Supersymmetry, chiral symmetry and the generalized BRS transformation in lattice formulations of 4D $\mathcal{N}=1 \mathrm{SYM}$

Hiroshi Suzuki

Quantum Hadron Physics Laboratory
Theoretical Research Division, RIKEN Nishina Center

July 24, 2012 @ YITP

- H.S., arXiv:1202.2598 [hep-lat], Nucl. Phys. B861 (2012) 290-320.

Target: 4D N = 1 SYM

- Simplest 4D SUSY gauge theory (\because no scalar field)

$$
S=\int d^{4} x\left[\frac{1}{2} \operatorname{tr}\left(F_{\mu \nu} F_{\mu \nu}\right)+\operatorname{tr}(\bar{\psi} \mathbb{D} \psi)\right], \quad \bar{\psi}=\psi^{T}\left(-C^{-1}\right)
$$

Target: 4D N = 1 SYM

- Simplest 4D SUSY gauge theory (\because no scalar field)

$$
S=\int d^{4} x\left[\frac{1}{2} \operatorname{tr}\left(F_{\mu \nu} F_{\mu \nu}\right)+\operatorname{tr}(\bar{\psi} \mathbb{D} \psi)\right], \quad \bar{\psi}=\psi^{T}\left(-C^{-1}\right)
$$

- SUSY

$$
\delta_{\xi} A_{\mu}=\bar{\xi} \gamma_{\mu} \psi, \quad \delta_{\xi} \psi=-\frac{1}{2} \sigma_{\mu \nu} \xi F_{\mu \nu}, \quad \bar{\xi}=\xi^{T}\left(-C^{-1}\right)
$$

Target: 4D N = 1 SYM

- Simplest 4D SUSY gauge theory (\because no scalar field)

$$
S=\int d^{4} x\left[\frac{1}{2} \operatorname{tr}\left(F_{\mu \nu} F_{\mu \nu}\right)+\operatorname{tr}(\bar{\psi} \mathbb{D} \psi)\right], \quad \bar{\psi}=\psi^{T}\left(-C^{-1}\right)
$$

- SUSY

$$
\delta_{\xi} A_{\mu}=\bar{\xi} \gamma_{\mu} \psi, \quad \delta_{\xi} \psi=-\frac{1}{2} \sigma_{\mu \nu} \xi F_{\mu \nu}, \quad \bar{\xi}=\xi^{T}\left(-C^{-1}\right)
$$

- SUSY algebra in the present on-shell multiplet is complicated:

$$
\left[\delta_{\xi}, \delta_{\xi^{\prime}}\right]=-t_{\mu} \partial_{\mu}+\underbrace{\mathcal{G}_{t_{\mu} A_{\mu}}}_{\text {gauge transt. }}+\underbrace{(\text { eq. of motion of } \psi)}_{\text {no auxiliary field } D}, \quad t_{\mu}=\bar{\xi} \gamma_{\mu} \xi^{\prime}-\bar{\xi}^{\prime} \gamma_{\mu} \xi
$$

Target: 4D N = 1 SYM

- Simplest 4D SUSY gauge theory (\because no scalar field)

$$
S=\int d^{4} x\left[\frac{1}{2} \operatorname{tr}\left(F_{\mu \nu} F_{\mu \nu}\right)+\operatorname{tr}(\bar{\psi} \mathbb{D} \psi)\right], \quad \bar{\psi}=\psi^{T}\left(-C^{-1}\right)
$$

- SUSY

$$
\delta_{\xi} A_{\mu}=\bar{\xi} \gamma_{\mu} \psi, \quad \delta_{\xi} \psi=-\frac{1}{2} \sigma_{\mu \nu} \xi F_{\mu \nu}, \quad \bar{\xi}=\xi^{T}\left(-C^{-1}\right)
$$

- SUSY algebra in the present on-shell multiplet is complicated:

$$
\left[\delta_{\xi}, \delta_{\xi^{\prime}}\right]=-t_{\mu} \partial_{\mu}+\underbrace{\mathcal{G}_{t_{\mu} A_{\mu}}}_{\text {gauge transt. }}+\underbrace{(\text { eq. of motion of } \psi)}_{\text {no auxiliary field } D}, \quad t_{\mu}=\bar{\xi} \gamma_{\mu} \xi^{\prime}-\bar{\xi}^{\prime} \gamma_{\mu} \xi
$$

- Chiral $U(1)_{A}$ symmetry

$$
\delta_{\theta} \psi=i \theta \gamma_{5} \psi, \quad \delta_{\theta} \bar{\psi}=i \theta \bar{\psi} \gamma_{5}
$$

is an R symmetry

$$
\left[\delta_{\theta}, \delta_{\xi}\right]=\delta_{\left(\xi \rightarrow-i \theta \gamma_{5} \xi\right)}
$$

Expected non-perturbative physics (for $G=S U\left(N_{C}\right)$)

- No spontaneous SUSY breaking: Witten index $\operatorname{Tr}(-1)^{F}=N_{c} \neq 0$
- Chiral symmetry breaking

$$
U(1)_{A} \xrightarrow{\text { anomaly \& instanton }} \mathbb{Z}_{2 N_{C}} \xrightarrow{\langle\operatorname{tr}(\bar{\psi} \psi)\rangle \neq 0} \mathbb{Z}_{2}, \quad \text { (domain wall) }
$$

- Lowest-lying SUSY multiplet (Veneziano-Yankielowicz (1982))

$$
\text { gluino-glue } \sigma_{\mu \nu} \operatorname{tr}\left(\psi F_{\mu \nu}\right) \Leftrightarrow \text { adjoint- } \eta^{\prime} \operatorname{tr}\left(\bar{\psi} \gamma_{5} \psi\right) \text {, adjoint }-f_{0} \operatorname{tr}(\bar{\psi} \psi)
$$

Expected non-perturbative physics (for $G=S U\left(N_{C}\right)$)

- No spontaneous SUSY breaking: Witten index $\operatorname{Tr}(-1)^{F}=N_{c} \neq 0$
- Chiral symmetry breaking

$$
U(1)_{A} \xrightarrow{\text { anomaly \& instanton }} \mathbb{Z}_{2 N_{c}} \xrightarrow{\langle\operatorname{tr}(\bar{\psi} \psi)\rangle \neq 0} \mathbb{Z}_{2}, \quad \text { (domain wall) }
$$

- Lowest-lying SUSY multiplet (Veneziano-Yankielowicz (1982))

$$
\text { gluino-glue } \sigma_{\mu \nu} \operatorname{tr}\left(\psi F_{\mu \nu}\right) \Leftrightarrow \text { adjoint- } \eta^{\prime} \operatorname{tr}\left(\bar{\psi} \gamma_{5} \psi\right) \text {, adjoint }-f_{0} \operatorname{tr}(\bar{\psi} \psi)
$$

- Non-perturbative study by the lattice regularization?

Lattice formulation?

