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We propose new backgrounds of extra dimensions to lead to four-dimensional chiral models
with three generations of matter fermions, that is T 2/ZN twisted orbifolds with magnetic
fluxes. We consider gauge theory on six-dimensional space-time, which contains the T 2/ZN

orbifold with magnetic flux, Scherk-Schwarz phases and Wilson line phases. We classify
all the possible Scherk-Schwarz and Wilson line phases on T 2/ZN orbifolds with magnetic
fluxes. The behavior of zero modes is studied. We derive the number of zero modes for
each eigenvalue of the ZN twist, showing explicitly examples of wave functions. We also
investigate Kaluza-Klein mode functions and mass spectra.

1 Gauge field theory on M 4 × T 2 with magnetic flux

Let us study the behavior of gauge and matter fields on six-dimensional space-time, which

contains four-dimensional Minkowski space-time M4 and extra two-dimensional torus T 2. We

denote coordinates on M4 by xµ (µ = 0, 1, 2, 3) and we use the complex coordinate z on T 2. We

consider a theory containing the torus with magnetic flux. Then, one can obtain an attractive

feature that the effect of the magnetic flux makes degenerate solutions of chiral fermions in

four-dimensional space-time generated from one fermion in higher-dimensional space-time, and

the number of solutions correspond to the magnitude of magnetic flux in Ref. [2].

First of all, we consider the Lagrangian density based on a U(1) gauge theory on M4 × T 2

such as

L6D =− 1

4
FMNFMN + iΨ̄+Γ

MDMΨ+, (1)

where M,N = µ(= 0, 1, 2, 3), z, z̄ and DM = ∂M − iqAM (x, z) with a U(1) charge q. Here, Ψ±
are six-dimensional Weyl fermions, and are obtained by projection operators 1±Γ7

2 such as

Ψ+(x, z) =
∑
n

(
ψ4R,n(x)⊗

(
ψ+,n(z)

0

)
+ ψ4L,n(x)⊗

(
0

ψ−,n(z)

))
, (2)

where n means the label of mass eigenstates. Ψ is a six-dimensional Dirac fermion, ψ4R/L,n are

four-dimensional chiral fermions with four components, and ψ±,n are elements of two-dimensional

Weyl fermions.

When we require the Lagrangian density L6D (1) to be single-valued, i.e.,

L6D(A(x, z),Ψ+(x, z)) = L6D(A(x, z + 1),Ψ+(x, z + 1)) = L6D(A(x, z + τ),Ψ+(x, z + τ)), (3)

1This talk is based on our recently work [1]
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this field Ψ+(x, z) should satisfy the pseudo periodic boundary conditions

ψ±,n(z + 1) = eiqχ1(z)+2πiα1ψ±,n(z), ψ±,n(z + τ) = eiqχτ (z)+2πiατψ±,n(z). (4)

The consistency of the contractible loops, e.g., z → z+1 → z+1+ τ → z+ τ → z, requires

the magnetic flux quantization condition,

qb

2π
≡M ∈ Z. (5)

Moreover, we focus on massless zero-mode solutions ψ±,0(z) on T 2 with magnetic flux. It

turns out that there appear degenerate solutions from one fermion to satisfy certain boundary

conditions and equations of motion due to the existence of magnetic flux as below.

The equations of zero modes ψ±,0(z) without any Wilson line phase are given by(
∂z̄ +

πM

2Imτ
z

)
ψ+,0(z) = 0,

(
∂z −

πM

2Imτ
z̄

)
ψ−,0(z) = 0. (6)

From the conditions (4), the zero-mode solutions of ψ±,0(z; aw) are found to be of the form

ψ+,0(z) = N eiπMz Imz
Imτ · ϑ

[
j+α1

M
−ατ

]
(Mz,Mτ) ≡ ψ

(j+α1,ατ )
+,0 (z) for M > 0, (7)

ψ−,0(z) = N eiπMz̄ Imz̄
Imτ̄ · ϑ

[
j+α1

M
−ατ

]
(Mz̄,Mτ̄) ≡ ψ

(j+α1,ατ )
−,0 (z) for M < 0, (8)

where j = 0, 1, · · · , |M | − 1, N is the normalization factor, and the ϑ function is defined by

ϑ

[
a
b

]
(cν, cτ) =

∞∑
l=−∞

eiπ(a+l)
2cτe2πi(a+l)(cν+b). (9)

We would like to note the two features that for M > 0 (M < 0), only ψ+,0 (ψ−,0) has

solutions, and that the number of solutions is given by |M |. Thus, we can obtain a |M |-
generation chiral theory in four-dimensional space-time from eq.(1).

