Comments on Scaling Limits of 4d $\mathcal{N}=2$ theories

Yuji Tachilkawa (IAS)

based on [arXiv:1011.4568]
with Davide Gaiotto and Nathan Seiberg

December 2010

Introduction \& Summary

- The day before yesterday, I mainly talked about the behind-the-scene story concerning my personal relation to the \boldsymbol{a}-theorem.

Introduction \& Summary

- The day before yesterday, I mainly talked about the behind-the-scene story concerning my personal relation to the \boldsymbol{a}-theorem.
- I don't have time to talk about \boldsymbol{a} today; the method to calculate \boldsymbol{a} of an $\boldsymbol{\mathcal { N }}=2$ SCFT is a talk in itself.

Introduction \& Summary

- The day before yesterday, I mainly talked about the behind-the-scene story concerning my personal relation to the \boldsymbol{a}-theorem.
- I don't have time to talk about \boldsymbol{a} today; the method to calculate \boldsymbol{a} of an $\boldsymbol{\mathcal { N }}=2$ SCFT is a talk in itself.
- Instead I'd like to talk in detail about the structure of the low energy limit of $\mathcal{N}=2 \mathbf{S U}(N)$ with $N_{f}=2 n$ flavors.
- I guess it's not so bad to recall the Seiberg-Witten theory.

$N=2$ SUSY SU(N)

with N_{f} flavors

It's a strange structure, but not that strange.

- Consider $\mathbf{S U (2)}$ with a number of doublets and a number of triplets.

Doublets, taken alone, comprise a free CFT with $\mathbf{S U (2)} \boldsymbol{F}_{\boldsymbol{F}}$ Triplets, taken alone, comprise a free CFT with $\mathbf{S U}(\mathbf{2})_{F}$

- So the theory is: CFT_{1} and CFT_{2} coupled via $\mathbf{S U (2)}$ gauge bosons

The only difference here is that both CFT_{1} and CFT_{2} are non-free.

You can call them unparticle sectors if you like.

- We habitually think of field theory as gauge groups + matter fields ...
- but matter fields might not be free.
- In this case we had a conventional UV description which was a SUSY QCD,
- but there's no guarantee there is a conventional UV description either.
- Just studying conventional field theories might not be enough.
- I'm very sorry I didn't have time to put figures into the slides.
- I'll use the small whiteboard there to draw them.

Contents

\author{

1. $\mathcal{N}=2$ Basics
}

2. $\mathrm{SU}(N)$ without quarks

3. $\mathbf{S U}(N)$ with quarks

Contents

1. $\mathcal{N}=2$ Basics

2. $\mathrm{SU}(N)$ without quarks

3. $\mathbf{S U}(N)$ with quarks

vector multiplet adjoint of G
traceless $N \times N$ matrix

hypermultiplet some rep of G
N-dim column vector

- $\langle Q\rangle=\langle\tilde{Q}\rangle=0$ for simplicity.
- $V(\phi)=\operatorname{tr}\left[\phi, \phi^{\dagger}\right]^{2}$
- Classically, $\phi=\left(\begin{array}{ccccc}a_{1} & & & & \\ & a_{2} & & & \\ & & a_{3} & & \\ & & & \ddots & \\ & & & & a_{N}\end{array}\right) \rightarrow V(\phi)=0$
(n.b. $\sum a_{i}=0$)
- ($N-1$)-dimensional moduli space of vacua.

$$
\phi=\left(\begin{array}{lllll}
a_{1} & & & & \\
& a_{2} & & & \\
& & a_{3} & & \\
& & & \ddots & \\
& & & & a_{N}
\end{array}\right)
$$

Classically,

- Masses of W-bosons : $\left|a_{i}-a_{j}\right|$

$$
\mathcal{L} \supset\left[A_{\mu},\langle\phi\rangle\right]\left[A^{\mu},\langle\phi\rangle\right]
$$

