Emission spectrum of soft massless states from heavy superstring

Shoichi Kawamoto (Tunghai Univ. → NCTS, Taiwan)

Phys. Rev. D87 (2013) 124001 with T. Matsuo (Anan NCT)

1

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Why heavy (super)string?

Highly excited string is very small, heavy, and unstable

Decay modes, lifetime...? (accessible by perturbation theory)

This decay may be seen as a stringy toy model of Hawking radiation.

e.g. Long-lived states and cosmological application

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Blackhole/String correspondnce

Highly excited string has enormous entropy

May explain Bekenstein-Hawking entropy?

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Leading order in g_s: Splitting only once

Not so large momentum transfer: microscopic strings may fly away (soft emission)

Turns out that massless state emission is dominant

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

- · Observe a heavy string from far away \rightarrow Averaged initial state
- · Not observe final states \rightarrow sum over the possible states
- Initial and final states are "heavy"

$$N, N' \gg \omega \longrightarrow N - N' = \sqrt{2N}\omega$$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Semi-inclusive decay

Exponentially many states at level $N \rightarrow$ difficult to sum over

(Open superstring) density of states: $\mathcal{G}(N) \simeq N^{-\frac{11}{4}} e^{\pi \sqrt{8N}}$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

$$[\text{Amati-Russo ('99)}] \qquad \hat{P}_N = \oint \frac{dw}{2\pi i w} w^{\hat{N}-N} \qquad \qquad \blacktriangleright \qquad \sum_{\Phi(N)} |\Phi(N)\rangle = \sum_{\phi=\text{All}} \hat{P}_N |\phi\rangle$$

projection operator onto level N

Consider open/closed superstring massless state emission from heavy open/closed superstring.

Boson/fermion massless states

Boson/fermion massless states

Evalueate this trace by use of Green-Schwarz superstring in light-cone gauge

Note: This tr is not supertrace.

Fermion emission is discussed to be subleading effect.

[lengo-Russo, Chen-Li-She]

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Vertex Operators

[Green-Schwarz]

Light-cone vertex operator:
$$k^+ = 0$$

 $e^{-ik^+X^-}$
 $\alpha_n^- \sim \sum : \alpha_{n-m}^i \alpha_m^i : + \cdots$
 $V_B(\zeta, k) = (\zeta^i(k)B^i - \zeta^-(k)p^+) e^{ik \cdot X}$
Massless boson emission
 $B^i = \dot{X}^i - R^{ij}k^j$
 $B^i = \dot{X}^i - R^{ij}k^j$
 $F^a = \sqrt{p^+}S^a$
 $F^a = \frac{1}{\sqrt{p^+}} \left((\gamma \cdot \dot{X}S)^{\dot{a}} + \frac{1}{3} : (\gamma^i S)^{\dot{a}}R^{ij} : k^j \right)$

$$R^{ij}=rac{1}{2}(S\gamma^{ij}S)(au)$$
 : generator of rotation

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Basic traces

$$\operatorname{tr}\left(V_B(\zeta,1)^{\dagger}V_B(k,v)w^{\hat{N}}\right) = \left(\zeta^{*i}\zeta^{i}\Omega(v,w) + \zeta^{*-}\zeta^{-}(p^{+})^{2}\right)\theta_4(0|\tau)^{-8}$$

$$\operatorname{tr}\left(V_{F}(u,1)^{\dagger}V_{F}(u,v)w^{\hat{N}}\right) = 4\left[p^{+}u^{a*}u^{a} + u^{\dot{a}*}\gamma^{i}_{b\dot{a}}u^{b}p^{i} + u^{a*}\gamma^{i}_{a\dot{b}}u^{\dot{b}}p^{i} + \frac{u^{\dot{a}*}(k)u^{\dot{a}}(k)}{p^{+}}\left((p^{i})^{2} + \Omega(v,w)\right)\right]\Xi(v,w)\theta_{4}(0|\tau)^{-8}$$

1.
$$\oint \frac{dv}{2\pi i v} v^{N-N'}$$
 integral is easy to carry out.

$$\longrightarrow v^{-(N-N')}$$
 term survives $(N > N')$
2. $p^+ \to \sqrt{N}$: large-N factor

$$\Omega(v,w) = \sum_{n=1}^{\infty} n \frac{v^n + (w/v)^n}{1 - w^n}$$
$$\Xi(v,w) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{v^n + (w/v)^n}{1 + w^n}$$
$$\theta_4(0|\tau) = \prod_{n=1}^{\infty} \left(\frac{1 - w^n}{1 + w^n}\right)$$
$$w = e^{i\pi\tau}$$

