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Target: 4D N = 1 SYM

Simplest 4D SUSY gauge theory (∵ no scalar field)

S =

Z
d4x

»
1
2

tr (FµνFµν) + tr
`
ψ̄ /Dψ

´–
, ψ̄ = ψT (−C−1)

SUSY
δξAµ = ξ̄γµψ, δξψ = −1

2
σµνξFµν , ξ̄ = ξT (−C−1)

SUSY algebra in the present on-shell multiplet is complicated:

[δξ, δξ′ ] = −tµ∂µ + GtµAµ| {z }
gauge transf.

+ (eq. of motion of ψ)| {z }
no auxiliary field D

, tµ = ξ̄γµξ
′ − ξ̄′γµξ

Chiral U(1)A symmetry

δθψ = iθγ5ψ, δθψ̄ = iθψ̄γ5

is an R symmetry
[δθ, δξ] = δ(ξ→−iθγ5ξ)
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Expected non-perturbative physics (for G = SU(Nc))

No spontaneous SUSY breaking: Witten index Tr(−1)F = Nc 6= 0

Chiral symmetry breaking

U(1)A
anomaly & instanton−−−−−−−−−−→ Z2Nc

〈tr(ψ̄ψ)〉6=0−−−−−−→ Z2, (domain wall)

Lowest-lying SUSY multiplet (Veneziano–Yankielowicz (1982))

gluino-glue σµν tr(ψFµν) ⇔ adjoint-η′ tr(ψ̄γ5ψ), adjoint-f0 tr(ψ̄ψ)

Non-perturbative study by the lattice regularization?

a
µ

x aµ̂
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Lattice formulation?

A possible lattice action:

Sgluon =
X

x

X
µ,ν

„
− 1

g2

«
Re tr

h
Uµ(x)Uν(x + aµ̂)U†

µ(x + aν̂)U†
ν(x)

i
,

Sgluino = a4
X

x

tr

 
ψ̄(x)

(
1
2

X
µ

ˆ
γµ(∇µ +∇∗

µ)− ra∇∗
µ∇µ

˜)
ψ(x)

!

Link variables
Uµ(x) = eiagAµ(x)

Covariant differences

∇µψ(x) ≡
1
a

h
Uµ(x)ψ(x + aµ̂)U†

µ(x)− ψ(x)
i
,

∇∗
µψ(x) ≡

1
a

h
ψ(x)− U†

µ(x − aµ̂)ψ(x − aµ̂)Uµ(x − aµ̂)
i

SUSY and, generally U(1)A, are broken by O(a) terms

These O(a) effects become O(1) through O(1/a) radiative corrections!
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Lattice formulation and fine tuning

To realize the target theory, we need parameter fine-tuning

4D N = 1 SYM would be “simple”, because SUSY-breaking relevant operator is
unique: Z

d4x M tr
`
ψ̄ψ
´

Tuning the single parameter M would restore both SUSY and U(1)A in the
continuum limit (Kaplan (1983), Curci–Veneziano (1987))

S(0)
mass = a4

X
x

M tr
ˆ
ψ̄(x)ψ(x)

˜
Total lattice action will be

S(0) ≡ Sgluon + Sgluino + S(0)
mass

“
+S(0)

GF+FP

”
Or, a lattice chiral symmetry (a la Ginsparg–Wilson) would forbid M and imply
SUSY in the continuum limit (Neuberger (1997), Nishimura (1997),
Maru–Nishimura (1997), Kaplan–Schmaltz (2000))

We want to understand this symmetry restoration in terms of Ward–Takahashi
(WT) relation. . .
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Lattice WT relation for U(1)A

(Localized) U(1)A transformation

δθψ(x) = iθ(x)γ5ψ(x), δθψ̄(x) = iθ(x)ψ̄(x)γ5

We have

∂∗µ
˙
tr
ˆ
ψ̄(x)γµγ5ψ(x)

˜
O
¸

= 2M
˙
tr
ˆ
ψ̄(x)γ5ψ(x)