- $U(1)^{N-1}$ remains unbroken and massless
- Masses of the quarks : $\left|a_{i}+m\right|$

$$
W=\tilde{Q}\langle\phi\rangle Q+m \tilde{Q} Q=\sum_{i=1}^{N}\left(a_{i}+m\right) \tilde{Q}^{i} Q_{i}
$$

$$
\phi=\left(\begin{array}{lllll}
a_{1} & & & & \\
& a_{2} & & & \\
& & a_{3} & & \\
& & & \ddots & \\
& & & & a_{N}
\end{array}\right)
$$

Classically,

- Masses of W-bosons : $\left|a_{i}-a_{j}\right|$
- $\left\langle\boldsymbol{\operatorname { t r }} \phi^{k}\right\rangle=\sum a_{i}^{k}$, or equivalently
- $\langle\boldsymbol{\operatorname { d e t }}(x-\phi)\rangle=x^{N}+u_{2} x^{N-2}+u_{3} x^{N-3}+\cdots+u_{N}$ where $\quad u_{k}=a_{1} a_{2} \cdots a_{k}+$ permutations.

Quantum effect modifies this relation. But how?

Quantum mechanically,

- Writing $\phi=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$ doesn't make much sense because they are gauge dependent.
- W-boson masses are physical.

Define a_{i} so that W-boson masses are $\left|a_{i}-a_{j}\right|$.

- Vevs of operators are physical. \longrightarrow

Define $\boldsymbol{u}_{\boldsymbol{k}}$ so that
$\langle\boldsymbol{\operatorname { d e t }}(x-\phi)\rangle=x^{N}+u_{2} x^{N-2}+u_{3} x^{N-3}+\cdots+u_{N}$

- $u_{k}=a_{1} a_{2} \cdots a_{k}+$ permutations + quantum corrections

What are these quantum corrections?

ANSWER: Take

$$
\Sigma: y^{2}=P(x)^{2}-\Lambda^{2 N-N_{f}} \prod_{k=1}^{N_{f}}\left(x+m_{k}\right)
$$

where

$$
P(x)=\langle\boldsymbol{\operatorname { d e t }}(x-\phi)\rangle=x^{N}+u_{2} x^{N-2}+u_{3} x^{N-3}+\cdots+u_{N}
$$

and the differential on it

$$
\lambda=\frac{x}{2 \pi i} d \log \frac{P(x)+y}{P(x)-y}
$$

Then

$$
a_{i}=\int_{A_{i}} \lambda .
$$

This is exact.
(n.b. λ needs slight modification when $N_{f}=2 N$)

- SU(2) by [Seiberg-Witten] 1994
- SU(N) by [Argyres-Shapere], [Hanany-Oz] 1995
- done by combining correct guesses at a few singular points + holomorphy
- (Re)derived by performing the path integral by [Nekrasov] 2003.

Another interpretation [Witten] 1997, [Gaiotto] 2009:

- On a single M5 lives a 6d theory. M2s ending on the M5 give strings on it.
- Put the theory on $2 \mathrm{~d} \Sigma$. Gives a $4 d$ theory.
- The string tension is position-dependent, $|\boldsymbol{\lambda}|$.
- A string wrapped on C has the mass

$$
\int_{C}|\lambda| \geq\left|\int_{C} \lambda\right|
$$

It's not just that $a_{i}=\int_{\boldsymbol{A}_{i}} \lambda . \quad$ E.g.

- Choice of $C \longrightarrow$ W-bosons, quarks, monopoles, dyons ...
- Which choice of C really gives rise to particles
- Whether that particle is a vector or a hyper or one with higher-spin ...
[Shapere-Vafa] 1999, [Gaiotto-Moore-Neitzke] 2008~
- When an electric particle goes around a magnetic particle, it gets the phase

$$
\exp \left[2 \pi i q_{e} q_{m}^{\prime}\right]
$$

- If the first particle has the charge $\left(q_{e}, q_{m}\right)$ and the second $\left(q_{e}^{\prime}, q_{m}^{\prime}\right)$ then

$$
\exp \left[2 \pi i\left(q_{e} q_{m}^{\prime}-q_{e}^{\prime} q_{m}\right)\right]
$$