 $n + (\dots + n)$

 ∞

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Open string state from Open string

$$P_{\text{boson, open}} = \sum_{\zeta} |\zeta|^2 \frac{N - N'}{\mathcal{G}(N)} \oint \frac{dw}{2\pi i w} \frac{w^{-N'} \theta_4^{-8}}{1 - w^{N - N'}}$$
$$P_{\text{fermion, open}} \simeq 4 \sum_{u} |u|^2 \frac{\sqrt{N}}{\mathcal{G}(N)} \oint \frac{dw}{2\pi i w} \frac{w^{-N'} \theta_4^{-8}}{1 + w^{N - N'}}$$

Evaluate w-integral by saddle point method (N' : large)

11

$$P_{\text{boson, open}} \sim \frac{N - N'}{\mathcal{G}(N)} \frac{e^{\pi \sqrt{8N'}} N'^{-11/4}}{1 - e^{-\sqrt{2}\pi \frac{N - N'}{\sqrt{N'}}}}$$

$$P_{\text{fermion, open}} \sim \frac{\sqrt{N}}{\mathcal{G}(N)} \frac{e^{\pi\sqrt{8N'}} N'^{-11/4}}{1 + e^{-\sqrt{2}\pi \frac{N-N'}{\sqrt{N'}}}}$$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Decay rate for open string emission

and

Using,

$$\mathcal{G}(N) \simeq N^{-\frac{11}{4}} e^{\pi\sqrt{8N}}$$

 $N - N' = \omega\sqrt{2N}$

$$\Gamma = \frac{\omega^7 d\omega}{M^2} P_{\text{boson or fermion}}$$

$$\Gamma_{\text{boson, open}} \sim \frac{\omega^8 d\omega}{M^2} \frac{\sqrt{N}}{e^{2\pi\omega} - 1}$$

$$\Gamma_{\text{fermion, open}} \sim \frac{\omega^7 d\omega}{M^2} \frac{\sqrt{N}}{e^{2\pi\omega} + 1}$$

Thermal distribution of Hagdorn temperature $T_H = \frac{1}{2\pi}$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Closed string emission

Closed string vertex operator: open × open

From Heavy closed string

Calculation is factorized

$$\frac{1}{\mathcal{G}^{\mathrm{cl}}(N)} \sum_{\Phi(N),\Phi'(N)} \left| \langle \Phi(N') | V_{\zeta\bar{\zeta}} | \Phi(N) \rangle \right|^2 = \frac{1}{\mathcal{G}(N)} \oint \frac{dv}{2\pi i v} v^{N-N'} \oint \frac{dw}{2\pi i w} w^{-N} \mathrm{tr} \left(V_{\zeta}(1)^{\dagger} V_{\zeta}(v) w^{\hat{N}} \right) \\ \times \frac{1}{\mathcal{G}(N)} \oint \frac{d\tilde{v}}{2\pi i \tilde{v}} \tilde{v}^{N-N'} \oint \frac{d\tilde{w}}{2\pi i \tilde{w}} \tilde{w}^{-N} \mathrm{tr} \left(V_{\bar{\zeta}}(1)^{\dagger} V_{\bar{\zeta}}(\tilde{v}) \tilde{w}^{\hat{N}} \right)$$

Product of the open result $(\alpha' = 2)$

$$\text{For example,} \quad P_{\text{closed}}^{ij} = \frac{\omega\sqrt{N}}{e^{2\pi\omega}-1} \cdot \frac{\omega\sqrt{N}}{e^{2\pi\omega}-1} = \frac{\omega^2 N(e^{4\pi\omega}-1)}{(e^{2\pi\omega}-1)^2} \cdot \frac{1}{e^{4\pi\omega}-1}$$

interpret Thermal distribution of Hagedorn temp.
$$T_H = \frac{1}{4\pi}$$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

14

 $\left(\mathcal{G}^{\mathrm{cl}}(N) = \left(\mathcal{G}(N)\right)^2\right)$

Closed states from open string

"Left" and "right" parts of closed vertex act on the same Fock space.

$$P_{\text{closed from open}} = \frac{1}{\mathcal{G}(N)} \sum_{\Phi(N), \Phi'(N)} \left| \langle \Phi(N') | V_{\zeta\bar{\zeta}} | \Phi(N) \rangle \right|^{2}$$

$$= \frac{1}{\mathcal{G}(N)} \int_{0}^{\pi} \frac{d\sigma}{\pi} \int_{0}^{\pi} \frac{d\tilde{\sigma}}{\pi} \oint \frac{dv}{2\pi i v} v^{N-N'} \oint \frac{dw}{2\pi i w} w^{-N} \text{tr} \left((V_{\zeta}(e^{i\tilde{\sigma}}) V_{\bar{\zeta}}(e^{-i\tilde{\sigma}}))^{\dagger} (V_{\zeta}(ve^{i\sigma}) V_{\bar{\zeta}}(ve^{-i\sigma})) w^{\hat{N}} \right)$$

4 vertex insertion

Leading to a bit complicated result...

