23th July 2012, at YITP Workshop

Making Confining Strings out of Mesons

Naoto Yokoi (Tohoku Univ.)

Based on arXiv:1202.3260, To Appear in Phys. Rev. D.

Collaboration with R. Kitano and M. Nakamura

1. Introduction

A PHYSICAL Quantity for Describing Confinement

Potential Energy between (Heavy) Quarks

- From Quarkonium Energy Spectrum in Hadron Experiments
 From Wilson Loop Calc. in Lattice QCD
- ★ Cornell Potential

 σ : String Tension

This Potential Strongly Indicates STRING-LIKE Flux between Quarks.

1st Route: (Dual) String Model

(Nambu, Nielsen, Susskind ...)

AdS/CFT, Holographic QCD.

(Maldacena, Son-Stephanov, Sakai-Sugimoto, ...)

2nd Route: Solitonic Vortex for Squeezed Flux (Nielsen-Olesen)

Electric-Magnetic (EM) Duality

(Nambu, 't Hooft, Mandelstam, ...)

Vortex in EM-Dual Theory is Confining Flux !

We Have Learned Much About the Dualities from SUSY Gauge Theories : (Since Mid 90's)

- 1. Exact Montonen-Olive Duality in *N*=4 SYM.
- 2. EM-Duality in N=2 SUSY Gauge Theory (Seiberg-Witten)
- 3. Seiberg-Duality in *N*=1 SUSY QCD

From New (?) Understanding of the Duality,

Possible to Obtain A New Effective Description for QCD ?

Today, We Propose A Possible Dual Theory for QCD Based on Seiberg-Duality and Discuss the Relation to the Hidden Local Sym. & Confining Strings.

• Guiding Principle : Chiral Symmetry Breaking in QCD $SU(N_f)_L \times SU(N_f)_R \times U(1)_B$ $SU(N_f)_V \times U(1)_B$

Construct Seiberg-Dual Theory Realizing the SAME Breaking Pattern.

If the Seiberg-Dual Description for QCD Exists,

Dual Gauge Bosons Must Appear as Eff. Degrees of Freedom.

Hidden Local Symmetry Implies ho & ω Mesons are

 $U(N_f)$ Massive Gauge Boson after Higgsing.

(Bando, Kugo, Uehara, Yamawaki, Yanagida)

★ Actually, Soft SUSY Breaking Plays A Crucial Role for the Correct Chiral Sym. Breaking. 2. Seiberg-Dual of Softly-Broken SUSY QCD (arXiv: 1109.6158 by R. Kitano)

Seiberg-Duality: For $N_c + 1 < N_f < 3N_c$

 $\mathcal{N}=1~SU(N_c)$ QCD with N_f -Flavors $\mathcal{N}=1~SU(N_f-N_c)$ QCD with N_f Flavors and A Meson $+~W=qM\tilde{q}$

In Real QCD, $N_c = 3$ and $N_f = 2$ or $N_f = 3$,

Seiberg-Dual Theory Does NOT Exist.

Earlier Analysis on Softly-Broken SUSY QCD with $N_f \leq N_c$

NON QCD-Like Behavior (Aharony et al., Martin et al.)

A Seiberg-Dual for QCD :

Electric Theory :

 $SU(N_c)$ QCD with Massless N_f Quarks + Massive N_c (Quark)'s

& Soft SUSY Breaking Mass for Squarks and Gauginos.

Soft SUSY Breaking :

$$\mathcal{L}_{\text{soft}} = -\tilde{m}^2 (|Q|^2 + |\bar{Q}|^2 + |Q'|^2 + |\bar{Q}'|^2) - \left(\frac{m_\lambda}{2}\lambda\lambda + \text{h.c.}\right) - \left(BmQ'\bar{Q}' + \text{h.c.}\right)$$

All Mass Parameters (incl. Soft-Mass) are Large \longrightarrow Massless QCD with N_f Flavor

★ Seiberg-Dual Theory :

 $N_f < N_c\,$: Dual Theory is More Weakly-Coupled

Gauged

 $SU(N_f)$ QCD with Dual quarks and Dual (quark)'s & Singlet Mesons

Fields and Quantum Numbers in Mag. Theory							
	$\mathrm{SU}(N_f)$	$\mathrm{SU}(N_f)_L$	$\mathrm{SU}(N_f)_R$	$\mathrm{U}(1)_B$	$\mathrm{SU}(N_c)_V$	$\mathrm{U}(1)_{B'}$	$\mathrm{U}(1)_R$
q	N_f	$\overline{N_f}$	1	0	1	N_c/N_f	N_c/N_f
\overline{q}	$\overline{N_f}$	1	N_{f}	0	1	$-N_c/N_f$	N_c/N_f
Φ	1	N_{f}	$\overline{N_f}$	0	1	0	$2(N_f - N_c)/N_f$
q'	N_f	1	1	1	N_c	$-(N_f - N_c)/N_f$	0
\overline{q}'	$\overline{N_f}$	1	1	-1	$\overline{N_c}$	$(N_f - N_c)/N_f$	0
Y	1	1	1	0	1 + Adj.	0	2
Z	1	1	$\overline{N_f}$	-1	$\overline{N_c}$	1	$(2N_f - N_c)/N_f$
\overline{Z}	1	N_{f}	1	1	N_c	-1	$(2N_f - N_c)/N_f$