- The number $\boldsymbol{q}_{e} \boldsymbol{q}_{m}^{\prime}-\boldsymbol{q}_{e}^{\prime} \boldsymbol{q}_{m}$: Dirac quantization pairing
- If the first particle comes from \boldsymbol{C}_{1} and the second \boldsymbol{C}_{2},

$$
q_{e} q_{m}^{\prime}-q_{e}^{\prime} q_{m}=\#\left(C_{1} \cap C_{2}\right)
$$

Contents

```
1. \mathcal{N}=2 Basics
```


2. $\mathrm{SU}(N)$ without quarks

3. $\mathbf{S U}(N)$ with quarks

$\boldsymbol{\Sigma}:([$ Klemm-Lerche-Yankielowicz-Theisen], [Argyres-Faraggi], 1994)

$$
\begin{aligned}
y^{2}= & P(x)^{2}-\Lambda^{2 N} \\
= & \left(x^{N}+u_{2} x^{N-2}+\cdots+u_{N}+\Lambda^{N}\right) \times \\
& \left(x^{N}+u_{2} x^{N-2}+\cdots+u_{N}-\Lambda^{N}\right)
\end{aligned}
$$

Let

$$
x^{N}+u_{2} x^{N-2}+\cdots+u_{N}=\left(x-\underline{a}_{1}\right)\left(x-\underline{a}_{2}\right) \cdots\left(x-\underline{a}_{N}\right)
$$

$\Lambda=\mathbf{0}$: Doubles zeros at $\boldsymbol{x}=\underline{a}_{i} \longrightarrow$
Small Λ : Cuts between $x=\underline{a}_{i}^{ \pm}=\underline{a}_{i} \pm O\left(\Lambda^{N}\right)$

The differential was

$$
\lambda=x d \log (P+y) /(P-y)
$$

Close to $\boldsymbol{x}=\underline{a}_{i}$ it is

$$
\lambda \sim \underline{a}_{i} d x / x
$$

Therefore

$$
\begin{aligned}
& a_{i}= \frac{1}{2 \pi i} \int_{A_{i}} \lambda \\
& \sim \underline{a}_{i} \\
& \frac{1}{2 \pi i} \int_{B_{i j}} \lambda \sim \frac{2 N}{2 \pi i}\left(\underline{a}_{i}-\underline{a}_{j}\right) \log \Lambda
\end{aligned}
$$

W-bosons:

$$
A_{i}-A_{j}: \quad a_{i}-a_{j}
$$

$\mathbf{S U (2)}$ 't Hooft-Polyakov monopoles embedded using the (i, j)-th entry

$$
B_{i j}: \quad\left(a_{i}-a_{j}\right) \frac{2 N}{2 \pi i} \log \Lambda
$$

Classically, the mass of the monopole is

$$
\begin{gathered}
\tau\left(a_{i}-a_{j}\right) \quad \text { where } \quad \tau=\frac{4 \pi i}{g^{2}}+\frac{\theta}{2 \pi} \\
\longrightarrow \quad \Lambda \frac{\partial}{\partial \Lambda} \tau=\frac{2 N}{2 \pi i}
\end{gathered}
$$

This correctly reproduces one-loop running from the vector multiplet,

$$
b_{0}=2 N
$$

What happens when $\boldsymbol{\Lambda}$ is very big?

$$
\begin{array}{r}
y^{2}=\left(x^{N}+u_{2} x^{N-2}+\cdots+u_{N}+\Lambda^{N}\right) \times \\
\left(x^{N}+u_{2} x^{N-2}+\cdots+u_{N}-\Lambda^{N}\right)
\end{array}
$$

Set

$$
\begin{aligned}
& u_{2}=\epsilon^{2} \hat{u}_{2} \\
& \vdots \\
& u_{N-1}=\epsilon^{N-1} \hat{u}_{N-1} \\
& u_{N}=\Lambda^{N}+\epsilon^{N} \hat{u}_{N}
\end{aligned}
$$

