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1. Introduction



Localization in SUSY QFT
✤ Path integral for Q-closed actions (operators) localizes to BPS locus

✤ Q-exact deformation helps know fixed points & obtain exact results

✤ For now, known to work for manifolds with isometry

Notion of ``Localization” is simpler in finite-dimensional integral

Toward lattice BF theory

TM

July 10, 2014

1 Q-exact Yang-Mills action on the lattice

�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=

�

X0

O[X0]e
−S[X0]

Sdet

�
δ2

(QΞF [X0])

δX2
0

�
(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ†
= 0, QΨ = QΨ†

= 0 (3)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
, (4)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

This operator is depicted in Figure 4 (left). We need to check if, in the continuum limit, it yields

Ξ → λ2(x)A2(x) . (5)

We next operate the BRST supercharge Q of N = (2, 2) SYM on the Ξ. We then have the

following action

QΞ = TrA

�
TrF (T dUx+2,−2ΦxU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

�
+ · · ·

= TrA

�
TrF (T dUx+2,−2φ

a
xT aU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

�
+ · · · , (6)

where we use Qλx,µ = Ux,µΦx+µU †
x,µ + · · · with Φ = φaT a

, and UA
P is the adjoint plaquette

action. This action is shown in Figure 4 (right). We need to check if, in the continuum limit,

the operator gives

QΞ → Φ(x)F12(x) + · · · . (7)
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1 Q-exact Yang-Mills action on the lattice

�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=

�

X0

O[X0]e
−S[X0]

Sdet

�
δ2

(QΞF [X0])

δX2
0

�
(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ†
= 0, QΨ = QΨ†

= 0 (3)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
, (4)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

This operator is depicted in Figure 4 (left). We need to check if, in the continuum limit, it yields

Ξ → λ2(x)A2(x) . (5)

We next operate the BRST supercharge Q of N = (2, 2) SYM on the Ξ. We then have the

following action

QΞ = TrA

�
TrF (T dUx+2,−2ΦxU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

�
+ · · ·

= TrA

�
TrF (T dUx+2,−2φ

a
xT aU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

�
+ · · · , (6)

where we use Qλx,µ = Ux,µΦx+µU †
x,µ + · · · with Φ = φaT a

, and UA
P is the adjoint plaquette

action. This action is shown in Figure 4 (right). We need to check if, in the continuum limit,

the operator gives

QΞ → Φ(x)F12(x) + · · · . (7)
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1 Q-exact Yang-Mills action on the lattice

�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=

�

X0

O[X0]e
−S[X0]

Sdet

�
δ2

(QΞF [X0])

δX2

0

�−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ
†

= 0, QΨ = QΨ
†

= 0 (3)

QΞ = Tr[A,XB]
2

+ TrΨB[A,ΨB] (4)

ZHCIZ =

�
DU e−βTrAUBU†

=
det e−βaibj

∆(a)∆(b)
(5)

�
[DX]Q

�
Ξe−S−tQΞ

�
�= 0 (6)

Z =

�

σij

� �

i

N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)
χ

(7)

�OdKM� =

�

σij

� �

i

N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)
χ e−

PN
a=1 φ2

i,a (8)

S =

�

i,j

Tr

�
ΦiUijΦjU

†
ij

�
+

�

i

TrV (Φi) +
1

2

�

i

TrΛij [Φj ,Λ
†
ij ] (9)

OdKM = exp



−
�

i,j

Tr

�
ΦiUijΦjU

†
ij

�
−

�

i

TrV (Φi)−
1

2

�

i

TrΛij [Φj ,Λ
†
ij ]



 (10)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
, (11)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

This operator is depicted in Figure 11 (left). We need to check if, in the continuum limit, it

yields

Ξ → λ2(x)A2(x) . (12)

1

Witten (88)
Pestun (07)



Equivariant localization
✤ Symplectic manifold (M, ω) with Hamiltonian H for circle action

✤ Associated Hamiltonian vector field V satisfies 

✤ Equivariant cohomology                           with                      
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An introduction to localisation and supersymmetry in curved space Stefano Cremonesi

A couple of remarks are in order:

1. The first entry in the second line of (2.5) expresses the result as a sum of two terms, cor-
responding to the two stationary points of the height function (2.4), the north pole and the
south pole. The stationary phase approximation (2.2) captures the exact result, valid for any
value of t.

2. We have used the U(1) symmetry corresponding to azimuthal rotations ϕ →ϕ+c to separate
ϕ and θ . The north and south poles, the stationary points of f , are fixed points of this circle
action, see fig. 2. One says that the integral localises at the fixed points of the circle action.
The result only depends on data of the circle action in an infinitesimal neighbourhood of the
fixed points.1

N

S

Figure 2: The azimuthal rotation which fixes the poles of the 2-sphere.

The idea of localisation originated with the seminal work of Duistermaat and Heckman [8],
who discovered a class of phase space integrals with circle actions where the stationary phase
approximation is exact and leads to a localisation formula which we will review in section 2.4.1. We
will see that the crucial property for Duistermaat-Heckman formulae is the presence of a symmetry
group with fixed points: the integral is given by a sum over contributions from the fixed points
of the group action. As such, the Duistermaat-Heckman localisation formula can be viewed as a
particular example of a more general equivariant localisation formula [9, 10, 11, 12], that we will
discuss in section 2.4.

2.2 Abelian equivariant cohomology

We are interested in computing integrals over a manifold M with a symmetry group G, the
first guess would be to reduce the integrals over M to integrals over the orbit space M /G, as in the
first line of (2.5). However, if G does not act freely but has fixed points, this quotient is not a smooth
manifold, but rather an orbifold with singularities corresponding to the fixed points, therefore we

1The round S2 has SO(3) isometry, but this larger symmetry is not needed to obtain the result. If we consider any
U(1)-invariant monotonic function f (θ) with the same asymptotics of cosθ at θ = 0,π , the oscillatory integral (2.1)
leads to the same result as (2.5).

5

Harish-Chandra Itzykson-Zuber integral (unitary matrix model) is 
exactly evaluated by this.     →   How about lattice gauge theory?

