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We propose new backgrounds of extra dimensions to lead to four-dimensional chiral models
with three generations of matter fermions, that is 72/Zy twisted orbifolds with magnetic
fluxes. We consider gauge theory on six-dimensional space-time, which contains the T2 /Zy
orbifold with magnetic flux, Scherk-Schwarz phases and Wilson line phases. We classify
all the possible Scherk-Schwarz and Wilson line phases on T?/Zy orbifolds with magnetic
fluxes. The behavior of zero modes is studied. We derive the number of zero modes for
each eigenvalue of the Zy twist, showing explicitly examples of wave functions. We also
investigate Kaluza-Klein mode functions and mass spectra.

1 Gauge field theory on M* x T? with magnetic flux

Let us study the behavior of gauge and matter fields on six-dimensional space-time, which
contains four-dimensional Minkowski space-time M?* and extra two-dimensional torus 72. We
denote coordinates on M* by z# (1 = 0,1,2,3) and we use the complex coordinate z on T?. We
consider a theory containing the torus with magnetic flux. Then, one can obtain an attractive
feature that the effect of the magnetic flur makes degenerate solutions of chiral fermions in
four-dimensional space-time generated from one fermion in higher-dimensional space-time, and
the number of solutions correspond to the magnitude of magnetic flux in Ref. [2].
First of all, we consider the Lagrangian density based on a U(1) gauge theory on M* x T?
such as
1
4

where M, N = u(=0,1,2,3), 2,z and Dy; = Oy — iqgApn (2, z) with a U(1) charge q. Here, W
are six-dimensional Weyl fermions, and are obtained by projection operators % such as

w0 = ¥ (viate (P59 Yrvaa (L, 00)) @

n

Lop =— ~FMNEyn +i0,TM Dy 0, (1)

where n means the label of mass eigenstates. W is a six-dimensional Dirac fermion, 14g /1, are
four-dimensional chiral fermions with four components, and v+ ,, are elements of two-dimensional
Weyl fermions.

When we require the Lagrangian density Lgp (1) to be single-valued, i.e.,

Lep(A(z,2),Vy(x,2)) = Lep(Alx, 2+ 1), ¥ (z,2+ 1)) = Lep(A(z, 2+ 7), Yy (z, 2+ 7)), (3)

!This talk is based on our recently work [1]



this field ¥ (x, z) should satisfy the pseudo periodic boundary conditions
Yin(z+1) = eiqx1(z)+27rioc1¢i’n(z)’ Yin(z+7) = €inT(Z)+2maT¢j;,n(Z)- (4)

The consistency of the contractible loops, e.g., 2z —+2+1— 2+ 14+7 — z+ 7 — z, requires
the magnetic flux quantization condition,
qb
—=MeZ. 5
o (5)
Moreover, we focus on massless zero-mode solutions 14 o(2) on T? with magnetic flux. It
turns out that there appear degenerate solutions from one fermion to satisfy certain boundary
conditions and equations of motion due to the existence of magnetic flux as below.
The equations of zero modes 14 o(z) without any Wilson line phase are given by

M M
(82 + 21m7_2> ¢+70(2) = O, <(9Z — 211’[1’7‘2) wf,O(Z) =0. (6)
From the conditions (4), the zero-mode solutions of ¢4 ¢(2; a,) are found to be of the form
im Mz Iz j—}_\(;l _ . (Gtoa,ar)
i o(z) = Ne mr ) | (Mz,M7) =47}, (2)  for M >0, (7)
imMzImz ﬁ% = ar=\ — (Gtai,ar)
Y_o(z) = Ne Tt - 1) M (Mz,M7) =9 (z) for M <O, (8)
where j =0,1,--- ,|M|—1, N is the normalization factor, and the ¢ function is defined by
a _ - im(a+l)2cr 2mi(a+l)(cv+b)
ﬂ[b](cu,w)— Ze e . (9)

l=—00

We would like to note the two features that for M > 0 (M < 0), only 910 (¢—p) has
solutions, and that the number of solutions is given by |M|. Thus, we can obtain a |M|-
generation chiral theory in four-dimensional space-time from eq.(1).

2 Twisted orbifolds with magnetic flux

In this section, we study the U(1) gauge theory on twisted orbifolds T?/Zy with magnetic flux,
and investigate the degeneracy of zero-mode solutions and the allowed values of the Scherk-
Schwarz phases a7 and . in the Wilson line phase a,, = 0.



