the white island phase, a white region will split.
 - Late time geometry for the three white island case:

[Kodama et al '82]

 Singularity and horizons will form so that the boundaries are causally disconnected from each other.

- From the Mandelbrot model: A single white island is of order Hubble size (due to frequent bubble nucleation)
- The boundary moves away from a given observer, but its area remains finite. (Effectively a closed universe)
- Black hole in the bulk.
- This universe will eventually collapse.
 - Simpler model: Shells of bubbles constantly colliding to a given bubble
 - Any given observer in the true vacuum will end up at singularity.

Summary

Three phases of eternal inflation and their cosmology:

- Black island phase: Small deformation of an open FRW
- Tubular phase: Negatively curved space with an infinite genus boundary
- White island:

Observer sees one boundary and one or more black hole horizons (behind which there are other boundaries).

Future directions

- The case with more than two vacua (False, Intermediate, True): Bubbles inside bubbles, percolation on hyperboloid
- Interpretation in terms of FRW/CFT correspondence (holographic dual defined at the boundary of H³)
 [Freivogel, YS, Susskind, Yeh, '06]
- Observational signature of each phase (True vacuum is our vacuum, assuming there is slow-roll inflation after tunneling)

25

FRW/CFT correspondence

- Proposal for holographic duality for open universe created by bubble nucleation.
- Dual theory: CFT on S² at the boundary of H³
 - SO(3,1) : 2D conformal sym
 - Dual theory has 2 less dimension than the bulk
- Time: Represented by Liouville field (scale factor of 2D gravity)
- Defined in the region a single observer can see (different from dS/CFT correspondence)

- From correlation functions:
 - Gravity is not decoupled at the boundary
 - Energy momentum tensor has dim. 2.
 - One bulk field correspond to a tower of CFT operators (roughly speaking, KK reduction)
 - Central charge: of order de Sitter entropy
 - Three point function: under study
- Implication of this work:

We have to sum over topology of 2D space, but do not have to consider multiple boundaries. (Phase transitions: instability of 2D gravity?)