- A possible lattice action:

$$
\begin{aligned}
& S_{\text {gluon }}=\sum_{x} \sum_{\mu, \nu}\left(-\frac{1}{g^{2}}\right) \operatorname{Retr}\left[U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x)\right], \\
& S_{\text {gluino }}=a^{4} \sum_{x} \operatorname{tr}\left(\bar{\psi}(x)\left\{\frac{1}{2} \sum_{\mu}\left[\gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-r a \nabla_{\mu}^{*} \nabla_{\mu}\right]\right\} \psi(x)\right)
\end{aligned}
$$

- Link variables

$$
U_{\mu}(x)=e^{i a g A_{\mu}(x)}
$$

- Covariant differences

$$
\begin{aligned}
\nabla_{\mu} \psi(x) & \equiv \frac{1}{a}\left[U_{\mu}(x) \psi(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)-\psi(x)\right] \\
\nabla_{\mu}^{*} \psi(x) & \equiv \frac{1}{a}\left[\psi(x)-U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu}) U_{\mu}(x-a \hat{\mu})\right]
\end{aligned}
$$

Lattice formulation?

- A possible lattice action:

$$
\begin{aligned}
& S_{\text {gluon }}=\sum_{x} \sum_{\mu, \nu}\left(-\frac{1}{g^{2}}\right) \operatorname{Retr}\left[U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x)\right], \\
& S_{\text {gluino }}=a^{4} \sum_{x} \operatorname{tr}\left(\bar{\psi}(x)\left\{\frac{1}{2} \sum_{\mu}\left[\gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-r a \nabla_{\mu}^{*} \nabla_{\mu}\right]\right\} \psi(x)\right)
\end{aligned}
$$

- Link variables

$$
U_{\mu}(x)=e^{i a g A_{\mu}(x)}
$$

- Covariant differences

$$
\begin{aligned}
\nabla_{\mu} \psi(x) & \equiv \frac{1}{a}\left[U_{\mu}(x) \psi(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)-\psi(x)\right] \\
\nabla_{\mu}^{*} \psi(x) & \equiv \frac{1}{a}\left[\psi(x)-U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu}) U_{\mu}(x-a \hat{\mu})\right]
\end{aligned}
$$

- SUSY and, generally $U(1)_{A}$, are broken by $O(a)$ terms

Lattice formulation?

- A possible lattice action:

$$
\begin{aligned}
& S_{\text {gluon }}=\sum_{x} \sum_{\mu, \nu}\left(-\frac{1}{g^{2}}\right) \operatorname{Retr}\left[U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x)\right], \\
& S_{\text {gluino }}=a^{4} \sum_{x} \operatorname{tr}\left(\bar{\psi}(x)\left\{\frac{1}{2} \sum_{\mu}\left[\gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-r a \nabla_{\mu}^{*} \nabla_{\mu}\right]\right\} \psi(x)\right)
\end{aligned}
$$

- Link variables

$$
U_{\mu}(x)=e^{i a g A_{\mu}(x)}
$$

- Covariant differences

$$
\begin{aligned}
\nabla_{\mu} \psi(x) & \equiv \frac{1}{a}\left[U_{\mu}(x) \psi(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)-\psi(x)\right] \\
\nabla_{\mu}^{*} \psi(x) & \equiv \frac{1}{a}\left[\psi(x)-U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu}) U_{\mu}(x-a \hat{\mu})\right]
\end{aligned}
$$

- SUSY and, generally $U(1)_{A}$, are broken by $O(a)$ terms
- These $O(a)$ effects become $O(1)$ through $O(1 / a)$ radiative corrections!

Lattice formulation and fine tuning

- To realize the target theory, we need parameter fine-tuning

Lattice formulation and fine tuning

- To realize the target theory, we need parameter fine-tuning
- 4D $\mathcal{N}=1$ SYM would be "simple", because SUSY-breaking relevant operator is unique:

$$
\int d^{4} x M \operatorname{tr}(\bar{\psi} \psi)
$$

Lattice formulation and fine tuning

- To realize the target theory, we need parameter fine-tuning
- 4D $\mathcal{N}=1$ SYM would be "simple", because SUSY-breaking relevant operator is unique:

$$
\int d^{4} \times M \operatorname{tr}(\bar{\psi} \psi)
$$

- Tuning the single parameter M would restore both SUSY and $U(1)_{A}$ in the continuum limit (Kaplan (1983), Curci-Veneziano (1987))

$$
S_{\text {mass }}^{(0)}=a^{4} \sum_{x} M \operatorname{tr}[\bar{\psi}(x) \psi(x)]
$$

Lattice formulation and fine tuning

- To realize the target theory, we need parameter fine-tuning
- 4D $\mathcal{N}=1$ SYM would be "simple", because SUSY-breaking relevant operator is unique:

$$
\int d^{4} \times M \operatorname{tr}(\bar{\psi} \psi)
$$

- Tuning the single parameter M would restore both SUSY and $U(1)_{A}$ in the continuum limit (Kaplan (1983), Curci-Veneziano (1987))

$$
S_{\text {mass }}^{(0)}=a^{4} \sum_{x} M \operatorname{tr}[\bar{\psi}(x) \psi(x)]
$$

- Total lattice action will be

$$
S^{(0)} \equiv S_{\text {gluon }}+S_{\text {gluino }}+S_{\text {mass }}^{(0)}\left(+S_{\mathrm{GF}+\mathrm{FP}}^{(0)}\right)
$$

Lattice formulation and fine tuning

- To realize the target theory, we need parameter fine-tuning
- 4D $\mathcal{N}=1$ SYM would be "simple", because SUSY-breaking relevant operator is unique:

$$
\int d^{4} \times M \operatorname{tr}(\bar{\psi} \psi)
$$

- Tuning the single parameter M would restore both SUSY and $U(1)_{A}$ in the continuum limit (Kaplan (1983), Curci-Veneziano (1987))

$$
S_{\text {mass }}^{(0)}=a^{4} \sum_{x} M \operatorname{tr}[\bar{\psi}(x) \psi(x)]
$$

- Total lattice action will be

$$
S^{(0)} \equiv S_{\text {gluon }}+S_{\text {gluino }}+S_{\text {mass }}^{(0)}\left(+S_{\mathrm{GF}+\mathrm{FP}}^{(0)}\right)
$$

- Or, a lattice chiral symmetry (a la Ginsparg-Wilson) would forbid M and imply SUSY in the continuum limit (Neuberger (1997), Nishimura (1997), Maru-Nishimura (1997), Kaplan-Schmaltz (2000))

Lattice formulation and fine tuning

- To realize the target theory, we need parameter fine-tuning
- 4D $\mathcal{N}=1$ SYM would be "simple", because SUSY-breaking relevant operator is unique:

$$
\int d^{4} \times M \operatorname{tr}(\bar{\psi} \psi)
$$

- Tuning the single parameter M would restore both SUSY and $U(1)_{A}$ in the continuum limit (Kaplan (1983), Curci-Veneziano (1987))

$$
S_{\mathrm{mass}}^{(0)}=a^{4} \sum_{x} M \operatorname{tr}[\bar{\psi}(x) \psi(x)]
$$

- Total lattice action will be

$$
S^{(0)} \equiv S_{\text {gluon }}+S_{\text {gluino }}+S_{\text {mass }}^{(0)}\left(+S_{\mathrm{GF}+\mathrm{FP}}^{(0)}\right)
$$

- Or, a lattice chiral symmetry (a la Ginsparg-Wilson) would forbid M and imply SUSY in the continuum limit (Neuberger (1997), Nishimura (1997), Maru-Nishimura (1997), Kaplan-Schmaltz (2000))
- We want to understand this symmetry restoration in terms of Ward-Takahashi (WT) relation. .