2.1 Field theory on T?/Zy orbifold

A two-dimensional twisted orbifold 72/Zy is defined by dividing a one-dimensional complex
plane by lattice shifts t1, t; and a Zy discrete rotation (twist) s such as

th:iz—2z+1, tr:z2—z+7, s:2z—wz, (10)
with w = e2™/N,

Let us consider the following Lagrangian density on six-dimensional space-time with the
orbifold T2 /Zy,

Eg)eyl = i‘ilTQ/ZN—&—(xv Z)FM(aM - Z.QAAM(:m Z))‘IITQ/ZN+(x7 Z), (11)

where Wr2 7 (2,2) is a six-dimensional Weyl fermion on M 4 x T%/Z3. In a way similar to
eq.(2), we can expand the Weyl fermion W72, . (z,2) on M* x T?/Zy such as

Vo zp(@,2) =) <¢4R,n($) ® ( wT2/Z16+’n(Z) ) + Yarn(z) ® < ! >> - (12)

~ V1275 —n(2)
Then, the boundary conditions for Wp2,, . (z,2) are replaced by those for p2/7, 4+ ,,(2), i.e.,

Y12z e (2 + 1) = Ut(2)Vr2) 230 4.0(2)s V1220402 + T) = Ur(2)¥12)7, 4 0(2),
¢T2/ZN+,n(wz) = V(z)wTQ/ZN—i—,n(z): z7bT2/ZN—,n(WZ) - WV(ZWW/ZN_,n(Z)a (13)

where Uy (z) = ex1(2)+2mian ] (2) = glaxr(2)+2miar and V(z) = 2™, Here, it is worthwhile
to note that the wave functions 12,7, 4+ ,,(2) on the orbifold T?/Zx can be constructed from
certain linear combinations of 11 ,(2) on the torus T2. This is because the orbifold T?/Zy is
obtained by dividing the torus T2 by the Zy discrete rotation.

Moreover, let us investigate the boundary conditions for general lattice shifts m+n7t (m,n €
7) and Zy twists w* (k € Z). To this end, we define the transformation function Uy, (2)
through the relation

\I’TQ/ZN(ZE,Z+m+nT) = Um—i—n'r(z)‘llT?/ZN(l',Z). (14)
Then, we obtain
W2z, (2, Wz +m+nr)) = Uik (m-nr) (wkz)‘I/Tz/ZN (z,w2), (15)

because w*(m 4 n7) for Yk, m,n € Z can be equivalently expressed as a lattice shift m’ +n'r for
3,7 7
m,n' € Z.



2.1.1 Scherk-Schwarz phases with magnetic flux

Next, let us investigate the Scherk-Schwarz phases with magnetic flux. For example, from the
condition (15) for N = 3, it follows that we find

Ui(z) = Ur(wz), Ur(z) = Uyr(wz). (16)
Thus, we obtain
e2mion _ Qlmiar  2miar _ 6727ri(a1+ar)+i7rM’ (17)
ie.,
(a1, a7) =(0,0), (1/3,1/3), (2/3,2/3) for M = even,
(o1,07) =(1/6,1/6), (1/2,1/2), (5/6,5/6) for M = odd. (18)

It is found that the variety of the Scherk-Schwarz phases still corresponds to the number of
fixed points even with non-zero magnetic flux for N = 2, 3,4, 6. However, it is remarkable that
the non-zero magnetic flux with M = odd affects the values of the Scherk-Schwarz phases for
N = 3,6, and especially does not permit them to vanish.

2.2 7y eigenstates of fermions

Here, we explain how to construct the wave functions ¢z, 1 ,(2) on T?%/Zy from the wave
functions ¢4 ,,(z) on T?. To clearly distinguish wave functions on 72 from those on T?%/Zy, we

rewrite the wave functions on 72 as 2. ,,(2). Since the wave functions 2 ,(z) should obey
T :t,n :l:z

i)

P j+a1’%)( ), we rewrite them as %224;&1 O‘T)(z) (j=0,1,--- ,|M|—1), which are constructed by

a way similar to the analysis of harmonic oscillator in the quantum mechanics (see section 4).
In addition to the torus boundary conditions (the first two conditions of eq.(13)), the wave

functions ¥p2 /7, 1 »(2) have to satisfy these orbifold boundary conditions (the last two conditions

O

the desired boundary conditions (4) as well as the zero-mode wave functions ¥

of eq.(13)) Then, we can construct ¢72,7, + ,(2) by the linear combinations of ¢

Ure gy ea(z) = N ST afglaned by = pFharan (), (19)

where j (=0,1,---,|M|—1) stand for the degeneracy with respect to the n-mode wave functions.

