Chern-Simons vector models and duality in 3 dimensions

19. Aug. 2013 @ YITP

String theory and quantum field theory

Shuichi Yokoyama

Tata Institute of Fundamental Research (TIFR)

Chern-Simons theory

(1) (Condensed matter physics) Quantum hole effect (2) (Mathematics) [Witten '89] Knot theory, Jones polynomial, A polynomial (3) (string theory) [Witten '85] Cubic string field theory, Open topological string theory (4) (M_theory) [BLG '07, ABJM '08] Effective field theories of membranes. (5) (3d CFT) [Witten '89] Infinitely many interacting CFT (conformal zoo). [Moore_Seiberg '89] (6) (AdS/CFT correspondence) Dual CFT3 of (HS) gravity on AdS4 Pure (HS) gravity on AdS3 [Gaberdiel Gopakumar '11]

(Pure) Chern-Simons theory

Action

$$iS_{cs} = \frac{ik}{4\pi} \int \operatorname{tr}(\widetilde{A}d\widetilde{A} + \frac{2}{3}\widetilde{A}^3)$$

Feature

① CS coupling constant (k) is protected as an integer.

② Independent of metric. (Topological).

③ Exact "CFT" parametrized by (k,N) or $\lambda = N/k$. N: rank of gauge group

(4) Exactly soluble. (Wilson loop \Leftrightarrow Knot).

[Witten '89]

Vector (Sigma) models

① (Phenomenology)

Effective field theory of pion, Low energy theorem Landau-Ginzburg model

② (Large N field theory)

Soluble in 1/N expansion

Dynamical symmetry breaking (or restoration)

[Nambu-Jona-Lasinio '60]

③ (RG flow)

Nontrivial fixed point

(4) (Probe of geometry)

(quantum) description of geometry

(5) (AdS/CFT correspondence)

Dual CFT3 of HS gravity on AdS4

[Wilson_Kogut '74] [Wilson_Fisher '72] [Gross-Neveu '74]

cf. Polyakov action

[Klebanov_Polyakov '02]

CS Vector models

preserve conformal symmetry and higher spin symmetry in the 't Hooft limit.

- spectra of singlets are not renormalized in the 't Hooft limit. (Anomalous dimension is suppressed by 1/N).
- couple to higher spin gravity (Vasiliev) theory surviving in the low energy limit. (AdS/CFT)
- soluble in the 't Hooft limit and (euclidean) light-cone gauge.
- enjoy novel duality (bosonization) in 3 dimensions and novel thermal phase structure.

CS Vector models Scale invariant Action (1) Regular boson theory $S_{cs} + \int d^3x \left(D_\mu \bar{\phi} D^\mu \phi + \lambda_6 (\bar{\phi} \phi)^3 \right)$

② Critical boson theory

[Wilson_Fisher '72]

5cs +
$$\int d^3x \left(D_\mu \bar{\phi} D^\mu \phi + \sigma \bar{\phi} \phi \right)$$

③ Regular fermion theory

$$\mathbf{S}_{\mathbf{C}\mathbf{S}} + \int d^3x \left(\bar{\psi} \gamma^{\mu} D_{\mu} \psi \right)$$

(4) Critical fermion theory
[Gross-Neveu '74]
(5) "Mixed" sigma model
$$S_{cs} + \int d^3x \left(\bar{\psi} \gamma^{\mu} D_{\mu} \psi + \sigma_f \bar{\psi} \psi + \lambda_6^f \sigma_f^3 \right)$$

 $+\lambda_4''\left((\bar{\psi}\phi)(\bar{\psi}\phi)+(\bar{\phi}\psi)(\bar{\phi}\psi)\right)+\lambda_6(\bar{\phi}\phi)^3\right|.$

Exact correlation functions

are almost determined by almost-conserved conformal symmetry and higher spin symmetry via bootstrap method.

[Maldacena-Zhiboedov '12]

under the normalization

Exact correlation functions

are almost determined by almost-conserved conformal symmetry and higher spin symmetry via bootstrap method.

Explicit computation

Critical boson:

$$\tilde{N} = 2N_B \frac{\sin \pi \lambda_B}{\pi \lambda_B}$$
 $\tilde{\lambda} = -\cot \frac{\pi \lambda_B}{2}$

Regular fermion:

$$\tilde{N} = 2N_F \frac{\sin \pi \lambda_F}{\pi \lambda_F} \qquad \tilde{\lambda} = \tan \frac{\pi \lambda_F}{2}$$

[Aharony_Gur-Ari_Yacoby, Gur-Ari_Yacoby '12]

Exact correlation functions

are almost determined by almost-conserved conformal symmetry and higher spin symmetry via bootstrap method.

