Instantons &

Whittaker states of CFT

瀧 雅人 RIKEN, Hashimoto Lab

based on [H.Kanno, M.T., arXiv:1203.1427]

2012. 7/27 @ YITP

(simple version of) AGT correspondence

Instanton partition function

4D

Whittaker state

(simple version of) AGT correspondence

Instanton partition function

4D

Whittaker state

What is the Whittaker state !?

What is the Whittaker state !?

: coherent state of annihilation operators of 2D CFT

Today I will talk on

4D Instanton partition function

Whittaker state

Today I will talk on

4D Instanton partition function

generalized Whittaker state

6=4+2:

from M5 to N=2 gauge theories

M5 on Cylinder — 4D Gauge Theory

N_c M5s \rightarrow $SU(N_c)$

M5 on Cylinder — 4D Gauge Theory

N_c M5s \longrightarrow $SU(N_c)$

Quarks ?

Quarks ?

Flavors via Boundary Conditions

Flavors via Boundary Conditions

Flavors via Boundary Conditions

$N_{Out} + N_{In} = N_f$ susy QCD

How to describe BCs?

How to describe BCs?

not easy at all (in M5 language)

How to describe BCs?

not easy at all (in M5 language)

But, we have a nice description!

2. AGT correspondence

gauge theory via 2d CFT

Boundary Condition as a State

Gauge Coupling is the Length

Partition function is Matrix Element

 $\ell = rac{1}{g_{_{
m YM}}^2}$ (Out | $|In\rangle$

$Z_{4D} = \langle \operatorname{Out} | \Lambda^{2N_c L_0} | \operatorname{In} \rangle$

What's the state?

 $[L_n, L_m] = (n - m)L_{n+m}$

$$[L_n, L_m] = (n - m)L_{n+m}$$

... harmonic oscillators

3. flavorful states

Whittaker states for gauge theory

Landscape of $|N_{f} angle$

A

• •

G

0 0

• •

•

Landscape of $|N_{f} angle$

•

0

[Keller-Mekareeya-Song-Tachikawa, '12]

SU(2)

SU(2) with 0 Flavors

 $N_f = 0$

$L_1 | \, 0 \, angle = | \, 0 \, angle$

 $L_2|0
angle=0$

SU(2) with 0 Flavors $N_f = 0$ $L_2|\,0\, angle\,=0$ $L_1 | 0 angle = | 0 angle$ ***** It means 0-flavor, not vacuum

SU(2) with 0 Flavors

 $N_f = 0$

$L_1 | 0 angle = | 0 angle$

 $L_2|0
angle=0$

 $Z_{SU(2)}^{N_f=0} = \langle 0 | 0 \rangle$

SU(3)

: theory with L_m and W_n

 $[L_m, W_n] = (2m - n)W_{n+m}$

 $[W_m, W_n] =$

: theory with $\, L_m \,$ and $\, W_n \,$

 $[L_m, W_n] = (2m - n)W_{n+m}$

 $N_f = 0$

$L_1 | 0 angle = 0$ $W_1 | 0 angle = | 0 angle$

 $N_f = 0$

$L_1 | \, 0 \, angle = 0 \qquad W_1 | \, 0 \, angle = | \, 0 \, angle$

 $Z_{SU(3)}^{N_f=0} = \langle 0 | 0 \rangle$

SU(3) Whittaker states with 0,1 Flavors

$egin{aligned} N_f &= 0 \ & L_1 | \, 0 \, angle &= 0 \ & W_1 | \, 0 \, angle &= | \, 0 \, angle \ & N_f &= 1 \ & L_1 | \, 1 \, angle &= | \, 1 \, angle & W_1 | \, 1 \, angle &= m | \, 1 \, angle \end{aligned}$

SU(3) Whittaker states with 0,1 Flavors

$$egin{aligned} &Z_{SU(3)}^{N_f=1} = \langle \, 0 \, | \, 1 \,
angle = \langle \, 1 \, | \, 0 \,
angle \ &Z_{SU(3)}^{N_f=2} = \langle \, 1 \, | \, 1 \,
angle \end{aligned}$$

SU(3) Whittaker states with 0,1 Flavors

$$egin{aligned} &Z_{SU(3)}^{N_f=1} = \langle \, 0 \, | \, 1 \,
angle = \langle \, 1 \, | \, 0 \,
angle \ &Z_{SU(3)}^{N_f=2} = \langle \, 1 \, | \, 1 \,
angle \end{aligned}$$

$$Z_{SU(3)}^{N_f=2} = \langle 0 | 2 \rangle = \langle 2 | 0 \rangle$$
 ?

SU(3) with 2 Flavors — Trouble !?

SU(3) with 2 Flavors — Trouble !?

Qestion.

 $| \ 2 \ \rangle$ must be L_1, L_2, W_2, W_3 eigenstate. $W_2 = [L_1, W_1]$ But $3W_3 = [L_2, W_1]$

SU(3) with 2 Flavors — Trouble !?

Qestion.

$|\,2\, angle$ must be $\,L_1,L_2,W_2,W_3$ eigenstate.

 $W_2 = [L_1, W_1]$ But

$$3W_3 = \left[L_2, W_1
ight]$$

Answer.

$$(W_1+L_0)|\,2\,
angle \propto |\,2\,
angle$$

$$[L_n, L_0] = nL_n$$

generalized Whittaker states

This is actually very ubiquitous B.C. for M5s !

4. Summary

"Generalized" is ubiquitous M5 configuration

generalized Whittaker states :

flavorful cases of colorful ABCDEFG surface operators 4D SCFTs

Next step : feedback to M-theory