The index of w’ (£ =0,1,--- ,N — 1) for %f;;CZ” 05;)1(2) . means Zy eigenvalues on T2 /Zy, and

N u) "¢ are normalization factors, which depend on j, the chirality of 1/1T]2Jfl’a7)(z), and the Zy
eigenvalues wt.



3 Zero-mode eigenstates on T%/Zy

Here, we focus on the zero-mode eigenstates for each Zy eigenvalue, and study their number
for each M. In particular, we will pay attention to the cases that the number of zero-mode
eigenstates is given by around three, because we would like to construct a three generation

model.
As discussed in section 2.2, the zero-mode eigenstates wéf;;%l’fé(z)wz with the Zy eigenvalue
w® and M > 0 will be given, in terms of the zero-mode functions 1#72210‘(1)’%)(2) on T2, as
N—
a0 - +ar,ar
g (O WE Z ifyidianen) (why), (20)
k=0
which obey the eigenvalue equations
+a1,0r +ar,0r
1/1722/2\,1 O(WZ) = w£¢732/2vi O(Z) e (21)

All of wg;;%l’f()) (2),¢ with a fixed ¢ are not always linearly independent. To find the num-

ber of linearly independent zero-mode eigenstates ¢T]2J;§1’T()J(z)we, we need information on the
relations between w:,f;:_aé’%)(w z) and %@fé’%)( ). Since wjf;fé’%)(wkz) for any j and k sat-
isfies the same zero-mode equations and boundary conditions on T2 as wéf; f B’QT)(z), and since
{w(TZ;r f B’aT (2)} forms a complete set of the zero-mode eigenstates on T2, wjfztraé’%)(wkz) have
to be expressed by some linear combination of @Z)jf;_aé’af)(z) such that
: M—1
jtat,ar) k +a1,ar
Ry whe) = 3 Ol () (22)
=0
where C’,]: are complex coefficients.
Inserting eq.(22) into eq.(21), we obtain?
( ) N - )
]+0¢17a‘r —lk jZ ’L+041,CM7—
72zt 0Pt = Ny Z Z WO Ve g (2)- (23)
k=0 =0

A result for T2/Z5 is given in Table 1. Those tables show the number of linearly independent
(j+aa,ar)
T2/ZN+,0
we want to construct a three-generation model on T?/Z3, we may choose one of (|M|,n) =

(6,1),(8,1),(10,1), (8,@), (10,), (12,&) with w = €2™/3 in Tables 1.

2The numerical values of C’ii will be confirmed by another approach of the operator formalism given in Ref.[3].

Zn eigenfunctions v (2)y for each combination of n = w’ and |M]|. For example, when




M| |2 4 6 8 10 12 14
171 1 3 3 3 5 5
nlw|l0 2 2 2 4 4 4
wll 1 1 3 3 3 5

Table 1: The number of linearly independent zero-mode eigenstates Yr2z,4,0(2)n for M = even and (a1, ar) = (0,0)
on T?%/Z5.

4 Kaluza-Klein mode functions and mass spectra

In the previous section, we have considered zero-mode solutions on 72/Zy. It is also worthwhile
to discuss Kaluza-Klein modes on T? and T?/Zy. Then, we can understand the Kaluza-Klein
modes by a way similar to the analysis of harmonic oscillator in the quantum mechanics, as we
will see below.

Let us study the masses of Kaluza-Klein modes on M* x T%/Zy. In the same way, the

masses for d)jf;;%liz)l( ) are given by
(j+a,or (j+ai,or
< —4D§b)D§b) (l)) N ) ( w'lg/Z;\H- n(z) ) :’I?’L ( w'lgz/Z;H- n<z) ) (24)
0 —4DD )\ e (z) o) (2)
where DY) = 9, — iqub)( ) and D(b) = 0; — iqA(b)(z). Here, we define the two-dimensional
Laplace operator as A = — (D(b)D(b) + D( )p )) which satisfies the relations with D(())
A, D0 = D0, A, p = D0, [0, p) = (25)

A

where A (= Im7 - 1) is the area of the torus. This algebra of operators for 12, ,,(2) is similar
to one in the one-dimensional harmonic oscillator in quantum mechanics.
For example, it is found that for M > 0,

4| M 1 “
A L <N+ + ) N+ = CALT_’_(?L_A,_,

b A .