$\longrightarrow \quad y^{2} \sim 2 \Lambda^{N} x^{N}+$ small deformation.
Electric \& magnetic particles are both light.
[Argyres-Douglas〕 1995, [Eguchi-Hori-Ito-Yang〕 1996

$$
y^{2} \sim 2 \Lambda^{N} x^{N}+\text { small deformation }
$$

- The differential is $\boldsymbol{\lambda} \sim \boldsymbol{x} \boldsymbol{d} \boldsymbol{y}$ when $\boldsymbol{x} \sim \mathbf{0}$.
- Cuts are at $x \sim \epsilon \rightarrow y \sim \epsilon^{N / 2} \rightarrow \int \lambda \sim \epsilon^{1+N / 2}$.
- $\int \lambda$ determines the physical mass. $\rightarrow[\epsilon]=\frac{2}{N+2}$.
- The scaling dimension is then $\left[\hat{u}_{k}\right]=\frac{2 k}{N+2}$.
- Originally, $u_{k} \sim \operatorname{tr} \phi^{k}$ and $\left[u_{k}\right] \sim k$.
- Dimensions got reduced by $\frac{2}{N+2}$!

Contents

1. $\mathcal{N}=2$ Basics

2. $\mathrm{SU}(N)$ without quarks

3. $\mathbf{S U}(N)$ with quarks

$$
\Sigma: y^{2}=P(x)^{2}-\Lambda^{2 N-N_{f}} \prod_{k}\left(x-m_{k}\right)
$$

where

$$
\begin{aligned}
P(x) & =\langle\operatorname{det}(x-\phi)\rangle \\
& =x^{N}+u_{2} x^{N-2}+\cdots+u_{N} \\
& =\left(x-\underline{a}_{1}\right)\left(x-\underline{a}_{2}\right) \cdots\left(x-\underline{a}_{N}\right)
\end{aligned}
$$

with the differential

$$
\lambda=x d \log \frac{P+y}{P-y}
$$

$\boldsymbol{\lambda}$ has poles at $\boldsymbol{x}=\boldsymbol{m}_{\boldsymbol{i}}$ with residue $\boldsymbol{m}_{\boldsymbol{i}}$.

$$
\Sigma: y^{2}=P(x)^{2}-\Lambda^{2 N-N_{f}} \prod_{k}\left(x-m_{k}\right)
$$

where

$$
P(x)=\left(x-\underline{a}_{1}\right)\left(x-\underline{a}_{2}\right) \cdots\left(x-\underline{a}_{N}\right)
$$

When $\Lambda \ll \underline{a}_{i} \ll m_{k}$, there are two regions of the curve

- around $\boldsymbol{x} \sim \boldsymbol{m}$
- around $\boldsymbol{x} \sim \underline{\boldsymbol{a}} \longrightarrow$ almost the same as the pure case with

$$
\Lambda^{\prime 2 N}=\Lambda^{2 N-N_{f}} \prod_{k} m_{k}
$$

There are cycles $\boldsymbol{C}_{\boldsymbol{i k}}$ with

$$
\frac{1}{2 \pi i} \int_{C_{i k}} \lambda=a_{i}+m_{k} \quad: \quad \text { hypers }
$$

What happens when Λ is very big? Let $N_{f}=2 n$, set $m=0$.

$$
\begin{aligned}
y^{2}= & P(x)^{2}-\Lambda^{2 N-2 n} x^{2 n} \\
= & \left(x^{N}+\cdots+u_{N-n} x^{n}+\cdots+u_{N}+\Lambda^{N-n} x^{n}\right) \times \\
& \left(x^{N}+\cdots+u_{N-n} x^{n}+\cdots+u_{N}-\Lambda^{N-n} x^{n}\right)
\end{aligned}
$$

Set

$$
\begin{gathered}
u_{N-n}=\Lambda^{N-n}, \quad u_{k}=0 \quad \text { otherwise } \\
\rightarrow y^{2}=\left(x^{N}+2 \Lambda^{N-n} x^{n}\right) x^{N}
\end{gathered}
$$