2 Twisted orbifolds with magnetic flux

In this section, we study the U(1) gauge theory on twisted orbifolds T 2/ZN with magnetic flux,

and investigate the degeneracy of zero-mode solutions and the allowed values of the Scherk-

Schwarz phases α1 and ατ in the Wilson line phase aw = 0.
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2.1 Field theory on T 2/ZN orbifold

A two-dimensional twisted orbifold T 2/ZN is defined by dividing a one-dimensional complex

plane by lattice shifts t1, tτ and a ZN discrete rotation (twist) s such as

t1 : z → z + 1, tτ : z → z + τ, s : z → ωz, (10)

with ω ≡ e2πi/N .

Let us consider the following Lagrangian density on six-dimensional space-time with the

orbifold T 2/ZN ,

LWeyl
6D ≡ iΨ̄T 2/ZN+(x, z)Γ

M (∂M − iqAM (x, z))ΨT 2/ZN+(x, z), (11)

where ΨT 2/ZN+(x, z) is a six-dimensional Weyl fermion on M4 × T 2/Z3. In a way similar to

eq.(2), we can expand the Weyl fermion ΨT 2/ZN+(x, z) on M
4 × T 2/ZN such as

ΨT 2/ZN+(x, z) =
∑
n

(
ψ4R,n(x)⊗

(
ψT 2/ZN+,n(z)

0

)
+ ψ4L,n(x)⊗

(
0

ψT 2/ZN−,n(z)

))
. (12)

Then, the boundary conditions for ΨT 2/ZN+(x, z) are replaced by those for ψT 2/ZN±,n(z), i.e.,

ψT 2/ZN±,n(z + 1) = U1(z)ψT 2/ZN±,n(z), ψT 2/ZN±,n(z + τ) = Uτ (z)ψT 2/ZN±,n(z),

ψT 2/ZN+,n(ωz) = V (z)ψT 2/ZN+,n(z), ψT 2/ZN−,n(ωz) = ωV (z)ψT 2/ZN−,n(z), (13)

where U1(z) = eiqχ1(z)+2πiα1 , Uτ (z) = eiqχτ (z)+2πiατ and V (z) = e2πiβ . Here, it is worthwhile

to note that the wave functions ψT 2/ZN±,n(z) on the orbifold T 2/ZN can be constructed from

certain linear combinations of ψ±,n(z) on the torus T 2. This is because the orbifold T 2/ZN is

obtained by dividing the torus T 2 by the ZN discrete rotation.

Moreover, let us investigate the boundary conditions for general lattice shifts m+nτ (m,n ∈
Z) and ZN twists ωk (k ∈ Z). To this end, we define the transformation function Um+nτ (z)

through the relation

ΨT 2/ZN
(x, z +m+ nτ) = Um+nτ (z)ΨT 2/ZN

(x, z). (14)

Then, we obtain

ΨT 2/ZN
(x, ωk(z +m+ nτ)) = Uωk(m+nτ)(ω

kz)ΨT 2/ZN
(x, ωkz), (15)

because ωk(m+nτ) for ∀k,m, n ∈ Z can be equivalently expressed as a lattice shift m′+n′τ for
∃m′, n′ ∈ Z.
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2.1.1 Scherk-Schwarz phases with magnetic flux

Next, let us investigate the Scherk-Schwarz phases with magnetic flux. For example, from the

condition (15) for N = 3, it follows that we find

U1(z) = Uτ (ωz), Uτ (z) = Uωτ (ωz). (16)

Thus, we obtain

e2πiα1 = e2πiατ , e2πiατ = e−2πi(α1+ατ )+iπM , (17)

i.e.,

(α1, ατ ) = (0, 0), (1/3, 1/3), (2/3, 2/3) for M = even,

(α1, ατ ) = (1/6, 1/6), (1/2, 1/2), (5/6, 5/6) for M = odd. (18)

It is found that the variety of the Scherk-Schwarz phases still corresponds to the number of

fixed points even with non-zero magnetic flux for N = 2, 3, 4, 6. However, it is remarkable that

the non-zero magnetic flux with M = odd affects the values of the Scherk-Schwarz phases for

N = 3, 6, and especially does not permit them to vanish.

