Instantons

\＆
 Whittaker states of CFT
 瀧 雅人 RIKEN，Hashimoto Lab
 based on［H．Kanno，M．T．，arXiv：1203．1427］

2012．7／27＠YITP
(simple version of) AGT correspondence
4D
Instanton partition function

2D

Whittaker state

(simple version of) AGT correspondence
4D

Instanton partition function

2D

Whittaker state

What is the Whittaker state !?

What is the Whittaker state !?

: coherent state of annihilation operators of 2D CFT

Today I will talk on

4D

Instanton partition function

2D

Whittaker state

Today I will talk on
4D

Instanton partition function

2D

generalized Whittaker state

$6=4+2$:

from $\mathbf{M} 5$ to $\mathbf{N}=\mathbf{2}$ gauge theories

M5 on Cylinder \longrightarrow 4D Gauge Theory

$\mathbb{R}^{4} \times$

N_{c} M5s $\longrightarrow \quad S U\left(N_{c}\right)$

M5 on Cylinder \longrightarrow 4D Gauge Theory

$\mathbb{R}^{4} \times$

N_{c} M5s $\quad \longrightarrow \quad S U\left(N_{c}\right)$

Quarks?

\mathbb{R}^{4}

flavors

flavors

Quarks?

\longrightarrow flavors live on the edges

Flavors via Boundary Conditions

Flavors via Boundary Conditions

$\mathbb{R}^{4} \times$

$N_{\text {Out quarks }}$
$N_{\text {In quarks }}$

Flavors via Boundary Conditions

$\mathbb{R}^{4} \times$

$N_{\text {Out quarks }}$
$N_{\text {In quarks }}$
$\Rightarrow N_{\text {Out }}+N_{\text {In }}=N_{f}$ susy QCD

How to describe BCs?

How to describe BCs?

 not easy at all (in M5 language)
How to describe BCs?

 not easy at all (in M5 language)But, we have a nice description!
2. AGT correspondence gauge theory via 2d CFT

Boundary Condition as a State

Gauge Coupling is the Length

Partition function is Matrix Element

$$
Z_{4 D}=\langle\text { Out }| \Lambda^{2 N_{c} L_{0}}|\operatorname{In}\rangle
$$

What's the state?

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}
$$

What's the state?

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}
$$

. . . harmonic oscillators
$L_{1,2,3}, \cdots \quad:$ annihilation op.s (\hat{a})
$L_{0}=H \quad$ eigenstates
$L_{-1,-2,-3, \cdots: \text { creation op.s }\left(\hat{a}^{\dagger}\right)}$

3. flavorful states

Whittaker states for gauge theory

Landscape of $\left|N_{f}\right\rangle$

Landscape of $\left|N_{f}\right\rangle$

Landscape of $\left|N_{\boldsymbol{f}}\right\rangle$

Landscape of $\left|N_{f}\right\rangle$

[Gaiotto, '09]

Landscape of $\left|N_{f}\right\rangle$

[Gaiotto, '09]

Landscape of $\left|N_{f}\right\rangle$

Landscape of $\left|N_{f}\right\rangle$

Landscape of $\left|N_{f}\right\rangle$

SU(2)

SU(2) with 0 Flavors

[Gaiotto, '09]

SU(2) with 0 Flavors

$$
\begin{aligned}
& N_{f}=0 \\
& \quad L_{1}|0\rangle=|0\rangle \quad L_{2}|0\rangle=0
\end{aligned}
$$

SU(2) with 0 Flavors

$\boldsymbol{N}_{\boldsymbol{f}}=\mathbf{0}$

$$
L_{1}|0\rangle=|0\rangle \quad L_{2}|0\rangle=0
$$

* It means 0-flavor, not vacuum

SU(2) with 0 Flavors

$N_{f}=0$

$$
L_{1}|0\rangle=|0\rangle \quad L_{2}|0\rangle=0
$$

$$
Z_{S U(2)}^{N_{f}=0}=\langle 0 \mid 0\rangle
$$

SU(3)