- You can proceed as in $N_{f}=0$...
[Argyres-Plesser-Seiberg-Witten] 1994 [Eguchi-Hori-Ito-Yang] 1996
- But extra care is necessary when $N_{f} \geq 4$ ($N_{f}=2$ is OK).
- So, let's study the easiest case with $N_{f}=4$, i.e. $\mathbf{S U}(2)$ with $N_{f}=4$.
- Some aspects can be easily generalized to $\mathbf{S U}(N)$ with $N_{f}=2 N$.
- Note that the one-loop beta function vanishes. Known to be vanishing even non-perturbatively. τ is exactly marginal.
$y^{2}=\left(x^{N}+u_{2} x^{N-2}+\cdots+u_{N}\right)^{2}-f(\tau) \prod_{k=1}^{2 N}\left(x-g(\tau) \mu-\mu_{i}\right)$
- $f(\tau)=1-g(\tau)^{2}$ is a certain function of τ.
- The mass of the i-th hyper is $m_{i}=\mu+\mu_{i} ; \sum \mu_{i}=0$.
- $f \sim 0$ when the theory is weakly-coupled.
- $f \sim 1$ when the theory is very, very strongly-coupled.

So, let's study what happens when $f=1-g^{2} \sim 1$.

$$
\begin{aligned}
y^{2}= & \left(x^{N}+u_{2} x^{N-2}+\cdots+u_{N}\right)^{2}-f(\tau) \prod_{k=1}^{2 N}\left(x-g(\tau) \mu-\mu_{i}\right) \\
= & \left(\tilde{x}^{N}+N g \mu \tilde{x}^{N-1}+\cdots+\tilde{u}_{N}\right)^{2}-f(\tau) \prod_{k=1}^{2 N}\left(\tilde{x}-\mu_{i}\right) \\
\sim & \left(\frac{g^{2}}{2} \tilde{x}^{N}+N g \mu \tilde{x}^{N-1}+\tilde{u}_{2} x^{N-2}+\cdots+\tilde{u}_{N}\right) \times \\
& \left(2 \tilde{x}^{N}+N g \mu \tilde{x}^{N-1}+\cdots+\tilde{u}_{N}\right)+\sum_{k=2}^{2 N} M_{k} \tilde{x}^{N-k}
\end{aligned}
$$

- Two zeros around $x \sim 1 / g \gg 0$
- $2 N-2$ zeros around $x \sim O(1)$
- $\lambda \sim d x / x$ in the middle.

Let $\boldsymbol{\lambda} \sim \boldsymbol{a d x} / \boldsymbol{x}$ in the middle tube.
Middle tubular region

- particles of mass $\pm 2 a \longrightarrow$ W-boson of "magnetic" $\mathbf{S U (2)}$

Region at $x \sim 1 / g$

- particles of mass $\pm \boldsymbol{a} \pm \boldsymbol{N} \boldsymbol{\mu}$
\longrightarrow a doublet hyper charged with magnetic $\mathbf{S U (2)}$ with mass $N \mu$.

Region at $x \sim O(1)$

- ???

If we originally have $\mathrm{SU}(2)$ with $N_{f}=4$, it can be better understood.
Middle tubular region

- particles of mass $\pm 2 a \longrightarrow$ W-boson of "magnetic" $\mathbf{S U}(2)$

Region at $x \sim 1 / g$

- particles of mass $\pm \boldsymbol{a} \pm \boldsymbol{N} \boldsymbol{\mu}$
\longrightarrow a doublet hyper charged with magnetic $\mathbf{S U}(2)$ with mass $N \mu$.
Region at $x \sim O(1)$
- particles of mass $\pm a+\mu_{i}-\mu_{j}$
- μ_{i} was in the $4-\mathrm{dim}$. rep of $\left.\mathbf{S U (4}\right)_{F}$
- $\mu_{i}-\mu_{j}$ are for the anti-sym. rep of $\mathbf{S U}(4)_{F}$, i.e. the vector of $\mathbf{S O}(6)_{F}$.