2.2 ZN eigenstates of fermions

Here, we explain how to construct the wave functions ψT 2/ZN±,n(z) on T 2/ZN from the wave

functions ψ±,n(z) on T
2. To clearly distinguish wave functions on T 2 from those on T 2/ZN , we

rewrite the wave functions on T 2 as ψT 2±,n(z). Since the wave functions ψT 2±,n(z) should obey

the desired boundary conditions (4) as well as the zero-mode wave functions ψ
(j+α1,ατ )
T 2±,0 (z) =

ψ
(j+α1,ατ )
±,0 (z), we rewrite them as ψ

(j+α1,ατ )
T 2±,n (z) (j = 0, 1, · · · , |M |−1), which are constructed by

a way similar to the analysis of harmonic oscillator in the quantum mechanics (see section 4).

In addition to the torus boundary conditions (the first two conditions of eq.(13)), the wave

functions ψT 2/ZN±,n(z) have to satisfy these orbifold boundary conditions (the last two conditions

of eq.(13)) Then, we can construct ψT 2/ZN±,n(z) by the linear combinations of ψ
(j+α1,ατ )
T 2±,n (z),

ψT 2/ZN±,n(z) = N (j)

±,ωℓ

N−1∑
k=0

ω̄ℓkψ
(j+α1,ατ )
T 2±,n (ωkz) ≡ ψ

(j+α1,ατ )
T 2/ZN±,n(z)ωℓ , (19)

where j (= 0, 1, · · · , |M |−1) stand for the degeneracy with respect to the n-mode wave functions.

The index of ωℓ (ℓ = 0, 1, · · · , N − 1) for ψ
(j+α1,ατ )
T 2/ZN±,n(z)ωℓ means ZN eigenvalues on T 2/ZN , and

N (j)

±,ωℓ are normalization factors, which depend on j, the chirality of ψ
(j+α1,ατ )
T 2±,n (z), and the ZN

eigenvalues ωℓ.

4



3 Zero-mode eigenstates on T 2/ZN

Here, we focus on the zero-mode eigenstates for each ZN eigenvalue, and study their number

for each M . In particular, we will pay attention to the cases that the number of zero-mode

eigenstates is given by around three, because we would like to construct a three generation

model.

As discussed in section 2.2, the zero-mode eigenstates ψ
(j+α1,ατ )
T 2/ZN+,0

(z)ωℓ with the ZN eigenvalue

ωℓ and M > 0 will be given, in terms of the zero-mode functions ψ
(j+α1,ατ )
T 2+,0

(z) on T 2, as

ψ
(j+α1,ατ )
T 2/ZN+,0

(z)ωℓ = N (j)

+,ωℓ

N−1∑
k=0

ω̄ℓkψ
(j+α1,ατ )
T 2+,0

(ωkz), (20)

which obey the eigenvalue equations

ψ
(j+α1,ατ )
T 2/ZN+,0

(ωz)ωℓ = ωℓψ
(j+α1,ατ )
T 2/ZN+,0

(z)ωℓ . (21)

All of ψ
(j+α1,ατ )
T 2/ZN+,0

(z)ωℓ with a fixed ℓ are not always linearly independent. To find the num-

ber of linearly independent zero-mode eigenstates ψ
(j+α1,ατ )
T 2/ZN+,0

(z)ωℓ , we need information on the

relations between ψ
(j+α1,ατ )
T 2+,0

(ωkz) and ψ
(j+α1,ατ )
T 2+,0

(z). Since ψ
(j+α1,ατ )
T 2+,0

(ωkz) for any j and k sat-

isfies the same zero-mode equations and boundary conditions on T 2 as ψ
(i+α1,ατ )
T 2+,0

(z), and since

{ψ(i+α1,ατ )
T 2+,0

(z)} forms a complete set of the zero-mode eigenstates on T 2, ψ
(j+α1,ατ )
T 2+,0

(ωkz) have

to be expressed by some linear combination of ψ
(j+α1,ατ )
T 2+,0

(z) such that

ψ
(j+α1,ατ )
T 2+,0

(ωkz) =

M−1∑
i=0

Cjik ψ
(i+α1,ατ )
T 2+,0

(z), (22)

where Cjik are complex coefficients.