Equivariant localization SUSY localization V =
∂

∂φ

dH = iV ω

Duistermaat-Heckman(82)
Berline-Vergne(83)
Atiyah-Bott(84)

dV Q

dH = 0 Ψ = 0, QΨ = 0

dV = d + iVdV (H − ω) = 0

dV (H − ω) = 0 QS = 0
d2

V = −LV Q2 = δB (14)
dV (H + ω) = 0 QO = 0 (15)
∫

e−(H−ω)+β(K−Ω) =
∫

e−(H−ω)
∫

[DX]e−S−tQΞ =
∫

[DX]e−S (16)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

[
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

]
, (17)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and
adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a.
This operator is depicted in Figure 17 (left). We need to check if, in the continuum limit, it
yields

Ξ → λ2(x)A2(x) . (18)

We next operate the BRST supercharge Q of N = (2, 2) SYM on the Ξ. We then have the
following action

QΞ = TrA

[
TrF (T dUx+2,−2ΦxU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

]
+ · · ·

= TrA

[
TrF (T dUx+2,−2φ

a
xT aU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

]
+ · · · , (19)

where we use Qλx,µ = Ux,µΦx+µU †
x,µ + · · · with Φ = φaT a, and UA

P is the adjoint plaquette
action. This action is shown in Figure 17 (right). We need to check if, in the continuum limit,
the operator gives

QΞ → Φ(x)F12(x) + · · · . (20)

2

H = cos θ



Localization in lattice models?

✤ Consider 2D lattice models with BRST SUSY on simplicial complex

✤ Evaluate the path integral by the localization technique

・Reduction of numerical costs in SUSY simulations

・Feedback to study in (quiver) matrix models

・Extension of 2D N=(2,2) lattice model to simplicial complex

・Application of localization to the system

◆ Potential gains

◆ Strategy



2. Localization in HCIZ integral



✤ Phase space ~ U(N)/U(1)   with symplectic 2-form 

✤ Localized to dH=0 due to the equivariant localization dV(H-ω)=0      

✤ Identify MC 1-form                         as fermion        →   SUSY localization

A, B          : Diagonal matrices ai, bi
U              : U(N) unitary matrix
Δ(a), Δ(b) : Vandermonde of A, B

・SUSY algebra

Noting that H − ω is Q-closed, the integral can be deformed by a Q-exact term

Zt =
1

βN(N−1)/2∆(b)

∫
DUDψR e−β(H−ω)−tQΞ, (2.20)

without changing the value of the integral, since the deformed integral is independent of

the parameter t
δZt

δt
= −

∫
DUDψR Q(Ξe−β(H−ω)−tQΞ) = 0, (2.21)

under the Q-invariant measure of the integral. Thus we can use exactly the saddle point

(fixed point) approximation with respect to the Q-exact term in the limit of t → ∞.

Precisely speaking, H − ω itself is written as an Q-exact form, in fact, we see

−iQTrXBψR = Tr ([ψR, XB]ψR + AXB +XBψRψR) (2.22)

= H − ω. (2.23)

However this does not immediately mean that the integral (2.1) by a parameter (inverse

temperature) β, since the Hamiltonian takes a non-zero value at the fixed points, that is,

H(Γσ) = TrAΓσBΓσ $= 0 in general. So we should find another “good” Q-exact term in

order to utilize the saddle point approximation to the HCIZ integral.

According to the general argument in the localization theorem [1], the extra Q-exact

term should provide the same equation of motion as the original Hamiltonian H. This

copy of the Hamiltonian system is called the bi-Hamiltonian structure.

In the following arguments to construct the bi-Hamiltonian structure, it is useful to

define a new fermionic variable ΨB ≡ i[ψR, XB] associated with the coordinate XB on M.

The supersymmetry transformations among these variables become

QXB = ΨB, QΨB = [A,XB]. (2.24)

If we choose now Ξ as follows

Ξ = TrΨB(QΨB), (2.25)

where we have defined, then we obtain

QΞ = K − Ω, (2.26)

where K = Tr(QΨB)2 = Tr[A,XB]2 and Ω = Tr[ψR, XB][A, [ψR, XB]]. We can see K and

Ω imposes the same Hamiltonian structure as the original one. Thus (H,ω) and (K,Ω)

provide the bi-Hamiltonian structure.

Using the t-independence of the integral (2.16), we can take the limit t → ∞ without

changing the integral and the saddle point approximation with (K,Ω) becomes exact.

5

・Q-exact term

(                         )

Harish-Chandra(57)
Itzykson-Zuber(80)

N
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1 Q-exact Yang-Mills action on the lattice

�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=
�

X0

O[X0]e−S[X0] Sdet
�
δ2(QΞF [X0])

δX2

0

�−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ† = 0, QΨ = QΨ† = 0 (3)

QΞ = QTr[ΨB(QΨB)] = Tr[A,XB]2 + TrΨB[A,ΨB] (4)

ZHCIZ =
�

DU e−βTrAUBU†
=

det e−βaibj

∆(a)∆(b)
(5)

�
[DX]Q

�
Ξe−S−tQΞ

�
�= 0 (6)

Z =
�

σij

� �

i

N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)χ (7)

�O� =
�

σij

� �

i

N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)χ
N�

a=1

φ2

i,a (8)

S =
�

i,j

Tr
�
ΦiUijΦjU

†
ij

�
+

�

i

TrV (Φi) +
1
2

�

i

TrΛij [Φj ,Λ†
ij ] (9)

O =
�

i,j

Tr
�
ΦiUijΦjU

†
ij

�
+

1
2

�

i

TrΛij [Φj ,Λ†
ij ] (10)

QTr[iΛijΦjU
†
ij ] =

�

i,j

Tr
�
ΦiUijΦjU

†
ij

�
+

1
2

�

i

TrΛij [Φj ,Λ†
ij ]−

�

i

Φ2

i (11)

=
�

i,j

�

a<b

(φi,a − φi,b)2c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
(12)

dV Q (13)

1

HCIZ integral as SUSY
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1 Q-exact Yang-Mills action on the lattice

〈OBPS〉 = lim
t→∞

∫
[DX]OBPS e−S[X]−tQΞF [X]

=
∑

X0

O[X0]e−S[X0] Sdet
[
δ2(QΞF [X0])

δX2
0

]−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ† = 0, QΨ = QΨ† = 0 (3)

QΞ = QTr[ΨB(QΨB)] = Tr[A, XB]2 + TrΨB[A,ΨB] (4)