Originally:

$\mathbf{S U (2)}$ with four doublets, transforming as $\mathbf{4}_{+\mathbf{1}} \oplus \overline{\mathbf{4}}_{-\mathbf{1}}$ under $\mathbf{U}(\mathbf{1}) \times \mathbf{S U}(\mathbf{4})$

Strong-coupling limit:

$\mathbf{S U (2)}$ with one doublets + three doublets, transforming as $\mathbf{1}_{+2} \oplus \mathbf{1}_{-2} \oplus \mathbf{6}_{0}$ under $\mathbf{S O}(2) \times \mathbf{S O}(6)$
[Seiberg-Witten], 1994

Originally:

$\mathbf{S U (2)}$ with four doublets, transforming as 8_{V} under $\mathbf{S O}$ (8)

Strong-coupling limit:

$\mathbf{S U}(2)$ with four doublets transforming as 8_{S} under $\mathbf{S O}$ (8)
[Seiberg-Witten], 1994
$\mathbf{S U}(N)$ with $2 N$ flavors in the strongly-coupled limit.
Middle tubular region

- particles of mass $\pm 2 a \rightarrow$ W-boson of "magnetic" $\mathbf{S U}(2)$

Region at $x \sim 1 / g$

- particles of mass $\pm \boldsymbol{a} \pm \boldsymbol{N} \boldsymbol{\mu}$
\longrightarrow a doublet hyper charged with magnetic $\mathbf{S U (2)}$ with mass $N \mu$.

Region at $x \sim O(1)$

- Some strange theory with $\mathbf{S U}(2) \times \mathbf{S U}(\mathbf{2 N})$ symmetry. Call it R_{N}.

Originally:

$\mathbf{S U}(N)$ with $2 N$ doublets,
transforming as $\mathbf{2} \mathrm{N}_{+\mathbf{1}} \oplus \overline{\mathbf{2 N}}_{-\mathbf{1}}$ under $\mathbf{U}(\mathbf{1}) \times \mathbf{S U}(\mathbf{2 N})$

Strong-coupling limit:

$\mathbf{S U (2)}$ with one doublets of charge N under $\mathbf{U}(1)$, plus the strange theory R_{N} with $\mathbf{S U}(2) \times \mathbf{S U}(2 N)$ symmetry.
[Argyres-Seiberg] $2007 \operatorname{did} \boldsymbol{N}=\mathbf{3}$
[Gaiotto] 2009 gave the general direction
[Distler-Chacaltana] 2010 did this particular case

- R_{2} is just three doublets. Has $\mathbf{S U}(2) \times \mathbf{S O}(6) \sim \mathbf{S U}(2) \times \mathbf{S U}(4)$ symmetry.
- $\boldsymbol{R}_{\mathbf{3}}$ is the $\boldsymbol{E}_{\mathbf{6}}$ theory of [Minahan-Nemeschansky], 1996. Note that $\boldsymbol{E}_{\mathbf{6}} \supset \mathbf{S U (2)} \times \mathbf{S U (6)}$.
- R_{N} for $N \geq 4$ is, well, R_{N}.

Originally:

$\mathbf{S U}(N)$ with $2 N$ doublets, transforming as $\mathbf{2} \mathbf{N}_{+\mathbf{1}} \oplus \overline{\mathbf{2 N}}_{-\mathbf{1}}$ under $\mathbf{U}(\mathbf{1}) \times \mathbf{S U}(\mathbf{2 N})$

Strong-coupling limit:

$\mathbf{S U (2)}$ with one doublets of charge N under $\mathbf{U}(1)$, plus the strange theory R_{N} with $\mathbf{S U}(2) \times \mathbf{S U}(2 N)$ symmetry.

The dual is also conformal.

$$
b_{0}=4-1-R_{N} \text { 's contribution }=0
$$

$\longrightarrow \boldsymbol{R}_{N}$'s contribution to $b_{0}=3$.

Let's come back to $\mathbf{S U}(N)$ with $N_{f}=2 n<2 N$.
(This is the new thing; everything so far was a review!)

$$
\begin{aligned}
y^{2}= & \left(x^{N}+u_{2} x^{N-2}+\cdots+u_{N}\right)^{2}-\Lambda^{2 N-2 n} \prod_{k}\left(x-m_{k}\right) \\
= & \left(\tilde{x}^{N}+\tilde{u}_{1} \tilde{x}^{N-1}+\cdots+\tilde{u}_{N}\right)^{2}-\Lambda^{2 N-2 n} \tilde{x}^{N}-\sum_{k=2}^{2 n} M_{k} x^{k} \\
= & \left(\tilde{x}^{N}+\cdots+\hat{u}_{N-n} x^{n}+\cdots+\tilde{u}_{N}\right) \times \\
& \left(\tilde{x}^{N}+\cdots+\left(2 \Lambda^{N-n}+\hat{u}_{N-n}\right) x^{n}+\cdots+\tilde{u}_{N}\right)-\sum_{k=2}^{2 n} M_{k} x^{k}
\end{aligned}
$$