Inserting eq.(22) into eq.(21), we obtain2

ψ
(j+α1,ατ )
T 2/ZN+,0

(z)ωℓ = N (j)

+,ωℓ

N−1∑
k=0

M−1∑
i=0

ω̄ℓkCjik ψ
(i+α1,ατ )
T 2+,0

(z). (23)

A result for T 2/Z3 is given in Table 1. Those tables show the number of linearly independent

ZN eigenfunctions ψ
(j+α1,ατ )
T 2/ZN±,0(z)η for each combination of η = ωℓ and |M |. For example, when

we want to construct a three-generation model on T 2/Z3, we may choose one of (|M |, η) =

(6, 1), (8, 1), (10, 1), (8, ω̄), (10, ω̄), (12, ω̄) with ω = e2πi/3 in Tables 1.

2The numerical values of Cji
k will be confirmed by another approach of the operator formalism given in Ref.[3].
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|M | 2 4 6 8 10 12 14

η
1 1 1 3 3 3 5 5
ω 0 2 2 2 4 4 4
ω̄ 1 1 1 3 3 3 5

Table 1: The number of linearly independent zero-mode eigenstates ψT2/Z3±,0(z)η for M = even and (α1, ατ ) = (0, 0)

on T 2/Z3.

4 Kaluza-Klein mode functions and mass spectra

In the previous section, we have considered zero-mode solutions on T 2/ZN . It is also worthwhile

to discuss Kaluza-Klein modes on T 2 and T 2/ZN . Then, we can understand the Kaluza-Klein

modes by a way similar to the analysis of harmonic oscillator in the quantum mechanics, as we

will see below.

Let us study the masses of Kaluza-Klein modes on M4 × T 2/ZN . In the same way, the

masses for ψ
(j+α1,ατ )
T 2/ZN±,n(z) are given by(
−4D

(b)
z D

(b)
z̄ 0

0 −4D
(b)
z̄ D

(b)
z

)(
ψ
(j+α1,ατ )
T 2/ZN+,n

(z)

ψ
(j+α1,ατ )
T 2/ZN−,n(z)

)
= m2

n

(
ψ
(j+α1,ατ )
T 2/ZN+,n

(z)

ψ
(j+α1,ατ )
T 2/ZN−,n(z)

)
, (24)

where D
(b)
z = ∂z − iqA

(b)
z (z) and D

(b)
z̄ = ∂z̄ − iqA

(b)
z̄ (z). Here, we define the two-dimensional

Laplace operator as ∆ ≡ −2(D
(b)
z D

(b)
z̄ +D

(b)
z̄ D

(b)
z ), which satisfies the relations with D

(b)
z(z̄)

[∆, D(b)
z ] =

4πM

A
D(b)
z , [∆, D

(b)
z̄ ] = −4πM

A
D

(b)
z̄ , [D(b)

z , D
(b)
z̄ ] =

πM

A
, (25)

where A (= Imτ · 1) is the area of the torus. This algebra of operators for ψT 2±,n(z) is similar

to one in the one-dimensional harmonic oscillator in quantum mechanics.

For example, it is found that for M > 0,

∆ =
4π|M |
A

(
N̂+ +

1

2

)
, N̂+ ≡ â†+â+,

â+ ≡ i

√
A

π|M |
D

(b)
z̄ , â†+ ≡ i

√
A

π|M |
D(b)
z , [â+, â

†
+] = 1, (26)

with

|0⟩+ ≡ ψ
(j+α1,ατ )
T 2+,0

(z). (27)

Since ψ
(j+α1,ατ )
T 2/ZN±,0(z)η are made by linear combinations of ψ

(j+α1,ατ )
T 2±,0 (z), the Kaluza-Klein modes

on the orbifolds should be made by operating (â†+)
n on |0⟩+,η ≡ ψ

(j+α1,ατ )
T 2/ZN+,0

(z)η. Here, we should
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notice that for â†+, D
(b)

ωkz
are operated on ψ

(j+α1,ατ )
T 2+,0

(ωkz). We define âωk+ and â†
ωk+

as

âωk+ = ωkâ+, â†
ωk+

= ω̄kâ†+. (28)