ZHCIZ =
∫

DU e−TrAUBU†
=

det e−aibj

∆(a)∆(b)
(5)

∫
[DX] Q

(
Ξe−S−tQΞ

)
$= 0 (6)

Z =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ (7)

〈O〉 =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ
N∑

a=1

φ2
i,a (8)

S =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

∑

i

TrV (Φi) +
1
2

∑

i

TrΛij [Φj , Λ†
ij ] (9)

O =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] (10)

QTr[iΛijΦjU
†
ij ] =

∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] −

∑

i

Φ2
i (11)

=
∏

i,j

∏

a<b

(φi,a − φi,b)2c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
(12)

dV Q (13)

1

ω = Tr(XB θ ∧ θ)

θ = −idUU† ψ

ΨB = i[ψ, UBU†]

H ≡ TrAUBU
† ≡ TrAXB



・Fixed points

・t-indep. deform.
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1 Q-exact Yang-Mills action on the lattice

�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=

�

X0

O[X0]e
−S[X0]

Sdet

�
δ2

(QΞF [X0])

δX2
0

�
(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ†
= 0, QΨ = QΨ†

= 0 (3)

QΞ = Tr[A,XB]
2

+ TrΨB[A,ΨB] (4)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
, (5)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

This operator is depicted in Figure 4 (left). We need to check if, in the continuum limit, it yields

Ξ → λ2(x)A2(x) . (6)

We next operate the BRST supercharge Q of N = (2, 2) SYM on the Ξ. We then have the

following action

QΞ = TrA

�
TrF (T dUx+2,−2ΦxU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

�
+ · · ·

= TrA

�
TrF (T dUx+2,−2φ

a
xT aU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

�
+ · · · , (7)

where we use Qλx,µ = Ux,µΦx+µU †
x,µ + · · · with Φ = φaT a

, and UA
P is the adjoint plaquette

action. This action is shown in Figure 4 (right). We need to check if, in the continuum limit,

the operator gives

QΞ → Φ(x)F12(x) + · · · . (8)

1

・One-loop det. 

HCIZ integral as SUSY Harish-Chandra(57)
Itzykson-Zuber(80)

∆(a)|∆(b)|2|∆(a)|−2|∆(b)|−2

QΨB = [A,XB ] = [A,UBU†] = 0, ΨB = 0

U = Γσ (permutation group)

(−1)|σ|∆(a)−1

reproduces
HCIZ integral

(                            )
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1 Q-exact Yang-Mills action on the lattice

〈OBPS〉 = lim
t→∞

∫
[DX]OBPS e−S[X]−tQΞF [X]

=
∑

X0

O[X0]e−S[X0] Sdet
[
δ2(QΞF [X0])

δX2
0

]−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ† = 0, QΨ = QΨ† = 0 (3)

QΞ = QTr[ΨB(QΨB)] = Tr[A, XB]2 + TrΨB[A,ΨB] (4)

ZHCIZ =
∫

DU e−TrAUBU†
=

det e−aibj

∆(a)∆(b)
(5)

Zt =
1

∆(b)

∫
DUDψ e−(H−ω)−tQΞ (6)

∫
[DX] Q

(
Ξe−S−tQΞ

)
$= 0 (7)

Z =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ (8)

〈O〉 =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ
N∑

a=1

φ2
i,a (9)

S =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

∑

i

TrV (Φi) +
1
2

∑

i

TrΛij [Φj , Λ†
ij ] (10)

O =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] (11)

QTr[iΛijΦjU
†
ij ] =

∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] −

∑

i

Φ2
i (12)

=
∏

i,j

∏

a<b

(φi,a − φi,b)2c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
(13)

1

ω = −1
2
Trψ[XB , ψ]
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1 Q-exact Yang-Mills action on the lattice

〈OBPS〉 = lim
t→∞

∫
[DX]OBPS e−S[X]−tQΞF [X]

=
∑

X0

O[X0]e−S[X0] Sdet
[
δ2(QΞF [X0])

δX2
0

]−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ† = 0, QΨ = QΨ† = 0 (3)

QΞ = QTr[ΨB(QΨB)] = Tr[A, XB]2 + TrΨB[A,ΨB] (4)

ZHCIZ =
∫

DU e−TrAUBU†
=

det e−aibj

∆(a)∆(b)
(5)

ZHCIZ =
∑

σ

(−1)|σ|

∆(a)∆(b)
e−

P
i aibσ(i) =

det e−aibj

∆(a)∆(b)
(6)

Zt =
1

∆(b)

∫
DUDψ e−(H−ω)−tQΞ (7)

∫
[DX] Q

(
Ξe−S−tQΞ

)
%= 0 (8)

Z =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ (9)

〈O〉 =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ
N∑

a=1

φ2
i,a (10)

S =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

∑

i

TrV (Φi) +
1
2

∑

i

TrΛij [Φj , Λ†
ij ] (11)

O =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] (12)

QTr[iΛijΦjU
†
ij ] =

∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] −

∑

i

Φ2
i (13)

1



3. Localization on the lattice



Lattice 2D N=(2,2) SYM model Sugino(03)

χµν

Uµ,x,Λµ,x

Φx,Φx, ηx

x x + µ

・BRST SUSY algebra

QUµ,x = Λµ,x, QΛµ,x = −i(ΦxUµ,x − Uµ,xΦx+µ),
QΦx = 0,

QΦx = ηx, Qηx = −i[Φx,Φx],
QYµν,x = −i[χµν,x,Φx], Qχµν,x = Yµν,x

nilpotent on 
gauge-invariant operator

Q2 = δgauge(Φ)

_

・Lattice model with scalar SUSY (Q-exact action)

・Variables in topologically-twisted form

・Site, link & face variables

・Rest of SUSY will restore in the cont. limit



Lattice 2D N=(2,2) SYM model Sugino(03)

・Q-exact action
µµν ∼ UP − U†

P → FµνSsugino =
1

2g2

�

x

QTr
�
F · QF + 2χµνµµν

�

=
1

2g2

�

x

QTr
�
iΛµ(Φx+µU†

µ − U†
µΦx) + iη[Φ,Φ]− χµν(Yµν − 2µµν)

�

=
1

2g2

�

x

Tr
�
|UµΦx+µ − ΦxUµ|2 + [Φ,Φ]2 + µ2

µν + · · ·
�

χµν

Uµ,x,Λµ,x

Φx,Φx, ηx

x x + µ

_

・Lattice model with scalar SUSY (Q-exact action)

・Variables in topologically-twisted form

・Site, link & face variables

・Rest of SUSY will restore in the cont. limit



Extension to generic simplicial complex

・Extension to simplicial complex by labeling sites and orienting links

・Metric & connection are defined from the vielbein 

・Topological field theory on generic Riemann surface in a→0

Φx,Φx, ηx → Φi,Φi, ηi

Uµ,x,Λµ,x → Uij ,Λij

Site variables :

Link variables :

Face variables :

χ

Uij ,Λij
i

jΦi,Φi, ηi

・Labeling sites for variables

・From Vielbein to Metric Uij = exp
�
ia eµ

ijAµ(i)
�

�

j∈�i,·�

eµ
ije

ν
ij ≡ gµν(i) → gµν(x)a2

�

i

→
�

d2x
√

g

Λij = eµ
ijΛµ

χµν,x → χi

outgoing links



・Q-exact action on simplicial complex

Extension to generic simplicial complex

respectively.

Using the relation (??) between the original HCIZ integral and Zω, we finally obtain

Z = (2π)N
(
2π

β

)N(N−1)/2 det e−βaibj

∆(a)∆(b)
. (2.39)

This agrees with the known result.

3 Kazakov-Migdal Model

4 N = (2, 2) Supersymmetric Lattice Gauge Theory

The BRST (supersymmetry) transformation for the variables is

QUij = λiUij, Qλi = λiλi − i(Φi − UijΦjU
†
ij),

QΦi = 0,

QΦ̄i = ηi, Qηi = −i[Φ̄i,Φi]

QYi = −i[χi,Φi], Qχi = Yi.

(4.1)

Note QU †
ij = −U †

ijλi.

On all variables, the transformation satisfies Q2· = −δΦ·, where δΦ denotes a infinites-

imal gauge transformation with a parameter Φ.

Define fermions on the links Λij ≡ λiUij, we get

QUij = Λij, QΛij = −i(ΦiUij − UijΦj),

QΦi = 0,

QΦ̄i = ηi, Qηi = −i[Φ̄i,Φi]

QYi = −i[χi,Φi], Qχi = Yi.

(4.2)

Note QU †
ij = −U †

ijΛijU
†
ij.

The moment maps are given by

µi = −i
UP,i − U †

P,i

1− 1
ε2 ||1− UP,i||2

, (4.3)

where UP,i is an orders product of Ui along a closed loop on the lattice. Since all µi on

the same loop gives the same constraints, the number of the independent µi reduces to

the number of the independent loops (faces). The number of corresponding constraint

multiplets (Yi,χi) also reduces to the number of the loops.

7

・Supersymmetric BRST algebra

Metric & connection emerge

nilpotent on gauge-invariant operator
⇆ equivariant cohomology

Q2 = δgauge(Φ)

=
∏

i,j

∏

a<b

(φi,a − φi,b)2c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
(14)

dV Q (15)

d2
V = −LV Q2 = δB (16)

dV (H + ω) = 0 QO = 0 (17)
∫

e−(H−ω)+β(K−Ω) =
∫

e−(H−ω)
∫

[DX]e−S−tQΞ =
∫

[DX]e−S (18)

S =
1

2g2

∑

i

QTr
[
iΛij(U †

ijΦ̄i − Φ̄jU
†
ij) + iηi[Φ̄i, Φi] − χi(Yi − 2µi)

]

=
1

2g2

∑

i

Tr
[
|ΦiUij − UijΦj |2 + |[Φi, Φ̄i]|2 − Yi(Yi − 2µi) + · · ·

]
(19)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

[
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

]
, (20)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and
adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a.
This operator is depicted in Figure 20 (left). We need to check if, in the continuum limit, it
yields

Ξ → λ2(x)A2(x) . (21)

We next operate the BRST supercharge Q of N = (2, 2) SYM on the Ξ. We then have the
following action

QΞ = TrA

[
TrF (T dUx+2,−2ΦxU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

]
+ · · ·

= TrA

[
TrF (T dUx+2,−2φ

a
xT aU †

x+2,−2) Mab
x,x+1 M bc

x+1,x+1+2 M cd
x+1+2,x+2

]
+ · · · , (22)

where we use Qλx,µ = Ux,µΦx+µU †
x,µ + · · · with Φ = φaT a, and UA

P is the adjoint plaquette
action. This action is shown in Figure 20 (right). We need to check if, in the continuum limit,
the operator gives

QΞ → Φ(x)F12(x) + · · · . (23)

2

�

j∈�i,·�

eµ
ije

ν
ijλµ(x)DνΦ̄(x) → gµν(x)λµ(x)DνΦ̄(x)



The action can be written in a Q-exact form

S =
1

2g2

∑

i

QTr
[
iΛij(U

†
ijΦ̄i − Φ̄jU

†
ij) + iηi[Φ̄i,Φi]− χi(Yi − 2µi)

]

=
1

2g2

∑

i

Tr
[
|ΦiUij − UijΦj|2 + |[Φi, Φ̄i]|2 − Yi(Yi − 2µi)

−iΛij(U
†
ijηi − ηjU

†
ij) + iΛij(U

†
ijΛijU

†
ijΦ̄i − Φ̄jU

†
ijΛijU

†
ij) (4.4)

+iηi[Φi, ηi] + iχi[Φi,χi]− 2χi
δµi

δUij
Λij

]

Combining the variables except for Φ into bosonic and fermionic vectors $B = (Uij, Φ̄i, Yi)

and $F = (Λij, ηi,χi), the Q-exact action can be simply written by

S =
1

2g2
QTr

[
$F ·Q $F + 2

∑

i∈F

χiµi

]
, (4.5)

where “ · ” denotes a suitable inner product with summation over corresponding variables

associated with the lattice structure. F is a set of the sites including the independent

loops (faces).

Using this notation, the 1-loop determinant can be evaluated by a determinant of a

super Hessian matrix

(1-loop det.) =

√√√√Det δQ "B
δ "F

Det δQ "F
δ "B

. (4.6)

V : set of sites (vertices), L: set of links, F : set of independent loops (faces).

After fixing the gauge, which diagonalize all Φi by Φi = diag(φi,1,φi,2, . . . ,φi,N), the

integral measure of ΦI becomes

∫ ∏

i∈V

DΦi =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏

i∈V

∏

a<b

(φi,a − φi,b)
2, (4.7)

due to the gauge fixing ghosts.

Thus we can evaluate the 1-loop determinant explicitly

(1-loop det.) =

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
∏

i∈V
∏

a<b(φi,a − φi,b)
(4.8)

In summary, we obtain the partition function

Z =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏
i∈V

∏
a<b(φi,a − φi,b)

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
e−βHsKM (4.9)

8

・Fixed points (BPS)

Calculate path integral with the Q-exact action by localization (g → 0)

・One-loop determinant

Λij = 0
QΛij = −i(ΦiUij − UijΦj) = 0

Fixed point equation:

ΦiUij − UijΦj = 0. (4.10)

In the diagonal gauge, the fixed point equation can be solved by

Uij = Γij, (4.11)

where Γij is an element of a permutation (Weyl) group in U(N).

Φj = Γ†
ijΦiΓij. (4.12)

For the eivgenvalues,

φj,a = φi,σij(a). (4.13)

The permutation group must satisfy the (flat connection) constraint

UP,i|Uij=Γij
= 1. (4.14)

We denote a set of the permutations which satisfy the constraint by P .

At the fixed point,

HsKM =
∑

i∈V

N∑

a=1

φ2
i,a (4.15)

The partition function becomes

Z =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij |
∏

i∈V

∫ N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)
χe−β

∑N
a=1 φ

2
i,a , (4.16)

where χ ≡ dimV − dimL+ dimF is the Euler characteristic which depends only on the

topology of the 2d surface.

If we write

z =

∫ N∏

a=1

dφa

∏

a<b

(φa − φb)
χe−β

∑N
a=1 φ

2
a , (4.17)

which is a partition function of N = (2, 2) supersymmetric YM theory on the smooth

Riemann surface with the Euler characteristic χ.

The partition function of the lattice gauge theory becomes

Z = CzdimV , (4.18)

where

C =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij | (4.19)

9

Fixed point equation:

ΦiUij − UijΦj = 0. (4.10)

In the diagonal gauge, the fixed point equation can be solved by

Uij = Γij, (4.11)

where Γij is an element of a permutation (Weyl) group in U(N).

Φj = Γ†
ijΦiΓij. (4.12)

For the eivgenvalues,

φj,a = φi,σij(a). (4.13)

The permutation group must satisfy the (flat connection) constraint

UP,i|Uij=Γij
= 1. (4.14)

We denote a set of the permutations which satisfy the constraint by P .

At the fixed point,

HsKM =
∑

i∈V

N∑

a=1

φ2
i,a (4.15)

The partition function becomes

Z =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij |
∏

i∈V

∫ N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)
χe−β

∑N
a=1 φ

2
i,a , (4.16)

where χ ≡ dimV − dimL+ dimF is the Euler characteristic which depends only on the

topology of the 2d surface.

If we write

z =

∫ N∏

a=1

dφa

∏

a<b

(φa − φb)
χe−β

∑N
a=1 φ

2
a , (4.17)

which is a partition function of N = (2, 2) supersymmetric YM theory on the smooth

Riemann surface with the Euler characteristic χ.

The partition function of the lattice gauge theory becomes

Z = CzdimV , (4.18)

where

C =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij | (4.19)

9

Permutation group

indep. of i up to permutation

Localization on the lattice

Gauge fixing :

Toward lattice BF theory

TM

July 15, 2014

1 Q-exact Yang-Mills action on the lattice

�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=

�

X0

O[X0]e
−S[X0]

Sdet

�
δ2

(QΞF [X0])

δX2

0

�−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ
†

= 0, QΨ = QΨ
†

= 0 (3)

QΞ = Tr[A,XB]
2

+ TrΨB[A,ΨB] (4)

ZHCIZ =

�
DU e−βTrAUBU†

=
det e−βaibj

∆(a)∆(b)
(5)

�
[DX]Q

�
Ξe−S−tQΞ

�
�= 0 (6)

Z =

�

σij

� �

i

N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)
χ

(7)

�OdKM� =

�

σij

� �

i

N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)
χ e−

PN
a=1 φ2

i,a (8)

S =

�

i,j

Tr

�
ΦiUijΦjU

†
ij

�
+

�

i

TrV (Φi) +
1

2

�

i

TrΛij [Φj ,Λ
†
ij ] (9)

OdKM = exp



−
�

i,j

Tr

�
ΦiUijΦjU

†
ij

�
−

�

i

TrV (Φi)−
1

2

�

i

TrΛij [Φj ,Λ
†
ij ]



 (10)

=

�

i,j

�

a<b

(φi,a − φi,b)
2
c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
(11)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
, (12)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

1

1-loop det. 

The action can be written in a Q-exact form

S =
1

2g2

∑

i

QTr
[
iΛij(U

†
ijΦ̄i − Φ̄jU

†
ij) + iηi[Φ̄i,Φi]− χi(Yi − 2µi)

]

=
1

2g2

∑

i

Tr
[
|ΦiUij − UijΦj|2 + |[Φi, Φ̄i]|2 − Yi(Yi − 2µi)

−iΛij(U
†
ijηi − ηjU

†
ij) + iΛij(U

†
ijΛijU

†
ijΦ̄i − Φ̄jU

†
ijΛijU

†
ij) (4.4)

+iηi[Φi, ηi] + iχi[Φi,χi]− 2χi
δµi

δUij
Λij

]

Combining the variables except for Φ into bosonic and fermionic vectors $B = (Uij, Φ̄i, Yi)

and $F = (Λij, ηi,χi), the Q-exact action can be simply written by

S =
1

2g2
QTr

[
$F ·Q $F + 2

∑

i∈F

χiµi

]
, (4.5)

where “ · ” denotes a suitable inner product with summation over corresponding variables

associated with the lattice structure. F is a set of the sites including the independent

loops (faces).

Using this notation, the 1-loop determinant can be evaluated by a determinant of a

super Hessian matrix

(1-loop det.) =

√√√√Det δQ "B
δ "F

Det δQ "F
δ "B

. (4.6)

V : set of sites (vertices), L: set of links, F : set of independent loops (faces).

After fixing the gauge, which diagonalize all Φi by Φi = diag(φi,1,φi,2, . . . ,φi,N), the

integral measure of ΦI becomes

∫ ∏

i∈V

DΦi =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏

i∈V

∏

a<b

(φi,a − φi,b)
2, (4.7)

due to the gauge fixing ghosts.

Thus we can evaluate the 1-loop determinant explicitly

(1-loop det.) =

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
∏

i∈V
∏

a<b(φi,a − φi,b)
(4.8)

In summary, we obtain the partition function

Z =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏
i∈V

∏
a<b(φi,a − φi,b)

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
e−βHsKM (4.9)
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The action can be written in a Q-exact form

S =
1

2g2

∑

i

QTr
[
iΛij(U

†
ijΦ̄i − Φ̄jU

†
ij) + iηi[Φ̄i,Φi]− χi(Yi − 2µi)

]

=
1

2g2

∑

i

Tr
[
|ΦiUij − UijΦj|2 + |[Φi, Φ̄i]|2 − Yi(Yi − 2µi)

−iΛij(U
†
ijηi − ηjU

†
ij) + iΛij(U

†
ijΛijU

†
ijΦ̄i − Φ̄jU

†
ijΛijU

†
ij) (4.4)

+iηi[Φi, ηi] + iχi[Φi,χi]− 2χi
δµi

δUij
Λij

]

Combining the variables except for Φ into bosonic and fermionic vectors $B = (Uij, Φ̄i, Yi)

and $F = (Λij, ηi,χi), the Q-exact action can be simply written by

S =
1

2g2
QTr

[
$F ·Q $F + 2

∑

i∈F

χiµi

]
, (4.5)

where “ · ” denotes a suitable inner product with summation over corresponding variables

associated with the lattice structure. F is a set of the sites including the independent

loops (faces).

Using this notation, the 1-loop determinant can be evaluated by a determinant of a

super Hessian matrix

(1-loop det.) =

√√√√Det δQ "B
δ "F

Det δQ "F
δ "B

. (4.6)

V : set of sites (vertices), L: set of links, F : set of independent loops (faces).

After fixing the gauge, which diagonalize all Φi by Φi = diag(φi,1,φi,2, . . . ,φi,N), the

integral measure of ΦI becomes

∫ ∏

i∈V

DΦi =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏

i∈V

∏

a<b

(φi,a − φi,b)
2, (4.7)

due to the gauge fixing ghosts.

Thus we can evaluate the 1-loop determinant explicitly

(1-loop det.) =

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
∏

i∈V
∏

a<b(φi,a − φi,b)
(4.8)

In summary, we obtain the partition function

Z =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏
i∈V

∏
a<b(φi,a − φi,b)

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
e−βHsKM (4.9)

8

Contributions from
site, link & face variables



Fixed point equation:

ΦiUij − UijΦj = 0. (4.10)

In the diagonal gauge, the fixed point equation can be solved by

Uij = Γij, (4.11)

where Γij is an element of a permutation (Weyl) group in U(N).

Φj = Γ†
ijΦiΓij. (4.12)

For the eivgenvalues,

φj,a = φi,σij(a). (4.13)

The permutation group must satisfy the (flat connection) constraint

UP,i|Uij=Γij
= 1. (4.14)

We denote a set of the permutations which satisfy the constraint by P .

At the fixed point,

HsKM =
∑

i∈V

N∑

a=1

φ2
i,a (4.15)

The partition function becomes

Z =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij |
∏

i∈V

∫ N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)
χe−β

∑N
a=1 φ

2
i,a , (4.16)

where χ ≡ dimV − dimL+ dimF is the Euler characteristic which depends only on the

topology of the 2d surface.

If we write

z =

∫ N∏

a=1

dφa

∏

a<b

(φa − φb)
χe−β

∑N
a=1 φ

2
a , (4.17)

which is a partition function of N = (2, 2) supersymmetric YM theory on the smooth

Riemann surface with the Euler characteristic χ.

The partition function of the lattice gauge theory becomes

Z = CzdimV , (4.18)

where

C =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij | (4.19)
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・Partition function
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�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=

�

X0

O[X0]e
−S[X0]

Sdet

�
δ2

(QΞF [X0])

δX2

0

�
(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ
†

= 0, QΨ = QΨ
†

= 0 (3)

QΞ = Tr[A,XB]
2

+ TrΨB[A,ΨB] (4)

ZHCIZ =

�
DU e−βTrAUBU†

=
det e−βaibj

∆(a)∆(b)
(5)

�
[DX]Q

�
Ξe−S−tQΞ

�
�= 0 (6)

Z =

�

σij

� �

i

N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)
χ

(7)

�OdKM� = C

� N�

a=1

dφa

�

a<b

(φa − φb)
χ e−

PN
a=1 φ2

a (8)

S =

�

i,j

Tr

�
ΦiUijΦjU

†
ij

�
+

�

i

TrV (Φi) +
1

2

�

i

TrΛij [Φj ,Λ
†
ij ] (9)

OdKM = exp



−
�

i,j

Tr

�
ΦiUijΦjU

†
ij

�
−

�

i

TrV (Φi)−
1

2

�

i

TrΛij [Φj ,Λ
†
ij ]



 (10)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
, (11)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

This operator is depicted in Figure 11 (left). We need to check if, in the continuum limit, it

yields

Ξ → λ2(x)A2(x) . (12)

1

permutation elements

Localization on the lattice

Euler characteristic

・The result depends only on the topology of the 2D surface

・Independent of simplicial decomposition (2D YM is topological)

・Multiple integrals remain due to flat direction of SUSY  →

#sites     #links    #faces              

e−S−Φ2



Examples of Riemann surfaces

・Disks

・Spheres

U

U

U

U

Φ, c, c

Φ, c, c

Φ, c, c

Φ, c, c

χ
# of Φ, c, c = 4
# of U = 4
# of χ = 1 �

a<b

(φa − φb)1
# of Φ, c, c = 9
# of U = 12
# of χ = 4

# of Φ, c, c = 4
# of U = 6
# of χ = 4

�

a<b

(φa − φb)2

The path integral depends only on the topology of the 2D surface.

__

_ _

_ _

__

__

_ _

__



Examples of Q-closed operators

・Ward-Takahashi identity

・Kazakov-Migdal Q-closed operator

Fixed points

Multi-matrix HCIZ operator
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〈OBPS〉 = lim
t→∞

∫
[DX]OBPS e−S[X]−tQΞF [X]

=
∑

X0

O[X0]e−S[X0] Sdet
[
δ2(QΞF [X0])

δX2
0

]−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ† = 0, QΨ = QΨ† = 0 (3)

QΞ = Tr[A,XB]2 + TrΨB[A,ΨB] (4)

ZHCIZ =
∫

DU e−βTrAUBU†
=

det e−βaibj

∆(a)∆(b)
(5)

∫
[DX] Q

(
Ξe−S−tQΞ

)
$= 0 (6)

Z =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ (7)

〈O〉 =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ
N∑

a=1

φ2
i,a (8)

S =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

∑

i

TrV (Φi) +
1
2

∑

i

TrΛij [Φj , Λ†
ij ] (9)

O =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] (10)

=
∏

i,j

∏

a<b

(φi,a − φi,b)2c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
(11)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

[
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

]
, (12)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and
adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a.

1
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S =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

∑

i

TrV (Φi) +
1
2

∑

i

TrΛij [Φj , Λ†
ij ] (9)

O =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] (10)

=
∏
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∏
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(φi,a − φi,b)2c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
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We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

[
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

]
, (12)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and
adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a.

1

ΦiUijΦjU
†
ij = Φ2

i

Q-closed Q-closed

�QTr[ΛijΦjU
†
ij ]� = 0
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〈OBPS〉 = lim
t→∞

∫
[DX]OBPS e−S[X]−tQΞF [X]

=
∑

X0

O[X0]e−S[X0] Sdet
[
δ2(QΞF [X0])

δX2
0

]−1

(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ† = 0, QΨ = QΨ† = 0 (3)

QΞ = Tr[A,XB]2 + TrΨB[A,ΨB] (4)

ZHCIZ =
∫

DU e−βTrAUBU†
=

det e−βaibj

∆(a)∆(b)
(5)

∫
[DX] Q

(
Ξe−S−tQΞ

)
$= 0 (6)

Z =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ (7)

〈O〉 =
∑

σij

∫ ∏

i

N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)χ
N∑

a=1

φ2
i,a (8)

S =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

∑

i

TrV (Φi) +
1
2

∑

i

TrΛij [Φj , Λ†
ij ] (9)

O =
∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] (10)

QTr[iΛijΦjU
†
ij ] =

∑

i,j

Tr
[
ΦiUijΦjU

†
ij

]
+

1
2

∑

i

TrΛij [Φj , Λ†
ij ] −

∑

i

Φ2
i (11)

=
∏

i,j

∏

a<b

(φi,a − φi,b)2c,c̄ × (φi,a − φi,b)χ

(φi,a − φj,b)Uij × (φi,a − φi,b)Φ̄
(12)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

[
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

]
, (13)

1

Q-exact operator

〈       〉 〈       〉= consistent to the above result  



What is appropriate Q-exact deformation ?

Inappropriate Q-exact terms 

theory structure changed        →       fixed points can be mutilated !

QΞ = Q(F · QF)

・Has contribution from boundaries

・Restrict configuration space (broken sym? structure changed?) 

→      t-dependent integral !
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1 Q-exact Yang-Mills action on the lattice

�OBPS� = lim
t→∞

�
[DX]OBPS e−S[X]−tQΞF [X]

=

�

X0

O[X0]e
−S[X0]

Sdet

�
δ2

(QΞF [X0])

δX2

0

�
(1)

X0 ∈ BPS locus (2)

BPS locus : Ψ = Ψ†
= 0, QΨ = QΨ†

= 0 (3)

QΞ = Tr[A,XB]
2

+ TrΨB[A,ΨB] (4)

ZHCIZ =

�
DU e−βTrAUBU†

=
det e−βaibj

∆(a)∆(b)
(5)

�
[DX]Q

�
Ξe−S−tQΞ

�
�= 0 (6)

Z =

�

σij∈P

�

�ij�∈L

�

i∈V

� N�

a=1

dφi,a

�

a<b

(φi,a − φi,b)
χ

(7)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
, (8)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

This operator is depicted in Figure 8 (left). We need to check if, in the continuum limit, it yields

Ξ → λ2(x)A2(x) . (9)

We next operate the BRST supercharge Q of N = (2, 2) SYM on the Ξ. We then have the

following action

QΞ = TrA

�
TrF (T dUx+2,−2ΦxU †

x+2,−2
) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
+ · · ·

= TrA

�
TrF (T dUx+2,−2φ

a
xT aU †

x+2,−2
) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
+ · · · , (10)

where we use Qλx,µ = Ux,µΦx+µU †
x,µ + · · · with Φ = φaT a

, and UA
P is the adjoint plaquette

action. This action is shown in Figure 8 (right). We need to check if, in the continuum limit,

the operator gives

QΞ → Φ(x)F12(x) + · · · . (11)

1

cf.) Kazakov-Migdal 

1. 

2. 

QUij = Λij , QΛij = −iΦiUij

QUij = Λij , QΛij = −i(ΦiUij − UijΦj)

...

QΞ = Tr|Φi − UijΦjU
†
ij |2 + · · ·

Fixed point equation:

ΦiUij − UijΦj = 0. (4.10)

In the diagonal gauge, the fixed point equation can be solved by

Uij = Γij, (4.11)

where Γij is an element of a permutation (Weyl) group in U(N).

Φj = Γ†
ijΦiΓij. (4.12)

For the eivgenvalues,

φj,a = φi,σij(a). (4.13)

The permutation group must satisfy the (flat connection) constraint

UP,i|Uij=Γij
= 1. (4.14)

We denote a set of the permutations which satisfy the constraint by P .

At the fixed point,

HsKM =
∑

i∈V

N∑

a=1

φ2
i,a (4.15)

The partition function becomes

Z =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij |
∏

i∈V

∫ N∏

a=1

dφi,a

∏

a<b

(φi,a − φi,b)
χe−β

∑N
a=1 φ

2
i,a , (4.16)

where χ ≡ dimV − dimL+ dimF is the Euler characteristic which depends only on the

topology of the 2d surface.

If we write

z =

∫ N∏

a=1

dφa

∏

a<b

(φa − φb)
χe−β

∑N
a=1 φ

2
a , (4.17)

which is a partition function of N = (2, 2) supersymmetric YM theory on the smooth

Riemann surface with the Euler characteristic χ.

The partition function of the lattice gauge theory becomes

Z = CzdimV , (4.18)

where

C =
∑

{σij}∈P

∏

<ij>∈L

(−1)|σij | (4.19)
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2
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Tr
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�
+

�
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1

2

�
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TrΛij [Φj ,Λ
†
ij ] (8)

We consider the following operator Ξ on the 2D cubic lattice

Ξ = TrA

�
TrF (T dλx+2,−2) Mab

x,x+1 M bc
x+1,x+1+2 M cd
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�
, (9)

where Mab
x,x+µ ≡ TrF (T aUx,µT bU †

x,µ), and TrF and TrA stand for trace for fundamental and

adjoint representations, respectively. Here the fermion operator can be expanded as λ = λaT a
.

This operator is depicted in Figure 9 (left). We need to check if, in the continuum limit, it yields

Ξ → λ2(x)A2(x) . (10)

We next operate the BRST supercharge Q of N = (2, 2) SYM on the Ξ. We then have the

following action

QΞ = TrA

�
TrF (T dUx+2,−2ΦxU †

x+2,−2
) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
+ · · ·

= TrA

�
TrF (T dUx+2,−2φ

a
xT aU †

x+2,−2
) Mab

x,x+1 M bc
x+1,x+1+2 M cd

x+1+2,x+2

�
+ · · · , (11)

1

Q-closed under two different Q

QΞ = Tr[Φi, UijΦjU
†
ij ]

2 + · · ·

N=(2,2) BRST algebra



Summary

✤ We reduce the SUSY lattice gauge theory to the simpler integral 
via the localization technique.

✤ We extend the lattice SUSY model to generic lattice surfaces.

✤ We evaluate KM operator and find useful Ward-Takahashi 
identities. 

✤ We discuss that inappropriate Q-exact deformations do not give 
correct answer of the original integral.
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localization in HCIZ integral

which constructs the equivariant cohomology on M. In particular, we find that H − ω is

an element of the equivariant cohomology class, since we see immediately dV (H −ω) = 0

from the definition of the Hamiltonian vector field (2.10). We also find an algebra for the

basic variables

dVUU † = iθR, dV θR = iA+ iθR ∧ θR, (2.14)

where we have used the MC equation (2.6).

Using the symplectic structure of M and the equivariant cohomology generated by

dV , we can mathematically develop the localization theorem with respect to the HCIZ

integral. However our purpose in this paper is that we would like to understand the

localization in the supersymmetric system. So we next introduce the “supersymmetry”

to the HCIZ integral and relate it with the equivariant cohomology.

2.2 Supersymmetry

It is known that the 1-forms in the differential geometry is naturally identified with

the fermions (Grassmann numbers). Then we here identify the MC 1-form θR with a

Grassmann valued (fermionic) variable ψR. Note that the symplectic 2-form becomes

ω(XB) = −1
2ψR[XB,ψR] under this identification. If we also identify dV with a super-

charge Q, the algebra (2.14) gives a relation among bosonic and fermionic variables, that

is, the supersymmetry (BRST symmetry)

QU = iψRU, QψR = iA+ iψRψR. (2.15)

Of course, Q(H−ω) = 0 is satisfied. This symmetry plays a crucial role in the localization.

Let us now go back to the HCIZ integral (2.1). Including ψR and ω(XB), the HCIZ

integral can be written by

Z =
1

βN(N−1)/2∆(b)

∫
DUDψR e−β(H−ω), (2.16)

where ∆(b) ≡
∏

i<j(bi − bj) is a Vandermonde determinant of the eigenvalues of B. This

is because we can perform the integral of ω over the fermions independently
∫

DψR eβω =

∫
DψR e−

β
2 TrψR[XB ,ψR] (2.17)

=

∫
DψL e

−β
2 TrψL[B,ψL] (2.18)

= βN(N−1)/2∆(b), (2.19)

where we have used the invariance of the measure under the adjoint action ψR → ψL =

U †ψRU .

4

Left-invariant MC form
ψL = U†ψRU

Expanding the (K,Ω) around the saddle point by writing U = eiZΓσ with a Hermitian

matrix Z, up to quadratic terms, we get

K = Tr[A, [Z,B]]2 + · · · , (2.27)

Ω = Tr[ψR, Bσ][A, [ψR, Bσ]] + · · · , (2.28)

where we have used the formula

eYXe−Y = X + [Y,X] +
1

2
[Y, [Y,X]] + · · · = [exp∆Y ]X, (2.29)

where ∆YX ≡ [Y,X].

Decomposing the Hermite matrices Z and ψR by the Cartan-Weyl basis

Z = ziHi + zαEα, ψR = ψi
RHi + ψα

REα, (2.30)

where Hi and Eα satisfy

[Hi, Hj] = 0, (2.31)

[Hi, Eα] = αiEα, (2.32)

Tr(EαEβ) = δα+β,0. (2.33)

Noting that A = aiHi and Bσ = bσ(i)Hi, where ai and bσi are diagonal elements of A and

Bσ, respectively, we can see

K = 2
∑

α>0

α(a)2α(bσ)
2zαz−α + · · · , (2.34)

Ω = −2
∑

α>0

α(a)α(bσ)
2ψα

Rψ
−α
R + · · · , (2.35)

where α(a) =
∑

i αiai and α(bσ) =
∑

i αibσ(i).

Performing the Gaussian integrals over (zα, z−α) and (ψα
R,ψ

−α
R ) in the t → ∞ limit,

we obtain the exact integral results

Zω = (2π)N
(
2π

β

)N(N−1)/2∑

σ

(−1)|σ|
e−β

∑
i aibσ(i)

∆(a)
(2.36)

= (2π)N
(
2π

β

)N(N−1)/2 det e−βaibj

∆(a)
(2.37)

which is independent of t as expected, where ∆(a) =
∏

α>0 α(a) is a Vandermonde de-

terminant of A. The summation over σ and the signature (−1)|σ| come from each saddle

point and
∏

α>0

α(bσ)

|α(bσ)|
= (−1)|σ|, (2.38)
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Q-exact action on simplicial complex

The action can be written in a Q-exact form

S =
1

2g2

∑

i

QTr
[
iΛij(U

†
ijΦ̄i − