
Toshifumi Noumi
(University of Tokyo, Komaba)

reference: arXiv: 1207.6220
in collaboration with

Toru Masuda and Daisuke Takahashi

Constraints on a class of classical solutions
in open string field theory

基研研究会 - YITP, 23-27 July 2012



Constraints on a class of classical solutions

in open string field theory



Constraints on a class of classical solutions

in open string field theory

KBc subalgebra

cf. 増田さんのトーク，馬場くん、小路田さんのポスター



Constraints on a class of classical solutions

in open string field theory

consistency of boundary states



Plan of my talk

- open SFT & KBc subalgebra

- boundary states from classical solutions

- implication from consistency of boundary states



Open bosonic SFT

- string field Ψ

×
world-sheet description:

S =
1
2
�Ψ, QΨ� +

1
3
�Ψ,Ψ ∗ Ψ�action:

eom: QΨ + Ψ ∗ Ψ = 0



Open bosonic SFT
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# Witten’s star products

star product was an obstacle

to construct classical solutions analytically
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# sliver frame

Open bosonic SFT



# wedge state

s

= esK

es1K ∗ es2K = e(s1+s2)K

s1 s2 s1 s2

=＊

KBc subalgebra



KBc subalgebra

s

=
�

T (z)dz es1KKe(s−s1)K

s1

the state     = generator of wedge statesK



KBc subalgebra

s

= es1KBe(s−s1)K
�

b(z)dz

B2 = 0, QB = K , [K, B] = 0

s

=

×
c(s1)

es1Kc e(s−s1)K

s1

c2 = 0, {B, c} = 1, Qc = cKc



KBc subalgebra

- can be defined without specifying D-brane configuration 

at the perturbative vacuum

- simple algebraic relations

solutions for tachyon condensation [Schnabl ’05, Erler-Schnabl ’09]

in the universal sector of open SFT cf. [Sen ’99]

tachyon vacuum, multiple D-branes???

B2 = c2 = 0, {B, c} = 1, QB = K,

QK = 0, Qc = cKc, [K, B] = 0



Motivation

systematic studies:

Okawa’s formal solution: Ψ = F (K)c
KB

1− F (K)2
cF (K)

- F(K) is some function of the state K

- formally satisfies the equation of motion

- energy & gauge invariant observables [Murata-Schnabl ’11]

on their regularization [Hata-Kojita ’11, Murata-Schnabl ’11, Masuda ’12]

- boundary states [Takahashi ’11] → subtleties for multiple D-branes

→ proposal for multiple D-brane solutions

- energy [Erler ’06]

no satisfactory regularizations are known

cf. 増田さんのトーク，小路田さんのポスター



Motivation

would like to discuss systematically

which class of solutions are in the KBc subalgebra

using consistency of obtained boundary states,

we discuss possible boundary states in the KBc subalgebra

extending Takahashi’s calculation of boundary states,

we calculated those for generic string fields of ghost # 1:
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open string loop

using the propagator    in open SFTP

[Kiermaier-Okawa-Zwiebach ’08]
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Boundary states from open string fields

# basic idea

open string loop

using the propagator    in open SFTP
closed string propagation

boundary state

propagator     around a classical solutionP∗ Ψ

boundary state corresponding to the solution!?

[Kiermaier-Okawa-Zwiebach ’08]

|B�



Boundary states from open string fields

open string propagator strip         withe−sL L = {Q,B}

P Q

Q�P �

open string propagation

gauge condition: BΨ = 0 B =
�

1
2πi

v(z)b(z)with

parameter   : propagation lengths

①

②

[Kiermaier-Okawa-Zwiebach ’08]

# boundary state for the perturbative vacuum

s



Boundary states from open string fields

open string propagator strip         withe−sL L = {Q,B}
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parameter   : propagation lengths
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half propagator strip
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# boundary state for the perturbative vacuum

s



Boundary states from open string fields
[Kiermaier-Okawa-Zwiebach ’08]