Lattice WT relation for $U(1)_{A}$

- (Localized) $U(1)_{A}$ transformation

$$
\delta_{\theta} \psi(x)=i \theta(x) \gamma_{5} \psi(x), \quad \delta_{\theta} \bar{\psi}(x)=i \theta(x) \bar{\psi}(x) \gamma_{5}
$$

Lattice WT relation for $U(1)_{A}$

- (Localized) $U(1)_{A}$ transformation

$$
\delta_{\theta} \psi(x)=i \theta(x) \gamma_{5} \psi(x), \quad \delta_{\theta} \bar{\psi}(x)=i \theta(x) \bar{\psi}(x) \gamma_{5}
$$

- We have

$$
\partial_{\mu}^{*}\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle=2 M\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle+\left\langle X_{A}(x) \mathcal{O}\right\rangle+i\left\langle\frac{1}{a^{4}} \frac{\partial}{\partial \theta(x)} \delta_{\theta} \mathcal{O}\right\rangle
$$

Lattice WT relation for $U(1)_{A}$

- (Localized) $U(1)_{A}$ transformation

$$
\delta_{\theta} \psi(x)=i \theta(x) \gamma_{5} \psi(x), \quad \delta_{\theta} \bar{\psi}(x)=i \theta(x) \bar{\psi}(x) \gamma_{5}
$$

- We have

$$
\partial_{\mu}^{*}\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle=2 M\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle+\left\langle X_{A}(x) \mathcal{O}\right\rangle+i\left\langle\frac{1}{a^{4}} \frac{\partial}{\partial \theta(x)} \delta_{\theta} \mathcal{O}\right\rangle
$$

- Taking lattice symmetries (hypercubic, parity) into account,

$$
X_{A}(x)=\left(1-\mathcal{Z}_{A}\right) \partial_{\mu}^{*} \operatorname{tr}\left[\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)\right]-\mathcal{Z}_{F \tilde{F}}[F \tilde{F}]^{L}(x)-\frac{1}{a} \mathcal{Z}_{P} \operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right]+\cdots
$$

Lattice WT relation for $U(1)_{A}$

- (Localized) $U(1)_{A}$ transformation

$$
\delta_{\theta} \psi(x)=i \theta(x) \gamma_{5} \psi(x), \quad \delta_{\theta} \bar{\psi}(x)=i \theta(x) \bar{\psi}(x) \gamma_{5}
$$

- We have

$$
\partial_{\mu}^{*}\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle=2 M\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle+\left\langle X_{A}(x) \mathcal{O}\right\rangle+i\left\langle\frac{1}{a^{4}} \frac{\partial}{\partial \theta(x)} \delta_{\theta} \mathcal{O}\right\rangle
$$

- Taking lattice symmetries (hypercubic, parity) into account,

$$
X_{A}(x)=\left(1-\mathcal{Z}_{A}\right) \partial_{\mu}^{*} \operatorname{tr}\left[\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)\right]-\mathcal{Z}_{F \tilde{F}}[F \tilde{F}]^{L}(x)-\frac{1}{a} \mathcal{Z}_{P} \operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right]+\cdots
$$

- When the gauge-invariant operator \mathcal{O} is apart from x,

$$
\begin{aligned}
& \mathcal{Z}_{A} \partial_{\mu}^{*}\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle \\
& =-\mathcal{Z}_{F \tilde{F}}\left\langle[F \tilde{F}]^{L}(x) \mathcal{O}\right\rangle+2 \underbrace{\left(M-\frac{1}{2 a} \mathcal{Z}_{P}\right)}_{U(1)_{A} \text { breaking }}\left\langle\operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right] \mathcal{O}\right\rangle
\end{aligned}
$$

Lattice WT relation for SUSY

- (Localized) SUSY transformation

$$
\begin{aligned}
\delta_{\xi} U_{\mu}(x) & =\operatorname{iag} \frac{1}{2}\left[\bar{\xi}(x) \gamma_{\mu} \psi(x) U_{\mu}(x)+\bar{\xi}(x+a \hat{\mu}) \gamma_{\mu} U_{\mu}(x) \psi(x+a \hat{\mu})\right], \\
\delta_{\xi} \psi(x) & =-\frac{1}{2} \sigma_{\mu \nu} \xi(x) P_{\mu \nu}(x), \quad P_{\mu \nu}(x): \text { (traceless part of imag of) plaquette }
\end{aligned}
$$

Lattice WT relation for SUSY

- (Localized) SUSY transformation

$$
\begin{aligned}
\delta_{\xi} U_{\mu}(x) & =\operatorname{iag} \frac{1}{2}\left[\bar{\xi}(x) \gamma_{\mu} \psi(x) U_{\mu}(x)+\bar{\xi}(x+a \hat{\mu}) \gamma_{\mu} U_{\mu}(x) \psi(x+a \hat{\mu})\right], \\
\delta_{\xi} \psi(x) & =-\frac{1}{2} \sigma_{\mu \nu} \xi(x) P_{\mu \nu}(x), \quad P_{\mu \nu}(x): \text { (traceless part of imag of) plaquette }
\end{aligned}
$$

- We have

$$
\partial_{\mu}^{*}\left\langle S_{\mu}(x) \mathcal{O}\right\rangle=M\langle\chi(x) \mathcal{O}\rangle+\left\langle X_{S}(x) \mathcal{O}\right\rangle-\left\langle\frac{1}{a^{4}} \frac{\partial}{\partial \bar{\xi}(x)} \delta_{\xi} \mathcal{O}\right\rangle+\cdots
$$

where

$$
S_{\mu}(x) \equiv(-1) \sigma_{\rho \sigma} \gamma_{\mu} \operatorname{tr}\left[\psi(x) P_{\rho \sigma}(x)\right], \quad \chi(x) \equiv \sigma_{\mu \nu} \operatorname{tr}\left[\psi(x) P_{\mu \nu}(x)\right]
$$

Lattice WT relation for SUSY

- (Localized) SUSY transformation

$$
\begin{aligned}
\delta_{\xi} U_{\mu}(x) & =\operatorname{iag} \frac{1}{2}\left[\bar{\xi}(x) \gamma_{\mu} \psi(x) U_{\mu}(x)+\bar{\xi}(x+a \hat{\mu}) \gamma_{\mu} U_{\mu}(x) \psi(x+a \hat{\mu})\right], \\
\delta_{\xi} \psi(x) & =-\frac{1}{2} \sigma_{\mu \nu} \xi(x) P_{\mu \nu}(x), \quad P_{\mu \nu}(x): \text { (traceless part of imag of) plaquette }
\end{aligned}
$$