Soft SUSY Breaking :

 $\mathcal{L}_{\text{soft}} = -\tilde{m}_q^2 (|q|^2 + |\bar{q}|^2 + |q'|^2 + |\bar{q}'|^2) - \tilde{m}_M^2 (|Y|^2 + |Z|^2 + |\bar{Z}|^2 + |\Phi|^2)$ $- \left(\frac{m_{\tilde{\lambda}}}{2} \tilde{\lambda} \tilde{\lambda} + \tilde{B} m \Lambda Y + Ah \left(q' Y \bar{q}' + q' Z \bar{q} + q \bar{Z} \bar{q}' + q \Phi \bar{q}\right) + \text{h.c.}\right).$

Chiral Sym. Breaking & Color-Flavor Locking with Higgsing

$$SU(N_f)_L \times SU(N_f)_g \times SU(N_f)_R \longrightarrow SU(N_f)_V$$

★ Hidden Local Symmetry is Realized as Dual Gauge Symmetry

Note:

- All other Matter Fields (q', Y, Z) Become Massive and Decouple.
- Fermionic Partners of (q, Φ) Also Become Massive.
- Extra Gauged $U(1)_{B'}$ is Also Broken and Higgsed.

I

The Dual Theory at Low-Energy by $U(N_f)$ Gauge Theory with N_f Squarks Low-Energy Eff. Action :

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{(\omega)} F^{(\omega)\mu\nu} - \frac{1}{4} F_{\mu\nu}^{(\rho)a} F^{(\rho)\mu\nu a} + \frac{f_{\pi}^{2}}{2} \operatorname{Tr} \left[|D_{\mu}H_{L}|^{2} + |D_{\mu}H_{R}|^{2} \right] - V(H_{L}, H_{R}).$$

$$W(H_{L}, H_{R}) = f_{\pi}^{4} \left[\frac{\lambda_{0} - \lambda_{A}}{8N_{f}} \left(\operatorname{Tr}(H_{L}H_{L}^{\dagger}) + \operatorname{Tr}(H_{R}^{\dagger}H_{R}) - 2N_{f} \right)^{2} + \frac{\lambda_{A}}{8} \left\{ \operatorname{Tr} \left[(H_{L}^{\dagger}H_{L} + H_{R}H_{R}^{\dagger})^{2} \right] - 4 \left(\operatorname{Tr}(H_{L}H_{L}^{\dagger}) + \operatorname{Tr}(H_{R}^{\dagger}H_{R}) \right) \right\} + \frac{\lambda' - \lambda''}{8N_{f}} \left(\operatorname{Tr}(H_{L}H_{L}^{\dagger}) - \operatorname{Tr}(H_{R}^{\dagger}H_{R}) \right)^{2} + \frac{\lambda''}{8} \operatorname{Tr} \left[(H_{L}^{\dagger}H_{L} - H_{R}H_{R}^{\dagger})^{2} \right] \right].$$

This Action is Nothing But A Linear-Realization of

ho and ω Effective Theory with Hidden Local Symmetry.

$$H_L$$
 : $(N_f, ar{N}_f, \mathbf{1}), \ H_R$: $(ar{N}_f, \mathbf{1}, N_f)$ under $SU(N_f)^{\mathsf{3}}$

Working Hypothesis :

We Identify the Dual Theory and $\,
ho-\omega\,$ Effective Theory

Immediate Consequence:

$$\bigstar$$
 VEV of the Higgs Fields $\langle H_L
angle = \langle H_R
angle = \mathbf{1}$

Chiral Sym. Breaking AND Dual Meissner Effect !

Higgs Fields in Magnetic Dual Theory is "Monopole"s in Electric Theory.

 $\langle ar{m}m
angle
eq 0$ \longrightarrow Confinement & Chiral Sym. Breaking

(Konishi-Marmorini-NY, ...)