# boundary state for the perturbative vacuum

M N

P Q

half propagator strip

MN

PQ
s



Boundary states from open string fields
[Kiermaier-Okawa-Zwiebach ’08]

# boundary state for the perturbative vacuum

MN

PQ

open string boundary

original boundary condition                  boundary state

closed string
propagation

e−
π2
s (L0+L̃0)|B�

closed string boundary (midpoint propagation)



Boundary states from open string fields
[Kiermaier-Okawa-Zwiebach ’08]

# deformed propagator

open string propagator strip         withe−sL L = {Q,B}

P Q

Q�P �

open string propagation

P∗
s

propagator strip around a solution     :Ψ

e−sL∗ L∗ = {Q∗,B} = L+ {B,Ψ}with
Q∗ = Q + {Ψ, · ]
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# deformed propagator

open string propagator strip         withe−sL L = {Q,B}

P Q

Q�P �

open string propagation

P∗
s

propagator strip around a solution     :Ψ

e−sL∗ L∗ = {Q∗,B} = L+ {B,Ψ}with

cf. point particle

interaction with external fields



Boundary states from open string fields
[Kiermaier-Okawa-Zwiebach ’08]

# deformed propagator

open string propagator strip         withe−sL L = {Q,B}

P∗
s

propagator strip around a solution     :Ψ

e−sL∗ L∗ = {Q∗,B} = L+ {B,Ψ}with

P Q

Q�P �

insertion of the solution Ψ

cf. point particle

interaction with external fields



Boundary states from open string fields
[Kiermaier-Okawa-Zwiebach ’08]

Figure 6: An open-closed vertex defined by |B∗(Ψ)〉 when the propagator strip is that of Siegel
gauge.

are consistent and real. Up to scaling of the closed string coordinate (which does not change

the on-shell content), the state |B∗(Ψ)〉 can be thought of as the state |Boc
∗ (Ψ)〉 built with the

open-closed vertices (5.13). These vertices can be supplemented with vertices coupling multiple

closed strings to construct a complete action in the form of (5.1). If we then assume background

independence, as stated in (5.5), we conclude that |B∗(Ψ)〉 has the on-shell content of |B∗〉 for

BPZ-even gauges. Since |B∗(Ψ)〉 changes by a BRST-exact term when the choice of propagator

strip is modified, this implies that |B∗(Ψ)〉 always has the correct on-shell content.

In summary, propagators corresponding to non-BPZ-even gauge conditions result in states

|B∗(Ψ)〉 that do not give real open-closed vertices. In those cases |B∗(Ψ)〉 cannot be viewed as

a boundary state |Boc
∗ (Ψ)〉 of open-closed string field theory. Indeed, we use the propagator

strip of Schnabl gauge, which is a non-BPZ-even gauge choice, for the explicit calculations

of |B∗(Ψ)〉 in the following sections. In this sense our proposal of |B∗(Ψ)〉 goes beyond the

framework of open-closed string field theory. Since it is based on complex open-closed vertices,

one may wonder if the state |B∗(Ψ)〉 based on Schnabl gauge is real. In fact, our arguments

only guarantee that its contraction with on-shell closed string states is real, but the contraction

with off-shell closed string states could be complex. Of course, it is also possible that a state

|B∗(Ψ)〉 that is not real for arbitrary real open string states turns out to be real for open string

states satisfying the equation of motion. We will find that the state |B∗(Ψ)〉 based on Schnabl

gauge is indeed real for the solutions we consider in section 7.

38

closed string boundary

e−
π2
s (L0+L̃0)|B∗(Ψ)�

|B∗(Ψ)� ∼ |B∗�-

- independent of the choice of
sgauge condition and the parameter

# deformed half propagator

eom
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Boundary states in the KBc subalgebra

Ψ =
�

i

Fi(K) cB Gi(K)cHi(K) {B, c} = 1, B2 = 0

applying this construction of boundary states,

we calculated those for generic string fields of ghost # 1:

we assume

-     etc. are defined by superpositions of wedge states:Fi

Fi(K) =
� ∞

0
fi(s)esK ex.