- We have

$$
\partial_{\mu}^{*}\left\langle S_{\mu}(x) \mathcal{O}\right\rangle=M\langle\chi(x) \mathcal{O}\rangle+\left\langle X_{S}(x) \mathcal{O}\right\rangle-\left\langle\frac{1}{a^{4}} \frac{\partial}{\partial \bar{\xi}(x)} \delta_{\xi} \mathcal{O}\right\rangle+\cdots
$$

where

$$
S_{\mu}(x) \equiv(-1) \sigma_{\rho \sigma} \gamma_{\mu} \operatorname{tr}\left[\psi(x) P_{\rho \sigma}(x)\right], \quad \chi(x) \equiv \sigma_{\mu \nu} \operatorname{tr}\left[\psi(x) P_{\mu \nu}(x)\right]
$$

- Taking lattice symmetries (hypercubic, parity) into account, $X_{S}(x)=\left(1-\mathcal{Z}_{S}\right) \partial_{\mu}^{*} S_{\mu}(x)-\mathcal{Z}_{T} \partial_{\mu}^{*} T_{\mu}(x)-\frac{1}{a} \mathcal{Z}_{\chi} \chi(x)-\mathcal{Z}_{3 F} \operatorname{tr}[\psi(x) \bar{\psi}(x) \psi(x)]+\cdots$ where

$$
T_{\mu}(X) \equiv 2 \gamma_{\nu} \operatorname{tr}\left[\psi(x) P_{\mu \nu}(x)\right]
$$

Lattice WT relation for SUSY

- (Localized) SUSY transformation

$$
\begin{aligned}
\delta_{\xi} U_{\mu}(x) & =\operatorname{iag} \frac{1}{2}\left[\bar{\xi}(x) \gamma_{\mu} \psi(x) U_{\mu}(x)+\bar{\xi}(x+a \hat{\mu}) \gamma_{\mu} U_{\mu}(x) \psi(x+a \hat{\mu})\right] \\
\delta_{\xi} \psi(x) & =-\frac{1}{2} \sigma_{\mu \nu} \xi(x) P_{\mu \nu}(x), \quad P_{\mu \nu}(x): \text { (traceless part of imag of) plaquette }
\end{aligned}
$$

- We have

$$
\partial_{\mu}^{*}\left\langle S_{\mu}(x) \mathcal{O}\right\rangle=M\langle\chi(x) \mathcal{O}\rangle+\left\langle X_{S}(x) \mathcal{O}\right\rangle-\left\langle\frac{1}{a^{4}} \frac{\partial}{\partial \bar{\xi}(x)} \delta_{\xi} \mathcal{O}\right\rangle+\cdots
$$

where

$$
S_{\mu}(x) \equiv(-1) \sigma_{\rho \sigma} \gamma_{\mu} \operatorname{tr}\left[\psi(x) P_{\rho \sigma}(x)\right], \quad \chi(x) \equiv \sigma_{\mu \nu} \operatorname{tr}\left[\psi(x) P_{\mu \nu}(x)\right]
$$

- Taking lattice symmetries (hypercubic, parity) into account,

$$
X_{S}(x)=\left(1-\mathcal{Z}_{S}\right) \partial_{\mu}^{*} S_{\mu}(x)-\mathcal{Z}_{T} \partial_{\mu}^{*} T_{\mu}(x)-\frac{1}{a} \mathcal{Z}_{\chi} \chi(x)-\mathcal{Z}_{3 F} \operatorname{tr}[\psi(x) \bar{\psi}(x) \psi(x)]+\cdots
$$

where

$$
T_{\mu}(X) \equiv 2 \gamma_{\nu} \operatorname{tr}\left[\psi(x) P_{\mu \nu}(x)\right]
$$

- When the gauge-invariant operator \mathcal{O} is apart from x,

$$
\partial_{\mu}^{*}\left\langle\left[\mathcal{Z}_{S} S_{\mu}(x)+\mathcal{Z}_{T} T_{\mu}(x)\right] \mathcal{O}\right\rangle=\left(M-\frac{1}{a} \mathcal{Z}_{\chi}\right)\langle\chi(x) \mathcal{O}\rangle-\mathcal{Z}_{3 F}\langle\operatorname{tr}[\psi(x) \bar{\psi}(x) \psi(x)] \mathcal{O}\rangle
$$

(Necessary) condition for the symmetry restoration

- Thus, for SUSY and $U(1)_{A}$ WT identities without breaking to be restored,

$$
M-\frac{1}{a} \mathcal{Z}_{\chi}=M-\frac{1}{2 a} \mathcal{Z}_{P}=0, \quad \mathcal{Z}_{3 F}=0
$$

that is,

$$
\begin{equation*}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{3 F}=0 \tag{2}
\end{equation*}
$$

(Necessary) condition for the symmetry restoration

- Thus, for SUSY and $U(1)_{A}$ WT identities without breaking to be restored,

$$
M-\frac{1}{a} \mathcal{Z}_{\chi}=M-\frac{1}{2 a} \mathcal{Z}_{P}=0, \quad \mathcal{Z}_{3 F}=0
$$

that is,

$$
\begin{equation*}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{3 F}=0 \tag{2}
\end{equation*}
$$

- Curci-Veneziano (1987) argued (1), but in a very naive way, neglecting complications associated with the gauge fixing, ghost etc. No mention on $\mathcal{Z}_{3 F}$

(Necessary) condition for the symmetry restoration

- Thus, for SUSY and $U(1)_{A}$ WT identities without breaking to be restored,

$$
M-\frac{1}{a} \mathcal{Z}_{\chi}=M-\frac{1}{2 a} \mathcal{Z}_{P}=0, \quad \mathcal{Z}_{3 F}=0
$$

that is,

$$
\begin{equation*}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{3 F}=0 \tag{2}
\end{equation*}
$$

- Curci-Veneziano (1987) argued (1), but in a very naive way, neglecting complications associated with the gauge fixing, ghost etc. No mention on $\mathcal{Z}_{3 F}$
- Taniguchi (1999) confirmed (1) (and (2); private communication) by an explicit one-loop calculation

(Necessary) condition for the symmetry restoration

- Thus, for SUSY and $U(1)_{A}$ WT identities without breaking to be restored,

$$
M-\frac{1}{a} \mathcal{Z}_{\chi}=M-\frac{1}{2 a} \mathcal{Z}_{P}=0, \quad \mathcal{Z}_{3 F}=0
$$

that is,

$$
\begin{equation*}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{3 F}=0 \tag{2}
\end{equation*}
$$

- Curci-Veneziano (1987) argued (1), but in a very naive way, neglecting complications associated with the gauge fixing, ghost etc. No mention on $\mathcal{Z}_{3 F}$
- Taniguchi (1999) confirmed (1) (and (2); private communication) by an explicit one-loop calculation
- Farchioni et al. (2001) noted the possibility of $\mathcal{Z}_{3 F}$, but considered only $G=S U(2)$ for which $\operatorname{tr}(\psi \bar{\psi} \psi) \equiv 0$

