Constraints on a class of classical solutions

in open string field theory

Toshifumi Noumi

(University of Tokyo, Komaba)

reference: arXiv: 1207.6220 in collaboration with Toru Masuda and Daisuke Takahashi

基研研究会 - YITP, 23-27 July 2012

Constraints on a class of classical solutions

in open string field theory

cf. 増田さんのトーク, 馬場くん、小路田さんのポスター

KBc subalgebra

Constraints on a class of classical solutions

in open string field theory

consistency of boundary states

Constraints on a class of classical solutions

in open string field theory

- open SFT & KBc subalgebra
- boundary states from classical solutions
- implication from consistency of boundary states

– string field Ψ

world-sheet description:

action:
$$S = \frac{1}{2} \langle \Psi, Q\Psi \rangle + \frac{1}{3} \langle \Psi, \Psi * \Psi \rangle$$

eom: $Q\Psi + \Psi * \Psi = 0$

$$\int T(z)dz = e^{s_1 K} K e^{(s-s_1)K}$$

the state K = generator of wedge states

$$= e^{s_1 K} B e^{(s-s_1)K}$$

$$B^2 = 0, \ QB = K, \ [K, B] = 0$$

$$e^{s_1 K} c \, e^{(s-s_1)K}$$

$$c^2 = 0, \ \{B, c\} = 1, \ Qc = cKc$$

KBc subalgebra

$$B^2 = c^2 = 0, \ \{B, c\} = 1, \ QB = K,$$

 $QK = 0, \ Qc = cKc, \ [K, B] = 0$

- simple algebraic relations

solutions for tachyon condensation [Schnabl '05, Erler-Schnabl '09]

- can be defined without specifying D-brane configuration at the perturbative vacuum

Motivation

Okawa's formal solution: $\Psi = F(K)c\frac{KB}{1-F(K)^2}cF(K)$

- F(K) is some function of the state K
- formally satisfies the equation of motion

systematic studies:

```
cf. 増田さんのトーク, 小路田さんのポスター
```

- energy [Erler '06]
- energy & gauge invariant observables [Murata-Schnabl '11]
 - \rightarrow proposal for multiple D-brane solutions
- on their regularization [Hata-Kojita '11, Murata-Schnabl '11, Masuda '12]

🔿 no satisfactory regularizations are known

- boundary states [Takahashi '11] → subtleties for multiple D-branes

Motivation

would like to discuss systematically

which class of solutions are in the KBc subalgebra

extending Takahashi's calculation of boundary states,

we calculated those for generic string fields of ghost # 1:

using consistency of obtained boundary states,

we discuss possible boundary states in the KBc subalgebra

- open SFT & KBc subalgebra 🖌
- boundary states from classical solutions
- implication from consistency of boundary states

[Kiermaier-Okawa-Zwiebach '08]

basic idea

open string loop

using the propagator ${\mathcal P}$ in open SFT

[Kiermaier-Okawa-Zwiebach '08]

basic idea

open string loop

using the propagator \mathcal{P} in open SFT

closed string propagation

[Kiermaier-Okawa-Zwiebach '08]

basic idea

open string loop

using the propagator ${\mathcal P}$ in open SFT

closed string propagation

`boundary state |B
angle

[Kiermaier-Okawa-Zwiebach '08]

basic idea

propagator \mathcal{P}_* around a classical solution Ψ

boundary state corresponding to the solution!?

[Kiermaier-Okawa-Zwiebach '08]

[Kiermaier-Okawa-Zwiebach '08]

[Kiermaier-Okawa-Zwiebach '08]

[Kiermaier-Okawa-Zwiebach '08]

[Kiermaier-Okawa-Zwiebach '08]

open string propagator strip $e^{-s\mathcal{L}}$ with $\mathcal{L} = \{Q, \mathcal{B}\}$ propagator strip around a solution Ψ : $e^{-s\mathcal{L}_*}$ with $\mathcal{L}_* = \{Q_*, \mathcal{B}\} = \mathcal{L} + \{\mathcal{B}, \Psi\}$ $Q_* = Q + \{\Psi, \cdot\}$

[Kiermaier-Okawa-Zwiebach '08]

open string propagator strip $e^{-s\mathcal{L}}$ with $\mathcal{L} = \{Q, \mathcal{B}\}$ propagator strip around a solution Ψ :

$$e^{-s\mathcal{L}_*}$$
 with $\mathcal{L}_*=\{Q_*,\mathcal{B}\}=\mathcal{L}+\{\mathcal{B},\Psi\}$

[Kiermaier-Okawa-Zwiebach '08]

[Kiermaier-Okawa-Zwiebach '08]

deformed half propagator

- open SFT & KBc subalgebra 🖌
- boundary states from classical solutions 🖌
- implication from consistency of boundary states

applying this construction of boundary states,

we calculated those for generic string fields of ghost # 1:

$$\Psi = \sum_{i} F_i(K) c B G_i(K) c H_i(K) - \{B, c\} = 1, \ B^2 = 0$$

we assume

- F_i etc. are defined by superpositions of wedge states:

$$F_i(K) = \int_0^\infty f_i(s) e^{sK}$$
 ex. $\frac{1}{1-K} = \int_0^\infty e^{-s} e^{sK}$