$\lambda=y d \tilde{x} / \tilde{x}^{n}$ when $\tilde{x} \ll \Lambda$. Let $\tilde{y}=y / \tilde{x}^{n-1}$ so that $\lambda=\tilde{y} d \tilde{x} / \tilde{x}$.
For simplicity I'll drop all the hats and the tildes.

$$
\begin{aligned}
\boldsymbol{y}^{2}= & {\left[x^{N-n+2}+\cdots+u_{N-n+1} x+u_{N-n+2}\right.} \\
& \left.+\frac{u_{N-n+3}}{x}+\cdots+\frac{u_{N}}{x^{n-2}}\right] \times \\
& {\left[x^{N-n}+\cdots+\left(2 \Lambda^{N-n}+u_{N-n}\right)\right.} \\
& \left.+\frac{u_{N-n+1}}{x}+\cdots+\frac{u_{N}}{x^{n}}\right]-\sum_{k=2}^{2 n} \frac{M_{k}}{x^{k-2}} \quad \text { with } \quad \boldsymbol{\lambda}=\boldsymbol{y} \frac{\boldsymbol{d} \boldsymbol{x}}{\boldsymbol{x}} .
\end{aligned}
$$

We choose to scale as

$$
u_{1} \propto \epsilon, u_{2} \propto \epsilon^{2}, \cdots, u_{N-n+2} \propto \epsilon^{N-n+2}
$$

and

$$
\boldsymbol{u}_{\boldsymbol{N}-\boldsymbol{n + 2}} \propto \delta^{2}, \boldsymbol{u}_{\boldsymbol{N - n + 3}} \propto \delta^{3}, \cdots \boldsymbol{u}_{\boldsymbol{N}} \propto \delta^{n} ; \quad \boldsymbol{M}_{\boldsymbol{k}} \propto \delta^{k}
$$

Therefore $\epsilon^{N-n+2}=\delta^{2}$, and $\delta \ll \epsilon$.

Around $\boldsymbol{x} \sim \delta$, the curve is

$$
\begin{aligned}
y^{2}= & {\left[u_{N-n+2}+\frac{u_{N-n+3}}{x}+\cdots+\frac{u_{N}}{x^{n-2}}\right] \times } \\
& {\left[2+\frac{u_{N-n+2}}{x^{2}}+\cdots+\frac{u_{N}}{x^{n}}\right]-\sum_{k=2}^{2 n} \frac{M_{k}}{x^{k-2}} \quad \text { with } \quad \lambda=y \frac{d x}{x} }
\end{aligned}
$$

Around $\boldsymbol{x} \sim \delta$, the curve is

$$
\begin{aligned}
y^{2}= & {\left[\check{u}_{2}+\frac{\check{u}_{3}}{x}+\cdots+\frac{\check{u}_{n}}{x^{n-2}}\right] \times } \\
& {\left[2+\frac{\check{u}_{2}}{x^{2}}+\cdots+\frac{\check{u}_{n}}{x^{n}}\right]-\sum_{k=2}^{2 n} \frac{M_{k}}{x^{k-2}} \quad \text { with } \quad \lambda=y \frac{d x}{x} }
\end{aligned}
$$

Around $\boldsymbol{x} \sim \delta$, the curve is

$$
\begin{aligned}
y^{2}= & {\left[\check{u}_{2}+\frac{\check{u}_{3}}{x}+\cdots+\frac{\check{u}_{n}}{x^{n-2}}\right] \times } \\
& {\left[2+\frac{\check{u}_{2}}{x^{2}}+\cdots+\frac{\check{u}_{n}}{x^{n}}\right]-\sum_{k=2}^{2 n} \frac{M_{k}}{x^{k-2}} \quad \text { with } \quad \lambda=y \frac{d x}{x} . }
\end{aligned}
$$

Depends only on \boldsymbol{n}.
Can be understood with $\mathbf{S U}(\boldsymbol{n})$ with $2 \boldsymbol{n}$ flavors...