˜
O
¸
+〈XA(x)O〉+i

fi
1
a4

∂

∂θ(x)
δθO

fl
Taking lattice symmetries (hypercubic, parity) into account,

XA(x) = (1−ZA)∂∗µ tr
ˆ
ψ̄(x)γµγ5ψ(x)

˜
−ZF eF [FF̃ ]L(x)− 1

a
ZP tr

ˆ
ψ̄(x)γ5ψ(x)

˜
+ · · ·

When the gauge-invariant operator O is apart from x ,

ZA∂
∗
µ

˙
tr
ˆ
ψ̄(x)γµγ5ψ(x)

˜
O
¸

= −ZF eF
D
[FF̃ ]L(x)O

E
+ 2

„
M − 1

2a
ZP

«
| {z }

U(1)A breaking

˙
tr
ˆ
ψ̄(x)γ5ψ(x)

˜
O
¸
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Lattice WT relation for SUSY

(Localized) SUSY transformation

δξUµ(x) = iag
1
2
ˆ
ξ̄(x)γµψ(x)Uµ(x) + ξ̄(x + aµ̂)γµUµ(x)ψ(x + aµ̂)

˜
,

δξψ(x) = −1
2
σµνξ(x)Pµν(x), Pµν(x): (traceless part of imag of) plaquette

We have

∂∗µ 〈Sµ(x)O〉 = M 〈χ(x)O〉+ 〈XS(x)O〉 −
fi

1
a4

∂

∂ξ̄(x)
δξO

fl
+ · · ·

where

Sµ(x) ≡ (−1)σρσγµ tr [ψ(x)Pρσ(x)] , χ(x) ≡ σµν tr [ψ(x)Pµν(x)]

Taking lattice symmetries (hypercubic, parity) into account,

XS(x) = (1−ZS)∂∗µSµ(x)−ZT∂
∗
µTµ(x)− 1

a
Zχχ(x)−Z3F tr

ˆ
ψ(x)ψ̄(x)ψ(x)

˜
+ · · ·

where
Tµ(X ) ≡ 2γν tr [ψ(x)Pµν(x)]

When the gauge-invariant operator O is apart from x ,

∂∗µ 〈[ZSSµ(x) + ZT Tµ(x)]O〉 =

„
M − 1

a
Zχ
«
〈χ(x)O〉−Z3F

˙
tr
ˆ
ψ(x)ψ̄(x)ψ(x)

˜
O
¸
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Lattice WT relation for SUSY
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M − 1
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M − 1

a
Zχ
«
〈χ(x)O〉−Z3F

˙
tr
ˆ
ψ(x)ψ̄(x)ψ(x)

˜
O
¸
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Lattice WT relation for SUSY
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δξO

fl
+ · · ·
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(Necessary) condition for the symmetry restoration

Thus, for SUSY and U(1)A WT identities without breaking to be restored,

M − 1
a
Zχ = M − 1

2a
ZP = 0, Z3F = 0,

that is,

Zχ =
1
2
ZP , (1)

and
Z3F = 0 (2)

Curci–Veneziano (1987) argued (1), but in a very naive way, neglecting
complications associated with the gauge fixing, ghost etc. No mention on Z3F

Taniguchi (1999) confirmed (1) (and (2); private communication) by an explicit
one-loop calculation

Farchioni et al. (2001) noted the possibility of Z3F , but considered only G = SU(2)
for which tr(ψψ̄ψ) ≡ 0

Here we prove (1) and (2) to all orders of perturbation theory

This must be important from the perspective of recent numerical simulations
(DESY–Münster, Giedt et al. (USA), Endres (RIKEN), Kim et al. (JLQCD))
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Wilson fermion, tree-level Symanzik improved gauge action, G = SU(2)

(Bergner–Münster–Sandbrink–Özugurel–Montvay (2011))

323 × 64, a = 0.114r0,
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Basic line of the proof

We want to know a constraint on possible breaking terms in the quantum
continuum limit