- $f_i(s)$ damps fast enough for large s(small contribution from wedge states of large width)

general form of the boundary states

$$|B_*(\Psi)\rangle = \frac{e^{(x+1)s} - e^{ys}}{e^s - 1}|B\rangle$$
with
$$\begin{cases}
x = \sum_i G_i(0) \left(\frac{1}{2}F_i(0)H_i(0) + F_i'(0)H_i(0)\right) \\
y = \sum_i G_i(0) \left(\frac{1}{2}F_i(0)H_i(0) - F_i(0)H_i'(0)\right)
\end{cases}$$

– proportional to |B
angle

– c-number factor
$$\mathcal{N}=rac{e^{(x+1)s}-e^{ys}}{e^s-1}$$
 \sim # of D-branes

- information of Ψ is encoded in x and y
- non-trivial s-dependence

s-independence of boundary states

 Ψ satisfies the eom $\longrightarrow |B_*(\Psi)\rangle$ is s-independent

use the s-independence as a necessary condition for Ψ to satisfy the equation of motion ! $|B_*(\Psi)\rangle = \frac{e^{(x+1)s} - e^{ys}}{e^{s} - 1}|B\rangle$

classification using s-independence

$$|B_*(\Psi)\rangle = \frac{e^{(x+1)s} - e^{ys}}{e^s - 1}|B\rangle$$

s-independent only in the following three cases !

-
$$|B_*(\Psi)
angle = |B
angle$$
 for $x = y = 0$

ex. perturbative vacuum

-
$$|B_*(\Psi)\rangle = 0$$
 for $x = y - 1 = \text{arbitrary}$

ex. tachyon vacuum

-
$$|B_*(\Psi)\rangle = -|B\rangle$$
 for $x = -1$, $y = 1$

one ghost D-brane!? cf. [Okuda-Takayanagi '06]

※ no multiple D-branes in our class !

we found a solution reproducing
$$|B_*(\Psi)\rangle = -|B\rangle$$

 $\Psi_{ghost} = \sqrt{\frac{1-pK}{1-qK}} c \frac{(1-qK)}{p-q} Bc \sqrt{\frac{1-pK}{1-qK}} + \sqrt{\frac{1-qK}{1-pK}} c \frac{(1-pK)}{q-p} Bc \sqrt{\frac{1-qK}{1-pK}}$
- satisfy the eom
- energy density = 2 (that of tachyon
perturbative vacuum 0
tachyon vacuum -1
ghost brane!? -2

we found a solution reproducing
$$|B_*(\Psi)\rangle = -|B\rangle$$

 $\Psi_{ghost} = \sqrt{\frac{1-pK}{1-qK}}c\frac{(1-qK)}{p-q}Bc\sqrt{\frac{1-pK}{1-qK}} + \sqrt{\frac{1-qK}{1-pK}}c\frac{(1-pK)}{q-p}Bc\sqrt{\frac{1-qK}{1-pK}}$
- satisfy the eom
- energy density = 2 (that of tachyon vacuum)
perturbative vacuum ______0
tachyon vacuum ______0
phost brane!? ______2

we found a solution reproducing
$$|B_*(\Psi)\rangle = -|B\rangle$$

 $\Psi_{ghost} = \sqrt{\frac{1-pK}{1-qK}}c\frac{(1-qK)}{p-q}Bc\sqrt{\frac{1-pK}{1-qK}} + \sqrt{\frac{1-qK}{1-pK}}c\frac{(1-pK)}{q-p}Bc\sqrt{\frac{1-qK}{1-pK}}$
- satisfy the eom
- energy density = 2 (that of tachyon vacuum)
perturbative vacuum 0
tachyon vacuum -1
ghost brane!? -2
- $|B_*(\Psi)\rangle = -|B\rangle$

some other consistency checks have been done
* what's this? "physical" solution?? ghost D-brane???

calculated boundary states

for generic string fields in the KBc subalgebra

$$|B_*(\Psi)\rangle = \frac{e^{(x+1)s} - e^{ys}}{e^s - 1}|B\rangle \begin{bmatrix} x = \sum_i G_i(0) \left(\frac{1}{2}F_i(0)H_i(0) + F_i'(0)H_i(0)\right) \\ y = \sum_i G_i(0) \left(\frac{1}{2}F_i(0)H_i(0) - F_i(0)H_i'(0)\right) \end{bmatrix}$$

s-independence of boundary states

> restricted to $|B_*(\Psi)\rangle = \pm |B\rangle, \ 0$

propose a candidate for the ghost brane solution

On multiple D-brane solutions

no multiple D-brane solutions in our class

- \rightarrow need to relax our regularity conditions
- # proposed multiple D-brane solutions [Murata-Schnabl '11]

$$\Psi = \frac{1}{K} c \frac{K^2}{K-1} B c \qquad \left(\frac{1}{K} = -\int_0^\infty e^{sK}\right)$$

- singular and require some regularization
- large contribution from wedge states of large width
 * we used Schnabl gauge propagator to derive our formula
 - subtlety for wedge states of large width
 - need to improve our discussion

THANK YOU!!