(Necessary) condition for the symmetry restoration

- Thus, for SUSY and $U(1)_{A}$ WT identities without breaking to be restored,

$$
M-\frac{1}{a} \mathcal{Z}_{\chi}=M-\frac{1}{2 a} \mathcal{Z}_{P}=0, \quad \mathcal{Z}_{3 F}=0
$$

that is,

$$
\begin{equation*}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{3 F}=0 \tag{2}
\end{equation*}
$$

- Curci-Veneziano (1987) argued (1), but in a very naive way, neglecting complications associated with the gauge fixing, ghost etc. No mention on $\mathcal{Z}_{3 F}$
- Taniguchi (1999) confirmed (1) (and (2); private communication) by an explicit one-loop calculation
- Farchioni et al. (2001) noted the possibility of $\mathcal{Z}_{3 F}$, but considered only $G=\operatorname{SU}(2)$ for which $\operatorname{tr}(\psi \bar{\psi} \psi) \equiv 0$
- Here we prove (1) and (2) to all orders of perturbation theory

(Necessary) condition for the symmetry restoration

- Thus, for SUSY and $U(1)_{A}$ WT identities without breaking to be restored,

$$
M-\frac{1}{a} \mathcal{Z}_{\chi}=M-\frac{1}{2 a} \mathcal{Z}_{P}=0, \quad \mathcal{Z}_{3 F}=0
$$

that is,

$$
\begin{equation*}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{3 F}=0 \tag{2}
\end{equation*}
$$

- Curci-Veneziano (1987) argued (1), but in a very naive way, neglecting complications associated with the gauge fixing, ghost etc. No mention on $\mathcal{Z}_{3 F}$
- Taniguchi (1999) confirmed (1) (and (2); private communication) by an explicit one-loop calculation
- Farchioni et al. (2001) noted the possibility of $\mathcal{Z}_{3 F}$, but considered only $G=S U(2)$ for which $\operatorname{tr}(\psi \bar{\psi} \psi) \equiv 0$
- Here we prove (1) and (2) to all orders of perturbation theory
- This must be important from the perspective of recent numerical simulations (DESY-Münster, Giedt et al. (USA), Endres (RIKEN), Kim et al. (JLQCD))

Wilson fermion, tree-level Symanzik improved gauge action, $G=$ SU(2) (Bergner-Münster-Sandbrink-Özugurel-Montvay (2011))

- $32^{3} \times 64, a=0.114 r_{0}$,

Basic line of the proof

- We want to know a constraint on possible breaking terms in the quantum continuum limit

Basic line of the proof

- We want to know a constraint on possible breaking terms in the quantum continuum limit
- It is natural to imagine a certain Wess-Zumino (WZ) like consistency condition

Basic line of the proof

- We want to know a constraint on possible breaking terms in the quantum continuum limit
- It is natural to imagine a certain Wess-Zumino (WZ) like consistency condition
- For the gauge anomaly, introducing the gauge BRS transformation s_{0},

$$
\varepsilon s_{0} A_{\mu}=\mathcal{G}_{\varepsilon c} A_{\mu}, \quad \varepsilon s_{0} \psi \equiv \mathcal{G}_{\varepsilon c} \psi, \quad \varepsilon S_{0} c=-i g \varepsilon c^{2}, \quad s_{0}^{2}=0
$$

the gauge anomaly

$$
\mathcal{A} \equiv s_{0} \Gamma, \quad \Gamma: \text { effective action, }
$$

satisfies

$$
s_{0} \mathcal{A}=s_{0}^{2} \Gamma=0, \quad \because s_{0}^{2}=0
$$

Basic line of the proof

- We want to know a constraint on possible breaking terms in the quantum continuum limit
- It is natural to imagine a certain Wess-Zumino (WZ) like consistency condition
- For the gauge anomaly, introducing the gauge BRS transformation s_{0},

$$
\varepsilon s_{0} A_{\mu}=\mathcal{G}_{\varepsilon c} A_{\mu}, \quad \varepsilon s_{0} \psi \equiv \mathcal{G}_{\varepsilon c} \psi, \quad \varepsilon S_{0} c=-i g \varepsilon c^{2}, \quad s_{0}^{2}=0
$$

the gauge anomaly

$$
\mathcal{A} \equiv s_{0} \Gamma, \quad \Gamma: \text { effective action, }
$$

satisfies

$$
s_{0} \mathcal{A}=s_{0}^{2} \Gamma=0, \quad \because s_{0}^{2}=0
$$

- In the present problem, it is natural to consider a certain BRS-like nilpotent transformation that corresponds to SUSY and $U(1)_{A}$

Basic line of the proof

- We want to know a constraint on possible breaking terms in the quantum continuum limit
- It is natural to imagine a certain Wess-Zumino (WZ) like consistency condition
- For the gauge anomaly, introducing the gauge BRS transformation s_{0},

$$
\varepsilon s_{0} A_{\mu}=\mathcal{G}_{\varepsilon c} A_{\mu}, \quad \varepsilon s_{0} \psi \equiv \mathcal{G}_{\varepsilon c} \psi, \quad \varepsilon S_{0} c=-i g \varepsilon c^{2}, \quad s_{0}^{2}=0
$$

the gauge anomaly

$$
\mathcal{A} \equiv s_{0} \Gamma, \quad \Gamma: \text { effective action, }
$$

satisfies

$$
s_{0} \mathcal{A}=s_{0}^{2} \Gamma=0, \quad \because s_{0}^{2}=0
$$

- In the present problem, it is natural to consider a certain BRS-like nilpotent transformation that corresponds to SUSY and $U(1)_{A}$
- This BRS-like transformation should include also translation and gauge transformations

$$
\left[\delta_{\xi}, \delta_{\xi^{\prime}}\right]=-t_{\mu} \partial_{\mu}+\mathcal{G}_{t_{\mu}} A_{\mu}, \quad t_{\mu}=\bar{\xi} \gamma_{\mu} \xi^{\prime}-\bar{\xi}^{\prime} \gamma_{\mu} \xi
$$

Basic line of the proof

- Such a generalized BRS transformation s has been known in the continuum theory (Zumino, White, Maggiore-Piguet-Wolf)

$$
\begin{aligned}
s A_{\mu} & \equiv D_{\mu} c+\bar{\xi} \gamma_{\mu} \psi-i t_{\nu} \partial_{\nu} A_{\mu}, \\
s \psi & \equiv-i g\{c, \psi\}-\frac{1}{2} \sigma_{\mu \nu} \xi F_{\mu \nu}-i t_{\mu} \partial_{\mu} \psi+i \theta \gamma_{5} \psi \\
s c & \equiv-i g c^{2}+\bar{\xi} \gamma_{\mu} \xi A_{\mu}-i t_{\mu} \partial_{\mu} c, \\
s \bar{c} & \equiv B-i t_{\mu} \partial_{\mu} \bar{c} \\
s B & \equiv \bar{\xi} \gamma_{\mu} \xi \partial_{\mu} \bar{c}-i t_{\mu} \partial_{\mu} B, \\
\boldsymbol{s} \xi & \equiv i \theta \gamma_{5} \xi, \quad s t_{\mu} \equiv-i \bar{\xi} \gamma_{\mu} \xi, \quad s \theta \equiv 0
\end{aligned}
$$