Around $\boldsymbol{x} \sim \delta$, the curve is

$$
\begin{aligned}
y^{2}= & {\left[\check{u}_{2}+\frac{\check{u}_{3}}{x}+\cdots+\frac{\check{u}_{n}}{x^{n-2}}\right] \times } \\
& {\left[2+\frac{\check{u}_{2}}{x^{2}}+\cdots+\frac{\check{u}_{n}}{x^{n}}\right]-\sum_{k=2}^{2 n} \frac{M_{k}}{x^{k-2}} \quad \text { with } \quad \lambda=y \frac{d x}{x} . }
\end{aligned}
$$

Depends only on \boldsymbol{n}. Can be understood with $\mathbf{S U}(\boldsymbol{n})$ with $2 \boldsymbol{n}$ flavors...

In fact this is the $\boldsymbol{R}_{\boldsymbol{n}} .[\delta]=1$.

Around $x \sim \epsilon$, the curve is

$$
y^{2}=x^{N-n+2}+\cdots+u_{N-n+1} x+u_{N-n+2} \quad \text { with } \quad \lambda=y \frac{d x}{x}
$$

Depends only $N-n$.

Around $x \sim \epsilon$, the curve is

$$
y^{2}=x^{N-n+2}+\cdots+u_{N-n+1} x+u_{N-n+2} \quad \text { with } \quad \lambda=y \frac{d x}{x}
$$

Depends only $N-n$.
In fact, it's just $\mathbf{S U}(N-n+1)$ with $\boldsymbol{N}_{\boldsymbol{f}}=\mathbf{2}$ flavors studied by Eguchi-Hori-Ito-Yang.
(Note that $N^{\prime}=N-n+1, n^{\prime}=1$ and therefore $N^{\prime}-n^{\prime}=N-n$.)
Call it $S_{N-n+1} \cdot \epsilon^{N-n+2}=\delta^{2} .[\epsilon]=\frac{2}{N-n+2}$.

And there is the tube in $\delta \ll x \ll \epsilon$.

$$
\begin{array}{cl}
\text { W-boson with mass } & 2 a \\
\text { Monopole with mass } & \frac{1}{2 \pi i} a \log \frac{\epsilon}{\delta}
\end{array}
$$

Recall $\epsilon^{N-n+2}=\delta^{2}$. Then

$$
\begin{gathered}
\frac{1}{2 \pi i} a \log \frac{\epsilon}{\delta}=\frac{1}{2 \pi i} a \frac{N-n}{N-n+2} \log \delta \\
\longrightarrow \quad b_{0}=-\frac{N-n}{N-n+2}
\end{gathered}
$$

$$
b_{0}=-\frac{N-n}{N-n+2}=4-3-\frac{2(N-n+1)}{N-n+2}
$$

from $\mathbf{S U (2)}$ vector $:+4$
from $\boldsymbol{R}_{\boldsymbol{n}}$
: -3
from $S_{N-n+1} \quad:-\frac{2(N-n+1)}{N-n+2}$

I explained how you get $-\mathbf{3}$ from $\boldsymbol{R}_{\boldsymbol{n}}$.
The last one was known in [Shapere-YT], 2007.

Summary

$\mathcal{N}=\mathbf{2} \mathbf{S U}(N) N_{f}=2 n$ flavors at a very special choice of $\left\langle\mathbf{t r} \phi^{k}\right\rangle:$

- $\mathbf{S U}(\mathbf{2})$ coupled to
- R_{n} : a part of the strong coupling dual of $\mathbf{S U}(2 n)$ with $2 n$ flavors
- S_{N-n+1} : the low energy limit of $\mathbf{S U}(N-n+1)$ with 2 flavors

Exercises:

- $\mathbf{S U}(N)$ with $2 n+1$ flavors ???
- $\mathbf{S O}(N)$? $\mathbf{S p}(N)$?
- I believe the structure is very generic