Under This Hypothesis, Particle Spectrum and Parameters Can Be Identified :

singlet vector (
$$\omega$$
): $m_{\omega}^2 = g_1^2 f_{\pi}^2 \longrightarrow \omega(782)$
adjoint vector (ρ): $m_{\rho}^2 = g_2^2 f_{\pi}^2 \longrightarrow \rho(770)$
singlet scalar (f_0): $m_S^2 = 2\lambda_0 f_{\pi}^2 \longrightarrow f_0(980)$
adjoint scalar (a_0): $m_A^2 = 2\lambda_A f_{\pi}^2 \longrightarrow a_0(980)$
From Vector Meson Data: $g \equiv g_1 = g_2$
 $g = \frac{m_{\rho}^2}{g_{\rho}} = 5.0, \quad f_{\pi} = \frac{g_{\rho}}{m_{\rho}} = 150 \text{ MeV}$

From Scalar Meson Data :

$$\sqrt{\lambda_0} = \sqrt{\lambda_A} = 4.6$$

(Ball-Caticha, Phys. Rev. D37 ('88)) Numerical Construction of Vortex Solution In Our Case, Partial Differential Eq. Should be Solved Numerically. 1. Ansatz for Gauge Field with Dirac-Type Monopoles at $z=\pm R/2$: $\rightarrow a_D(R)$ **Dirac Monopole** Anti-Monopole $\rightarrow z$ (Infinitely) Heavy Quark a with $\sqrt{2}f_{-} = 1$ and $\lambda_{0} = \lambda_{0}$ 2

. Vortex Eq. with
$$\sqrt{2J\pi} = 1$$
 and $\lambda_0 = \lambda_A$:

$$\nabla^2 \phi_1 - \frac{g^2}{2} (a^1 + a_D)^2 \phi_1 = \frac{\lambda_0}{2} (\phi_1^2 - 1) \phi_1,$$
$$\left(\nabla^2 - \frac{1}{\rho^2}\right) a^1 = \frac{g^2}{2} (a^1 + a_D) \phi_1^2.$$

For $A_{\mu}^{11} = a^{1}(\rho, z) + a_{D}(R), \ \phi_{11} = \phi_{1}(\rho, z),$ $A_{\mu}^{ij} \equiv 0, \ \phi_{ii} \equiv 1 \qquad (i, j \neq 1)$

Comparison with Lattice Results:

Cornell Potential

$$V(R) = -\frac{A}{R} + \sigma R$$

1. Coulomb Force Coefficient

From Lattice QCD, $A \sim 0.25 - 0.5$ This is Effect of One-Gluon Exchange $\sim A = \frac{N_c^2 - 1}{2N_c} \frac{g_s^2}{4\pi}$

Our Calculation from Dirac Monopoles :

$$A = \frac{q_m^2}{4\pi} = \frac{2\pi}{g^2} \implies A \sim 0.25$$

Note: Loop Corrections $\sim \frac{g^2}{1}$

Tension of Confining String :

From Quarkonium Spectra and Lattice QCD,

$$\sqrt{\sigma}\sim 430$$
 MeV.

Always Exist.

Our Calculation from Vortex Soln.

•
$$\sqrt{\sigma} = 400$$
 MeV. $(\kappa = 0.9)$

Our Effective Theory is A Kind of Standard Higgs Model. & Our Dual Theory is Weakly-Coupled .

Analysis of Chiral Sym. Restoration in Finite Temp. is Possible. (1-Loop) Finite Temp. Effect for Mass-Squared Can be Evaluated. (Dolan-Jackiw) Temp. Corrected Mass-Squared is Vanishing at Transition Temp.

$$T_{c} = \sqrt{\frac{8}{\eta N_{f}}} f_{\pi}, \qquad \eta = 1 + \frac{m_{\rho}^{2}}{m_{S}^{2}} + \frac{2m_{PS}^{2} + m_{S}^{2}}{3m_{S}^{2}}$$

Numerically,
$$T_{c} = \begin{cases} 170 \text{ MeV} \times \left(\frac{\eta}{3}\right)^{-1/2}, & (N_{f} = 2)\\ 140 \text{ MeV} \times \left(\frac{\eta}{3}\right)^{-1/2}, & (N_{f} = 3) \end{cases}$$

These Numerical Values are (Roughly) Consistent with Lattice QCD Results.

- 4. Summary and Discussions
- We Have Discussed A Possible (Seiberg) Dual Description for Real QCD. Our Dual Theory is Closely Related to $\rho - \omega$ Meson Effective Theory with Hidden Local Symmetry.
- Using the Identification between Our Dual Theory and Meson Eff. Theory, Inter-Quark Potential (incl. String Tension) is Calculated from the Vortex Soln. in the Dual Theory.
- Trans. Temp. of Chiral Sym. Restoration is Also Estimated in the Dual Theory.

So Far, Our Numerical Results are Consistent with Lattice QCD and Hadron Data!

- 1. Confining String in Pure Yang-Mills?
- 2. Is Seiberg-Duality Really Electric-Magnetic Duality?

Analysis Embedded into N=2 SUSY QCD or N=4 SYM

- 3. Relation to Dynamics of NA-Vortex and NA-Monopole
 - Kink on the Vortex as Monopole Light Quark ?
 - Luscher Term on the Vortex as Coulomb Coefficient ?
- 4. EW-Higgs as Dual Squark ?