Basic line of the proof

- Such a generalized BRS transformation s has been known in the continuum theory (Zumino, White, Maggiore-Piguet-Wolf)

$$
\begin{aligned}
s A_{\mu} & \equiv D_{\mu} c+\bar{\xi} \gamma_{\mu} \psi-i t_{\nu} \partial_{\nu} A_{\mu} \\
s \psi & \equiv-i g\{c, \psi\}-\frac{1}{2} \sigma_{\mu \nu} \xi F_{\mu \nu}-i t_{\mu} \partial_{\mu} \psi+i \theta \gamma_{5} \psi \\
s c & \equiv-i g c^{2}+\bar{\xi} \gamma_{\mu} \xi A_{\mu}-i t_{\mu} \partial_{\mu} c \\
s \bar{c} & \equiv B-i t_{\mu} \partial_{\mu} \bar{c} \\
s B & \equiv \bar{\xi} \gamma_{\mu} \xi \partial_{\mu} \bar{c}-i t_{\mu} \partial_{\mu} B \\
\boldsymbol{s} \xi & \equiv i \theta \gamma_{5} \xi, \quad s t_{\mu} \equiv-i \bar{\xi} \gamma_{\mu} \xi, \quad s \theta \equiv 0
\end{aligned}
$$

- New ghosts

$$
\xi \text { : Grassmann-even, } \quad \theta \text { : Grassmann-odd }, \quad t_{\mu}: \text { Grassmann-odd }
$$ are constant and possess opposite statistics as the corresponding transformation parameters

Basic line of the proof

- Such a generalized BRS transformation s has been known in the continuum theory (Zumino, White, Maggiore-Piguet-Wolf)

$$
\begin{aligned}
s A_{\mu} & \equiv D_{\mu} c+\bar{\xi} \gamma_{\mu} \psi-i t_{\nu} \partial_{\nu} A_{\mu} \\
s \psi & \equiv-i g\{c, \psi\}-\frac{1}{2} \sigma_{\mu \nu} \xi F_{\mu \nu}-i t_{\mu} \partial_{\mu} \psi+i \theta \gamma_{5} \psi \\
s c & \equiv-i g c^{2}+\bar{\xi} \gamma_{\mu} \xi A_{\mu}-i t_{\mu} \partial_{\mu} c \\
s \bar{c} & \equiv B-i t_{\mu} \partial_{\mu} \bar{c} \\
s B & \equiv \bar{\xi} \gamma_{\mu} \xi \partial_{\mu} \bar{c}-i t_{\mu} \partial_{\mu} B \\
\boldsymbol{s} \xi & \equiv i \theta \gamma_{5} \xi, \quad s t_{\mu} \equiv-i \bar{\xi} \gamma_{\mu} \xi, \quad s \theta \equiv 0
\end{aligned}
$$

- New ghosts

$$
\xi \text { : Grassmann-even, } \quad \theta \text { : Grassmann-odd, } \quad t_{\mu}: \text { Grassmann-odd }
$$

are constant and possess opposite statistics as the corresponding transformation parameters

- Then one finds

$$
s^{2} \Phi=0
$$

for all variables Φ, except ψ on which,

$$
s^{2} \psi=\gamma_{5} \xi \bar{\xi} \gamma_{5} \mathbb{D} \psi \propto \text { (eq. of motion of } \psi ; \text { on-shell nilpotency) }
$$

Basic line of the proof

- In continuum theory, the formal invariance implies the Slavnov-Taylor (ST) identity or the Zinn-Justin equation for the effective action,

$$
\mathcal{S}(\Gamma)=0
$$

where

$$
\begin{aligned}
\mathcal{S}(F) \equiv \int & d^{4} x\left[\frac{\delta F}{\delta K_{A_{\mu}}^{a}(x)} \frac{\delta F}{\delta A_{\mu}^{a}(x)}+\frac{\delta F}{\delta \bar{K}_{\psi}^{a}(x)} \frac{\delta F}{\delta \psi^{a}(x)}+\frac{\delta F}{\delta K_{c}^{a}(x)} \frac{\delta F}{\delta c^{a}(x)}\right] \\
& +\int d^{4} x\left[s \bar{c}^{a}(x) \frac{\delta F}{\delta \bar{c}^{a}(x)}+s B^{a}(x) \frac{\delta F}{\delta B^{a}(x)}\right] \\
& +s \xi \frac{\partial F}{\partial \xi}+s t_{\mu} \frac{\partial F}{\partial t_{\mu}}+s \theta \frac{\partial F}{\partial \theta}+\cdots
\end{aligned}
$$

Basic line of the proof

- We can define a lattice analogue of the generalized BRS transformation s but s is not nilpotent by $O(a)$ (of course!)

$$
s^{2} A_{\mu}=O(a), \quad s^{2} \psi=\gamma_{5} \xi \bar{\xi} \gamma_{5} D \psi+O(a), \quad s^{2} c=O(a),
$$

but still

$$
s^{2} \bar{c}=s^{2} B=0, \quad s^{2} \xi=s^{2} t_{\mu}=s^{2} \theta=\cdots=0
$$

Basic line of the proof

- We can define a lattice analogue of the generalized BRS transformation s but s is not nilpotent by $O(a)$ (of course!)

$$
s^{2} A_{\mu}=O(a), \quad s^{2} \psi=\gamma_{5} \xi \bar{\xi} \gamma_{5} D \psi+O(a), \quad s^{2} c=O(a)
$$

but still

$$
s^{2} \bar{c}=s^{2} B=0, \quad s^{2} \xi=s^{2} t_{\mu}=s^{2} \theta=\cdots=0
$$

- The lattice action is also not invariant under s (of course!) and we end up with the ST relation on the lattice

$$
\mathcal{S}(\Gamma)=\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}
$$

Basic line of the proof

- We can define a lattice analogue of the generalized BRS transformation s but s is not nilpotent by $O(a)$ (of course!)

$$
s^{2} A_{\mu}=O(a), \quad s^{2} \psi=\gamma_{5} \xi \bar{\xi} \gamma_{5} D \psi+O(a), \quad s^{2} c=O(a)
$$

but still

$$
s^{2} \bar{c}=s^{2} B=0, \quad s^{2} \xi=s^{2} t_{\mu}=s^{2} \theta=\cdots=0
$$

- The lattice action is also not invariant under s (of course!) and we end up with the ST relation on the lattice

$$
\mathcal{S}(\Gamma)=\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}
$$

- Here, $X_{S}(x)$ and $X_{A}(x)$ are $O(a)$ symmetry breaking terms

$$
\begin{aligned}
& \delta_{\xi}\left(S_{\text {gluon }}+S_{\text {gluino }}\right)=a^{4} \sum_{x} \bar{\xi} X_{S}(x), \\
& \delta_{\theta}\left(S_{\text {gluon }}+S_{\text {gluino }}\right)=a^{4} \sum_{x} i \theta X_{A}(x)
\end{aligned}
$$