It is natural to imagine a certain Wess–Zumino (WZ) like consistency condition

For the gauge anomaly, introducing the gauge BRS transformation s0,

εs0Aµ = GεcAµ, εs0ψ ≡ Gεcψ, εs0c = −igεc2, s2
0 = 0,

the gauge anomaly
A ≡ s0Γ, Γ : effective action,

satisfies
s0A = s2

0Γ = 0, ∵ s2
0 = 0

In the present problem, it is natural to consider a certain BRS-like nilpotent
transformation that corresponds to SUSY and U(1)A

This BRS-like transformation should include also translation and gauge
transformations

[δξ, δξ′ ] = −tµ∂µ + GtµAµ , tµ = ξ̄γµξ
′ − ξ̄′γµξ
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Basic line of the proof

Such a generalized BRS transformation s has been known in the continuum
theory (Zumino, White, Maggiore–Piguet–Wolf)

sAµ ≡ Dµc + ξ̄γµψ − i tν∂νAµ,

sψ ≡ −ig{c, ψ} − 1
2
σµνξFµν − i tµ∂µψ + iθγ5ψ,

sc ≡ −igc2 + ξ̄γµξAµ − i tµ∂µc,

sc̄ ≡ B − i tµ∂µc̄,

sB ≡ ξ̄γµξ∂µc̄ − i tµ∂µB,

sξ ≡ iθγ5ξ, stµ ≡ −i ξ̄γµξ, sθ ≡ 0

New ghosts

ξ: Grassmann-even, θ: Grassmann-odd, tµ: Grassmann-odd

are constant and possess opposite statistics as the corresponding transformation
parameters
Then one finds

s2Φ = 0
for all variables Φ, except ψ on which,

s2ψ = γ5ξξ̄γ5 /Dψ ∝ (eq. of motion of ψ; on-shell nilpotency)
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Basic line of the proof

In continuum theory, the formal invariance implies the Slavnov–Taylor (ST) identity
or the Zinn-Justin equation for the effective action,

S(Γ ) = 0

where

S(F ) ≡
Z

d4x

"
δF

δK a
Aµ

(x)

δF
δAa

µ(x)
+

δF
δK̄ a

ψ(x)

δF
δψa(x)

+
δF

δK a
c (x)

δF
δca(x)

#

+

Z
d4x

»
sc̄a(x)

δF
δc̄a(x)

+ sBa(x)
δF

δBa(x)

–
+ sξ

∂F
∂ξ

+ stµ
∂F
∂tµ

+ sθ
∂F
∂θ

+ · · ·
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Basic line of the proof

We can define a lattice analogue of the generalized BRS transformation s but s is
not nilpotent by O(a) (of course!)

s2Aµ = O(a), s2ψ = γ5ξξ̄γ5Dψ + O(a), s2c = O(a),

but still
s2c̄ = s2B = 0, s2ξ = s2tµ = s2θ = · · · = 0

The lattice action is also not invariant under s (of course!) and we end up with the
ST relation on the lattice

S(Γ ) =

*
a4
X

x

ˆ
ξ̄XS(x) + iθXA(x)

˜
+ c̄ · Bc̄ + K ′ · BK ′ + t · Bt

+
J,K ,ξ,t,θ,u,v

Here, XS(x) and XA(x) are O(a) symmetry breaking terms

δξ (Sgluon + Sgluino) = a4
X

x

ξ̄XS(x),

δθ (Sgluon + Sgluino) = a4
X

x

iθXA(x)
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Basic line of the proof

The crucial ingredient is the “linearized” S(F ), defined by

D(F ) ≡ a4
X

x

"
δF

δAa
µ(x)

δ

δK a
Aµ

(x)
+

δF
δK a

Aµ
(x)

δ

δAa
µ(x)

+
δF

δK̄ a
ψ(x)

δ

δψa(x)
+

δF
δψa(x)

δ

δK̄ a
ψ(x)

+
δF

δK a
c (x)