Actually, operating a†+ on ψ
(j+α1,ατ )
T 2/ZN±,0(z)η, we obtain the first Kaluza-Klein modes

â†+|0⟩+,η = N (j)
+,η

N−1∑
k=0

η̄kâ†+ψ
(j+α1,ατ )
T 2+,0

(ωkz)

= N (j)
+,η

N−1∑
k=0

(ωη̄)kâ†
ωk+

ψ
(j+α1,ατ )
T 2+,0

(ωkz) ≡ ψ
(j+α1,ατ )
T 2/ZN+,1

(z)ω̄η. (29)

Thus, the ZN eigenstate with the eigenvalue η at the nth Kaluza-Klein modes is made by

operating a†+ on ψ
(j+α1,ατ )
T 2/ZN+,n−1

(z)ωη, or by operating a†− on ψ
(j+α1,ατ )
T 2/ZN−,n−1

(z)ω̄η. The Kaluza-Klein

mode functions are given by

ψ
(j+α1,ατ )
T 2/ZN+,n

(z)ω̄nη ≡
1√
n!
(â†+)

nψ
(j+α1,ατ )
T 2/ZN+,0

(z)η

= N (j)
+,η

N−1∑
k=0

(ωnη̄)kψ
(j+α1,ατ )
T 2−,n (ωkz),

ψ
(j+α1,ατ )
T 2/ZN−,n(z)ω̄nη =

2

mn
D

(b)
z̄ ψ

(j+α1,ατ )
T 2/ZN+,n

(z)ω̄nη for M > 0, (30)

Then, the Kaluza-Klein modes ψ
(j+α1,ατ )
T 2/ZN±,n(z)η for ∀η possess the masses squared

m2
n =

4π|M |
A

n for n ∈ {0,N}. (31)

Here, let us show an illustrative example. Figure 1 shows the zero-mode eigenstates ψ
(j,0)
T 2/Z3+,0

(z)η

(j = 0, 1) for M = 2 in Table 1 and its Kaluza-Klein modes. The important fact is how Kaluza-

Klein modes grow up. In the orbifolds, they grow up as changing the ZN eigenstates.

5 Conclusions and discussions

We have studied the U(1) gauge theory on the T 2/ZN orbifolds with magnetic fluxes, Scherk-

Schwarz phases and Wilson line phases. We have shown all of the possible Scherk-Schwarz and

Wilson line phases. It is remarkable that the allowed Scherk-Schwarz phases as well as Wilson

line phases depend on the magnitude of magnetic flux for the T 2/Z3 and T 2/Z6 orbifolds,

that is, whether M is even or odd. At any rate, the variety of possible Scherk-Schwarz and
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Figure 1: The mass spectra of ψ
(j,0)

T2/Z3±,n
(z)η (j = 0, 1) for M = 2 in table 1. The red crosses mean the absence of zero-

mode solutions and Kaluza-Klein modes, and the blue (green) filled circles correspond to a zero mode and its Kaluza-Klein

modes. The blue (green) arrows mean that â† operates on nth modes ψ
(j,0)

T2/Z3+,n
(z) and the next modes ψ

(j,0)

T2/Z3+,n+1
(z)

are made by it. The black ovals mean the pairs constructing mass terms.

Wilson line phases corresponds to the number of fixed points on each orbifold with any value of

magnetic flux. Under these backgrounds, we have studied the behavior of zero modes. We have

derived the number of zero modes for each eigenvalue of the ZN twist. This result was obtained

by showing explicitly and analytically wave functions for some examples and also by studying

numerically ZN -eigenfunctions for many models. The exactly same results will be derived by

another approach for generic case [3]. The Kaluza-Klein modes were also investigated.

Our results show that one can derive models with three generations of matter fermions in

various backgrounds, i.e., the T 2/ZN orbifolds for N = 2, 3, 4, 6 with various magnetic fluxes

and Scherk-Schwarz phases. Using these results, one could construct realistic three-generation

models.

At any rate, our results can become a starting point for these studies. Also, our study

is applicable to more general twisted orbifold models in higher-dimensional theory more than

six-dimensional one, e.g., T 6/ZN , T
6/(ZN × Z ′

N ) and so on.
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