Basic line of the proof

- The crucial ingredient is the "linearized" $\mathcal{S}(F)$, defined by

$$
\begin{aligned}
& \mathcal{D}(F) \equiv a^{4} \sum_{x}\left[\frac{\delta F}{\delta A_{\mu}^{a}(x)} \frac{\delta}{\delta K_{A_{\mu}}^{a}(x)}+\frac{\delta F}{\delta K_{A_{\mu}}^{a}(x)} \frac{\delta}{\delta A_{\mu}^{a}(x)}\right. \\
&\left.+\frac{\delta F}{\delta \bar{K}_{\psi}^{a}(x)} \frac{\delta}{\delta \psi^{a}(x)}+\frac{\delta F}{\delta \psi^{a}(x)} \frac{\delta}{\delta \bar{K}_{\psi}^{a}(x)}+\frac{\delta F}{\delta K_{c}^{a}(x)} \frac{\delta}{\delta C^{a}(x)}+\frac{\delta F}{\delta c^{a}(x)} \frac{\delta}{\delta K_{c}^{a}(x)}\right] \\
&+a^{4} \sum_{x}\left[s \bar{c}^{a}(x) \frac{\delta}{\delta \bar{c}^{a}(x)}+s B^{a}(x) \frac{\delta}{\delta B^{a}(x)}\right]+s \xi \frac{\partial}{\partial \xi}+s t_{\mu} \frac{\partial}{\partial t_{\mu}}+s \theta \frac{\partial}{\partial \theta}+\cdots
\end{aligned}
$$

Basic line of the proof

- The crucial ingredient is the "linearized" $\mathcal{S}(F)$, defined by

$$
\begin{aligned}
\mathcal{D}(F) \equiv & a^{4} \sum_{x}\left[\frac{\delta F}{\delta A_{\mu}^{a}(x)} \frac{\delta}{\delta K_{A_{\mu}}^{a}(x)}+\frac{\delta F}{\delta K_{A_{\mu}}^{a}(x)} \frac{\delta}{\delta A_{\mu}^{a}(x)}\right. \\
& \left.+\frac{\delta F}{\delta \bar{K}_{\psi}^{a}(x)} \frac{\delta}{\delta \psi^{a}(x)}+\frac{\delta F}{\delta \psi^{a}(x)} \frac{\delta}{\delta \bar{K}_{\psi}^{a}(x)}+\frac{\delta F}{\delta K_{c}^{a}(x)} \frac{\delta}{\delta c^{a}(x)}+\frac{\delta F}{\delta c^{a}(x)} \frac{\delta}{\delta K_{c}^{a}(x)}\right] \\
& +a^{4} \sum_{x}\left[s \bar{c}^{a}(x) \frac{\delta}{\delta \bar{c}^{a}(x)}+s B^{a}(x) \frac{\delta}{\delta B^{a}(x)}\right]+s \xi \frac{\partial}{\partial \xi}+s t_{\mu} \frac{\partial}{\partial t_{\mu}}+s \theta \frac{\partial}{\partial \theta}+\cdots
\end{aligned}
$$

- Then,

$$
\mathcal{D}(F) \mathcal{S}(F) \equiv 0
$$

Basic line of the proof

- The crucial ingredient is the "linearized" $\mathcal{S}(F)$, defined by

$$
\begin{aligned}
& \mathcal{D}(F) \equiv a^{4} \sum_{x}\left[\frac{\delta F}{\delta A_{\mu}^{a}(x)} \frac{\delta}{\delta K_{A_{\mu}}^{a}(x)}+\frac{\delta F}{\delta K_{A_{\mu}}^{a}(x)} \frac{\delta}{\delta A_{\mu}^{a}(x)}\right. \\
&\left.+\frac{\delta F}{\delta \bar{K}_{\psi}^{a}(x)} \frac{\delta}{\delta \psi^{a}(x)}+\frac{\delta F}{\delta \psi^{a}(x)} \frac{\delta}{\delta \bar{K}_{\psi}^{a}(x)}+\frac{\delta F}{\delta K_{c}^{a}(x)} \frac{\delta}{\delta c^{a}(x)}+\frac{\delta F}{\delta c^{a}(x)} \frac{\delta}{\delta K_{c}^{a}(x)}\right] \\
&+a^{4} \sum_{x}\left[s \bar{c}^{a}(x) \frac{\delta}{\delta \bar{c}^{a}(x)}+s B^{a}(x) \frac{\delta}{\delta B^{a}(x)}\right]+s \xi \frac{\partial}{\partial \xi}+s t_{\mu} \frac{\partial}{\partial t_{\mu}}+s \theta \frac{\partial}{\partial \theta}+\cdots
\end{aligned}
$$

- Then,

$$
\mathcal{D}(F) \mathcal{S}(F) \equiv 0
$$

- Since we had

$$
\mathcal{S}(\Gamma)=\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}
$$

Basic line of the proof

- The crucial ingredient is the "linearized" $\mathcal{S}(F)$, defined by

$$
\begin{aligned}
& \mathcal{D}(F) \equiv a^{4} \sum_{x}\left[\frac{\delta F}{\delta A_{\mu}^{a}(x)} \frac{\delta}{\delta K_{A_{\mu}}^{a}(x)}+\frac{\delta F}{\delta K_{A_{\mu}}^{a}(x)} \frac{\delta}{\delta A_{\mu}^{a}(x)}\right. \\
&\left.+\frac{\delta F}{\delta \bar{K}_{\psi}^{a}(x)} \frac{\delta}{\delta \psi^{a}(x)}+\frac{\delta F}{\delta \psi^{a}(x)} \frac{\delta}{\delta \bar{K}_{\psi}^{a}(x)}+\frac{\delta F}{\delta K_{c}^{a}(x)} \frac{\delta}{\delta c^{a}(x)}+\frac{\delta F}{\delta c^{a}(x)} \frac{\delta}{\delta K_{c}^{a}(x)}\right] \\
&+a^{4} \sum_{x}\left[s \bar{c}^{a}(x) \frac{\delta}{\delta \bar{c}^{a}(x)}+s B^{a}(x) \frac{\delta}{\delta B^{a}(x)}\right]+s \xi \frac{\partial}{\partial \xi}+s t_{\mu} \frac{\partial}{\partial t_{\mu}}+s \theta \frac{\partial}{\partial \theta}+\cdots
\end{aligned}
$$

- Then,

$$
\mathcal{D}(F) \mathcal{S}(F) \equiv 0
$$

- Since we had

$$
\mathcal{S}(\Gamma)=\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}
$$

- r.h.s. must satisfy

$$
\mathcal{D}(\Gamma)\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v} \equiv 0
$$

Very final step of the proof

- The expectation value survives only through radiative corrections, thus $O\left(\hbar^{n}\right)$ with $n \geq 1$. Taking $O\left(\hbar^{n}\right)$ terms of both sides,

$$
\mathcal{D}\left(S_{\text {classical }}\right)\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}^{O\left(\hbar^{n}\right)}=0
$$

Very final step of the proof

- The expectation value survives only through radiative corrections, thus $O\left(\hbar^{n}\right)$ with $n \geq 1$. Taking $O\left(\hbar^{n}\right)$ terms of both sides,

$$
\mathcal{D}\left(S_{\text {classical }}\right)\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}^{O\left(\hbar^{n}\right)}=0
$$

- This is the WT consistency condition that we were seeking!!!