SU(3) without Flavor

SU(3) Whittaker state without Flavor

: theory with L_{m} and W_{n}

$$
\left[L_{m}, W_{n}\right]=(2 m-n) W_{n+m}
$$

$$
\left[W_{m}, W_{n}\right]=
$$

SU(3) Whittaker state without Flavor

: theory with L_{m} and W_{n}

$$
\left[L_{m}, W_{n}\right]=(2 m-n) W_{n+m}
$$

$$
\left[W_{m}, W_{n}\right]=
$$

SU(3) Whittaker state without Flavor

$$
N_{f}=0
$$

$$
L_{1}|0\rangle=0 \quad W_{1}|0\rangle=|0\rangle
$$

SU(3) Whittaker state without Flavor

$$
\begin{aligned}
& N_{f}=0 \\
& \quad L_{1}|0\rangle=0 \quad W_{1}|0\rangle=|0\rangle
\end{aligned}
$$

$$
Z_{S U(3)}^{N_{f}=0}=\langle 0 \mid 0\rangle
$$

SU(3) Whittaker states with 0,1 Flavors

$$
N_{f}=0
$$

$$
L_{1}|0\rangle=0 \quad W_{1}|0\rangle=|0\rangle
$$

$$
N_{f}=1
$$

$$
L_{1}|1\rangle=|1\rangle \quad W_{1}|1\rangle=m|1\rangle
$$

SU(3) Whittaker states with 0,1 Flavors

$$
\begin{aligned}
& Z_{S U(3)}^{N_{f}=1}=\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle \\
& Z_{S U(3)}^{N_{f}=2}=\langle 1 \mid 1\rangle
\end{aligned}
$$

SU(3) Whittaker states with $\mathbf{0 , 1}$ Flavors

$$
\begin{aligned}
& Z_{S U(3)}^{N_{f}=1}=\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle \\
& Z_{S U(3)}^{N_{f}=2}=\langle 1 \mid 1\rangle
\end{aligned}
$$

$$
Z_{S U(3)}^{N_{f}=2}=\langle 0 \mid 2\rangle=\langle 2 \mid 0\rangle ?
$$

SU(3) with 2 Flavors

[Kanno-M.T, 12]

SU(3) with 2 Flavors \longrightarrow Trouble !?

SU(3) with 2 Flavors \longrightarrow Trouble !?

Qestion.

$|2\rangle$ must be $L_{1}, L_{2}, W_{2}, W_{3}$ eigenstate.

$$
\boldsymbol{W}_{2}=\left[\boldsymbol{L}_{1}, \boldsymbol{W}_{1}\right]
$$

But

$$
3 W_{3}=\left[L_{2}, W_{1}\right]
$$

SU(3) with 2 Flavors \longrightarrow Trouble !?

Qestion.

$|2\rangle$ must be $L_{1}, L_{2}, W_{2}, W_{3}$ eigenstate.

$$
W_{2}=\left[L_{1}, W_{1}\right]
$$

But

$$
3 W_{3}=\left[L_{2}, W_{1}\right]
$$

Answer.

$$
\left(W_{1}+L_{0}\right)|2\rangle \propto|2\rangle
$$

$$
\left[L_{n}, L_{0}\right]=n L_{n}
$$

generalized Whittaker states

$$
\left.\begin{array}{ll}
\left\{L_{1}, L_{2}\right\} \\
\left\{L_{0}\right\}: \text { Cartan }
\end{array}\right\} \quad \begin{aligned}
& \text { eigenstate of } \\
& \text { linear combi. } \\
& \text { of them }
\end{aligned}
$$

This is actually very ubiquitous B.C. for M5s !

Landscape of flavorful AGT

4. Summary

"Generalized" is ubiquitous M5 configuration

generalized Whittaker states:

flavorful cases of colorful $A B C D E F G$ surface operators
 4D SCFTs

M5 branes Gauge Theory

Next step : feedback to M-theory

FIN