δ

δca(x)
+

δF
δca(x)

δ

δK a
c (x)

#

+ a4
X

x

»
sc̄a(x)

δ

δc̄a(x)
+ sBa(x)

δ

δBa(x)

–
+ sξ

∂

∂ξ
+ stµ

∂

∂tµ
+ sθ

∂

∂θ
+ · · ·

Then,
D(F )S(F ) ≡ 0

Since we had

S(Γ ) =

*
a4
X

x

ˆ
ξ̄XS(x) + iθXA(x)

˜
+ c̄ · Bc̄ + K ′ · BK ′ + t · Bt

+
J,K ,ξ,t,θ,u,v

r.h.s. must satisfy

D(Γ )

*
a4
X

x

ˆ
ξ̄XS(x) + iθXA(x)

˜
+ c̄ · Bc̄ + K ′ · BK ′ + t · Bt

+
J,K ,ξ,t,θ,u,v

≡ 0
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Aµ

(x)
+

δF
δK a

Aµ
(x)

δ

δAa
µ(x)

+
δF

δK̄ a
ψ(x)

δ

δψa(x)
+

δF
δψa(x)

δ

δK̄ a
ψ(x)

+
δF

δK a
c (x)

δ

δca(x)
+

δF
δca(x)

δ

δK a
c (x)

#

+ a4
X

x

»
sc̄a(x)

δ

δc̄a(x)
+ sBa(x)

δ

δBa(x)

–
+ sξ

∂

∂ξ
+ stµ

∂

∂tµ
+ sθ

∂

∂θ
+ · · ·

Then,
D(F )S(F ) ≡ 0

Since we had

S(Γ ) =

*
a4
X

x

ˆ
ξ̄XS(x) + iθXA(x)

˜
+ c̄ · Bc̄ + K ′ · BK ′ + t · Bt

+
J,K ,ξ,t,θ,u,v

r.h.s. must satisfy

D(Γ )

*
a4
X

x

ˆ
ξ̄XS(x) + iθXA(x)

˜
+ c̄ · Bc̄ + K ′ · BK ′ + t · Bt

+
J,K ,ξ,t,θ,u,v

≡ 0
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Very final step of the proof

The expectation value survives only through radiative corrections, thus O(~n) with
n ≥ 1. Taking O(~n) terms of both sides,

D(Sclassical)

*
a4
X

x

ˆ
ξ̄XS(x) + iθXA(x)

˜
+ c̄ · Bc̄ + K ′ · BK ′ + t · Bt

+O(~n)

J,K ,ξ,t,θ,u,v

= 0

This is the WT consistency condition that we were seeking!!!

Substituting the general forms of XS(x) and XA(x),

XS(x) = −1
a
Zχσµν tr [ψ(x)Pµν(x)]−Z3F tr

ˆ
ψ(x)ψ̄(x)ψ(x)

˜
+ · · · ,

XA(x) = −1
a
ZP tr

ˆ
ψ̄(x)γ5ψ(x)

˜
+ · · · ,

after some examination in the continuum limit, we have

Zχ =
1
2
ZP , from the O(θ1, ξ1) terms

Z3F = 0, from the O(θ0, ξ2) terms

Q.E.D.
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Summary

Applying the generalized BRS transformation that treats gauge, SUSY, translation,
U(1)A in a unified way, to the lattice framework, we have established the relations,

Zχ =
1
2
ZP , Z3F = 0,

to all orders of the perturbation theory in the continuum limit

These relations provide a theoretical basis for lattice formulations of 4D N = 1
SYM

Constraint on the mixing of XS with BRS non-invariant operators (Taniguchi (1999))Z
d4x Gζ(BRS non-invariant operators) = 0

Renormalized supercurrent and the energy-momentum tensor that go well with
SUSY algebra (a la Ferrara–Zumino)?

δξ j5µ = ξ̄γ5Sµ, δξSµ = 2γνξTµν + · · ·

Lattice formulation of other supersymmetric theories. . .
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