Very final step of the proof

- The expectation value survives only through radiative corrections, thus $O\left(\hbar^{n}\right)$ with $n \geq 1$. Taking $O\left(\hbar^{n}\right)$ terms of both sides,

$$
\mathcal{D}\left(S_{\text {classical }}\right)\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}^{O\left(\hbar^{n}\right)}=0
$$

- This is the WT consistency condition that we were seeking!!!
- Substituting the general forms of $X_{S}(x)$ and $X_{A}(x)$,

$$
\begin{aligned}
& X_{S}(x)=-\frac{1}{a} \mathcal{Z}_{\chi} \sigma_{\mu \nu} \operatorname{tr}\left[\psi(x) P_{\mu \nu}(x)\right]-\mathcal{Z}_{3 F} \operatorname{tr}[\psi(x) \bar{\psi}(x) \psi(x)]+\cdots \\
& X_{A}(x)=-\frac{1}{a} \mathcal{Z}_{P} \operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right]+\cdots
\end{aligned}
$$

after some examination in the continuum limit, we have

$$
\begin{array}{ll}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P}, & \text { from the } O\left(\theta^{1}, \xi^{1}\right) \text { terms } \\
\mathcal{Z}_{3 F}=0, & \text { from the } O\left(\theta^{0}, \xi^{2}\right) \text { terms }
\end{array}
$$

Very final step of the proof

- The expectation value survives only through radiative corrections, thus $O\left(\hbar^{n}\right)$ with $n \geq 1$. Taking $O\left(\hbar^{n}\right)$ terms of both sides,

$$
\mathcal{D}\left(S_{\text {classical }}\right)\left\langle a^{4} \sum_{x}\left[\bar{\xi} X_{S}(x)+i \theta X_{A}(x)\right]+\bar{c} \cdot \mathcal{B}_{\bar{c}}+K^{\prime} \cdot \mathcal{B}_{K^{\prime}}+t \cdot \mathcal{B}_{t}\right\rangle_{J, K, \xi, t, \theta, u, v}^{O\left(\hbar^{n}\right)}=0
$$

- This is the WT consistency condition that we were seeking!!!
- Substituting the general forms of $X_{S}(x)$ and $X_{A}(x)$,

$$
\begin{aligned}
& X_{S}(x)=-\frac{1}{a} \mathcal{Z}_{\chi} \sigma_{\mu \nu} \operatorname{tr}\left[\psi(x) P_{\mu \nu}(x)\right]-\mathcal{Z}_{3 F} \operatorname{tr}[\psi(x) \bar{\psi}(x) \psi(x)]+\cdots \\
& X_{A}(x)=-\frac{1}{a} \mathcal{Z}_{P} \operatorname{tr}\left[\bar{\psi}(x) \gamma_{5} \psi(x)\right]+\cdots
\end{aligned}
$$

after some examination in the continuum limit, we have

$$
\begin{array}{ll}
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P}, & \text { from the } O\left(\theta^{1}, \xi^{1}\right) \text { terms } \\
\mathcal{Z}_{3 F}=0, & \text { from the } O\left(\theta^{0}, \xi^{2}\right) \text { terms }
\end{array}
$$

Q.E.D.

Summary

- Applying the generalized BRS transformation that treats gauge, SUSY, translation, $U(1)_{A}$ in a unified way, to the lattice framework, we have established the relations,

$$
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P}, \quad \mathcal{Z}_{3 F}=0
$$

to all orders of the perturbation theory in the continuum limit

Summary

- Applying the generalized BRS transformation that treats gauge, SUSY, translation, $U(1)_{A}$ in a unified way, to the lattice framework, we have established the relations,

$$
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P}, \quad \mathcal{Z}_{3 F}=0
$$

to all orders of the perturbation theory in the continuum limit

- These relations provide a theoretical basis for lattice formulations of 4D $\mathcal{N}=1$ SYM

Summary

- Applying the generalized BRS transformation that treats gauge, SUSY, translation, $U(1)_{A}$ in a unified way, to the lattice framework, we have established the relations,

$$
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P}, \quad \mathcal{Z}_{3 F}=0
$$

to all orders of the perturbation theory in the continuum limit

- These relations provide a theoretical basis for lattice formulations of $4 \mathrm{D} \mathcal{N}=1$ SYM
- Constraint on the mixing of X_{S} with BRS non-invariant operators (Taniguchi (1999))

$$
\int d^{4} x \mathcal{G}_{\zeta}(\text { BRS non-invariant operators })=0
$$

Summary

- Applying the generalized BRS transformation that treats gauge, SUSY, translation, $U(1)_{A}$ in a unified way, to the lattice framework, we have established the relations,

$$
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P}, \quad \mathcal{Z}_{3 F}=0
$$

to all orders of the perturbation theory in the continuum limit

- These relations provide a theoretical basis for lattice formulations of 4D $\mathcal{N}=1$ SYM
- Constraint on the mixing of X_{S} with BRS non-invariant operators (Taniguchi (1999))

$$
\int d^{4} x \mathcal{G}_{\zeta}(\text { BRS non-invariant operators })=0
$$

- Renormalized supercurrent and the energy-momentum tensor that go well with SUSY algebra (a la Ferrara-Zumino)?

$$
\delta_{\xi} j_{5 \mu}=\bar{\xi} \gamma_{5} S_{\mu}, \quad \delta_{\xi} S_{\mu}=2 \gamma_{\nu} \xi T_{\mu \nu}+\cdots
$$

Summary

- Applying the generalized BRS transformation that treats gauge, SUSY, translation, $U(1)_{A}$ in a unified way, to the lattice framework, we have established the relations,

$$
\mathcal{Z}_{\chi}=\frac{1}{2} \mathcal{Z}_{P}, \quad \mathcal{Z}_{3 F}=0
$$

to all orders of the perturbation theory in the continuum limit

- These relations provide a theoretical basis for lattice formulations of 4D $\mathcal{N}=1$ SYM
- Constraint on the mixing of X_{S} with BRS non-invariant operators (Taniguchi (1999))

$$
\int d^{4} x \mathcal{G}_{\zeta}(\text { BRS non-invariant operators })=0
$$

- Renormalized supercurrent and the energy-momentum tensor that go well with SUSY algebra (a la Ferrara-Zumino)?

$$
\delta_{\xi} j_{5 \mu}=\bar{\xi} \gamma_{5} S_{\mu}, \quad \delta_{\xi} S_{\mu}=2 \gamma_{\nu} \xi T_{\mu \nu}+\cdots
$$

- Lattice formulation of other supersymmetric theories...