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Example: Boson – Boson case

After v-integral,

$$L = N - N' = \sqrt{2N\omega} + \mathcal{O}(1)$$

$$P = \frac{1}{\mathcal{G}(N)} \oint \frac{dw}{2\pi i w} w^{-N} \left(\zeta^{ij} (\zeta^{ij*} + \zeta^{ji*}) P_1(w) \frac{1 + (-1)^L}{2} + \zeta^{ij} (\zeta^{ij*} - \zeta^{ji*}) \frac{2}{\pi^2} P_2(w) \frac{1 - (-1)^L}{2} \right) \theta_4^{-8}$$

In this sum, n = (L+1)/2 + O(1) part gives the dominant contribution.

Leading order part is the same as that from closed string!! $(\omega \text{ dependence})$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Emission rates (summary) Emission rates: $\Gamma \sim \frac{\omega^8 d\omega}{M^2} \frac{\sigma(\omega)}{e^{\beta_H \omega} \pm 1}$ $\beta_H = \pi \sqrt{8\alpha'}$ $M \simeq \sqrt{N}$ $\sigma_{\rm boson} = q^2 \sqrt{N} \cdot 1$ Open from Open: $\sigma_{\rm fermion} = q^2 \sqrt{N} \cdot \omega^{-1}$ $\sigma_{BB} = g^4 N \cdot \frac{\omega (e^{\beta_H \omega} - 1)}{(e^{\beta_H \omega/2} - 1)^2}$ Closed from Open/Closed: $\sigma_{BF} = g^4 N \cdot \frac{e^{\beta_H \omega} + 1}{(e^{\beta_H \omega/2} - 1)(e^{\beta_H \omega/2} + 1)}$ $\sigma_{FF} = g^4 N \cdot \frac{\omega^{-1} (e^{\beta_H \omega} - 1)}{(e^{\beta_H \omega/2} + 1)^2}$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Observations I

Open string is like a blackbody.

Behaves like a cavity? (Once absorbed, hardly emitted)

Closed string emission from open/closed string takes the same form.

Locality of the interaction

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Blackhole greybody factors

Greybody factors: $\Gamma = \frac{\sigma_{js}(\omega)\omega^8 d\omega}{e^{\beta\omega} \pm 1}$

s: spin, j: total ang.mon.

 $j > s, \, \omega \ll 1$

Spherical BH in an asymptotically flat space

[Harmark-Natario-Schiappa ('07), Kanti-March-Russel(02)]

 $\begin{array}{l} \sigma_{j0} \propto \omega^{2j} & : \text{ scalar } (\texttt{s=0}) \longrightarrow \omega^0 \\ \\ \sigma_{j\frac{1}{2}} \propto \omega^{2j-1} & : \text{ Dirac fermion} \longrightarrow \omega^0 \end{array} \end{array} \hspace{1cm} \text{blackbody} \\ \\ \sigma_{j1} \propto \omega^{2j} & : \text{ vector} \qquad \longrightarrow \omega^2 \end{array}$

Dominant j=s modes

Heavy string

 $(1)^{-1}$

,0

(j=0 ?)
$$d^9k \rightarrow \omega^8 d\omega$$

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Blackhole greybody factors

5D D5-D1-KK near extremal BH

$$\sigma_{s=0} \propto \frac{\omega (e^{\beta_{BH}\omega} - 1)}{(e^{\beta_{BH}\omega/2} - 1)^2}$$

[Das-Mathur ('96), Maldacena-Strominger(97)]

Closed string emission from Heavy superstring

Bosons

$$\sigma \propto \frac{\omega (e^{\beta_H \omega} - 1)}{(e^{\beta_H \omega/2} - 1)^2}$$
$$\sigma \propto \frac{\omega^{-1} (e^{\beta_H \omega} - 1)}{(e^{\beta_H \omega/2} + 1)^2}$$

 $\sigma_{s=1/2} \propto \frac{\omega e^{\beta_{BH}\omega} + 1}{(e^{\beta_{BH}\omega/2} - 1)(e^{\beta_{BH}\omega/2} + 1)}$

[Hosomichi ('97)]

Fermions

$$\sigma \propto \frac{e^{\beta_H \omega} + 1}{(e^{\beta_H \omega/2} - 1)(e^{\beta_H \omega/2} + 1)}$$

Why these kinds of black holes?

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)

Summary

- Calculate open/closed massless state emission from heavy open/closed superstring
- · Open string state emission: blackbody like
- · Closed string state emission: same for open/closed string
- Greybody factors are somehow blackhole like (Our setup is non-BPS)

- Numerical coefficient?
- Next order? Counpling constant vs. large-N

23 August 2013 @ YITP QFT workshop 2013

S. Kawamoto (Tunghai U.)