L =i/ —=—-D® T1=1 2
ﬂ"M W’M‘ z [a-l-a a ] ) ( 6)
with

0)4 = " e ) (). (27)

Since wi,?;;gl’i%(z) are made by linear combinations of wiﬁ;fé O“T)( ), the Kaluza-Klein modes
on the orbifolds should be made by operating (al) on [0)4, = Hal’aT)( )

7270 +,0 %) Here, we should



notice that for ai, D( ) are operated on wT];fé’aT)( k2). We define .y and dlk+ as
T e
Aoy =W ag, Ay, =0 ay. (28)
Actually, operating al L on 771)7227;;&;3)( Z)pn, we obtain the first Kaluza-Klein modes
AL 10)+ Z aluply W)
=0
N-1
j + b T + T
= NS (wi)fal w0 (whz) = w30 (2)a. (29)
k=0
Thus, the Zy eigenstate with the eigenvalue n at the nth Kaluza-Klein modes is made by
operating al on wéf;};;’j‘fi 1 (2)wn, or by operating al on wég;%;ofi_l(z)@n. The Kaluza-Klein

mode functions are given by

(o ,0r) _ L )
1/}722/Z;V+ n( )JJ = W(a-i-) ¢722/Zjv+ 0( )
N-1
= NS @rbpdien e whz),
k=0
pUreran) oy 2 pByUrenen) () for M >0 (30)
T2/ Zn—n\*/W" N — my, - T2/ Zn4n <)@ )
Then, the Kaluza-Klein modes wgztaZ;iTT)L(z)n for Yn possess the masses squared
dr|M
m2 = 7TJ|4n for n e {0,N}. (31)

Here, let us show an illustrative example. Figure 1 shows the zero-mode eigenstates wTQ st Ner
(j =0,1) for M =2 in Table 1 and its Kaluza-Klein modes. The important fact is how Kaluza-
Klein modes grow up. In the orbifolds, they grow up as changing the Zy eigenstates.

5 Conclusions and discussions

We have studied the U(1) gauge theory on the T?/Zy orbifolds with magnetic fluxes, Scherk-
Schwarz phases and Wilson line phases. We have shown all of the possible Scherk-Schwarz and
Wilson line phases. It is remarkable that the allowed Scherk-Schwarz phases as well as Wilson
line phases depend on the magnitude of magnetic flux for the 72/Z3 and T2/Zs orbifolds,
that is, whether M is even or odd. At any rate, the variety of possible Scherk-Schwarz and
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Figure 1: The mass spectra of wgé(;)zg,:t »(Z)n (7 =0,1) for M =2 in table 1. The red crosses mean the absence of zero-

mode solutions and Kaluza-Klein modes, and the blue (green) filled circles correspond to a zero mode and its Kaluza-Klein
(4,0 (4,0 (2)

modes. The blue (green) arrows mean that a! operates on nth modes T2/ Zgt nt1

T2 744 ,,(#) and the next modes ¢

are made by it. The black ovals mean the pairs constructing mass terms.

Wilson line phases corresponds to the number of fixed points on each orbifold with any value of
magnetic flux. Under these backgrounds, we have studied the behavior of zero modes. We have
derived the number of zero modes for each eigenvalue of the Zy twist. This result was obtained
by showing explicitly and analytically wave functions for some examples and also by studying
numerically Zy-eigenfunctions for many models. The exactly same results will be derived by
another approach for generic case [3]. The Kaluza-Klein modes were also investigated.

Our results show that one can derive models with three generations of matter fermions in
various backgrounds, i.e., the T?/Zy orbifolds for N = 2,3,4,6 with various magnetic fluxes
and Scherk-Schwarz phases. Using these results, one could construct realistic three-generation
models.

At any rate, our results can become a starting point for these studies. Also, our study
is applicable to more general twisted orbifold models in higher-dimensional theory more than
six-dimensional one, e.g., T%/Zy, T%/(Zn x Z};) and so on.
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