1
1−K

=
� ∞

0
e−sesK

-        damps fast enough for largefi(s) s

(small contribution from wedge states of large width)



Boundary states in the KBc subalgebra

|B∗(Ψ)� =
e(x+1)s − eys

es − 1
|B�

x =
�

i

Gi(0)
�

1
2
Fi(0)Hi(0) + F

�
i (0)Hi(0)

�

y =
�

i

Gi(0)
�

1
2
Fi(0)Hi(0)− Fi(0)H �

i(0)
�with

# general form of the boundary states

- proportional to |B�

- c-number factor N =
e(x+1)s − eys

es − 1
～ # of D-branes

- non-trivial s-dependence

- information of    is encoded in   andΨ x y



Boundary states in the KBc subalgebra

# s-independence of boundary states

satisfies the eomΨ |B∗(Ψ)� is s-independent

z

use the s-independence as a necessary condition

for    to satisfy the equation of motion！Ψ

|B∗(Ψ)� =
e(x+1)s − eys

es − 1
|B�



Boundary states in the KBc subalgebra

# classification using s-independence

|B∗(Ψ)� =
e(x+1)s − eys

es − 1
|B�

s-independent only in the following three cases！

-                      for|B∗(Ψ)� = |B� x = y = 0
ex. perturbative vacuum

|B∗(Ψ)� = 0-                   for x = y − 1 = arbitrary
ex. tachyon vacuum

|B∗(Ψ)� = −|B�-                        for x = −1 , y = 1
one ghost D-brane!?  cf. [Okuda-Takayanagi ’06]

※ no multiple D-branes in our class！



Ghost brane solutions!?

# we found a solution reproducing |B∗(Ψ)� = −|B�

Ψghost =

�
1− pK

1− qK
c
(1− qK)

p− q
Bc

�
1− pK

1− qK
+

�
1− qK

1− pK
c
(1− pK)

q − p
Bc

�
1− qK

1− pK

- energy density = 2 (that of tachyon vacuum)

perturbative vacuum

tachyon vacuum

ghost brane!?

- satisfy the eom

0
−1
−2
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Ghost brane solutions!?

# we found a solution reproducing |B∗(Ψ)� = −|B�

Ψghost =

�
1− pK

1− qK
c
(1− qK)

p− q
Bc

�
1− pK

1− qK
+

�
1− qK

1− pK
c
(1− pK)

q − p
Bc

�
1− qK

1− pK

- energy density = 2 (that of tachyon vacuum)

perturbative vacuum

tachyon vacuum

ghost brane!?

- |B∗(Ψ)� = −|B�

- satisfy the eom

- some other consistency checks have been done
※ what’s this?   “physical” solution??   ghost D-brane???

0
−1
−2



Summary

# calculated boundary states

for generic string fields in the KBc subalgebra

|B∗(Ψ)� =
e(x+1)s − eys

es − 1
|B�

x =
�

i

Gi(0)
�

1
2
Fi(0)Hi(0) + F

�
i (0)Hi(0)

�

y =
�

i

Gi(0)
�

1
2
Fi(0)Hi(0)− Fi(0)H �

i(0)
�

# s-independence of boundary states

|B∗(Ψ)� = ±|B�, 0restricted to

# propose a candidate for the ghost brane solution



On multiple D-brane solutions

# no multiple D-brane solutions in our class

# proposed multiple D-brane solutions [Murata-Schnabl ’11]

- singular and require some regularization

→ need to relax our regularity conditions

Ψ =
1
K

c
K2

K − 1
Bc

�
1
K

= −
� ∞

0
esK

�

- large contribution from wedge states of large width

※ we used Schnabl gauge propagator to derive our formula

- subtlety for wedge states of large width

- need to improve our discussion



THANK YOU!!