Explicit computation

Critical boson:

$$\tilde{N} = 2N_B \frac{\sin \pi \lambda_B}{\pi \lambda_B}$$
 $\tilde{\lambda} = -\cot \frac{\pi \lambda_B}{2}$

Regular fermion:

 \tilde{N}

$$\tilde{\lambda} = 2N_F \frac{\sin \pi \lambda_F}{\pi \lambda_F} \qquad \tilde{\lambda} = \tan \theta$$

[Aharony_Gur-Ari_Yacoby, Gur-Ari_Yacoby '12]

 $\frac{\pi\lambda_F}{2}$

Duality!

$$k_F \to -k_B, \quad N_F \to |k_B| - N_B, \quad \lambda_F = \frac{N_F}{k_F} \to \mathrm{sign}\lambda_B - \lambda_B$$

→ level-rank duality!!

⁽²⁾ Introduce auxiliary singlet fields Σ to kill all interaction.

(Hubbard-Stratonovich transformation)

(3) Integrate out φ , ψ .

④ Evaluate it by saddle point approx. under translationally inv. config.

S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin Eur.Phys.J.C72(2012)

Thermal free energy

CS Fermion vector model

S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin Eur.Phys.J.C72(2012)

Thermal free energy

N=2 SUSY CS vector model (1 chiral multplet)

S.Jain_S.P.Trivedi_S.R.Wadia_SY JHEP10(2012)194

Thermal free energy high-temperature and fermionic holonomy

N=2 SUSY CS vector model (1 chiral multplet)

O.Aharony_S.Giombi_G.Gur-Ari_J.Maldacena_R.Yacoby. (arXiv:1210.4109)

Thermal partition function

CS vector model on $S^2 \times S^1$ in high temperature

S.Jain_S.Minwalla_T.Sharma_T.Takimi_S.Wadia_SY arXiv:1301.6169

$$Z_{CS} = \left(\prod_{m=1}^{N} \sum_{n_m \in \mathbf{Z}}\right) \left(\prod_{l \neq m} 2\sin\frac{\alpha_l(\vec{n}) - \alpha_m(\vec{n})}{2}\right) e^{-T^2 V_2 f(U)} \Big|_{\alpha_m = \frac{2\pi n_m}{k}}$$

 $V(U) = T^2 V_2 f(U)$ f(U) = free energy density on the flat space

cf. **YM on S² x S¹**
$$_{YM} = \int DU \exp[-V_{YM}(U)] = \prod_{m=1}^{N} \int_{-\infty}^{\infty} d\alpha_m \left[\prod_{l \neq m} 2 \sin\left(\frac{\alpha_l - \alpha_m}{2}\right) e^{-V_{YM}(U)} \right]$$

Z

Thermal partition function

CS vector model on $S^2 \times S^1$ in high temperature

S.Jain_S.Minwalla_T.Sharma_T.Takimi_S.Wadia_SY arXiv:1301.6169

$$Z_{CS} = \left(\prod_{m=1}^{N} \sum_{n_m \in \mathbf{Z}}\right) \left(\prod_{l \neq m} 2\sin\frac{\alpha_l(\vec{n}) - \alpha_m(\vec{n})}{2}\right) e^{-T^2 V_2 f(U)} \Big|_{\alpha_m = \frac{2\pi n_m}{k}}$$

 $V(U) = T^2 V_2 f(U)$ f(U) = free energy density on the flat space

In the large N, holonomy distributes on $[-\pi,\pi]$ densely.

$$\rho(\alpha) = \frac{1}{N} \sum_{m=1}^{N} \delta(\alpha - \alpha_m) \qquad \qquad \rho(\alpha) \le \frac{1}{2\pi\lambda}$$

cf. YM on $S^2 \times S^1$

$$Z_{\rm YM} = \int DU \exp[-V_{\rm YM}(U)] = \prod_{m=1}^{N} \int_{-\infty}^{\infty} d\alpha_m \left[\prod_{l \neq m} 2 \sin\left(\frac{\alpha_l - \alpha_m}{2}\right) e^{-V_{YM}(U)} \right]$$

Phases of CS vector model

3d duality & deformation

O.Aharony_S.Giombi_G.Gur-Ari_J.Maldacena_R.Yacoby. (arXiv:1210.4109)

S.Jain_S.Minwalla_SY arXiv:1305.7235

Summary

- CS vector models are solvable in the 't Hooft limit with euclidean light-cone gauge.
- CS vector models have SUSY (Giveon-Kutasov) and non-SUSY (3d bosonization) duality.

• Strong evidence for these dualities has been provided by thermal free energy by taking account of fermionic holonomy distribution.

New phase appeared due to fermionic holonomy distribution.

SUSY and non-SUSY duality have been connected by RG-flow.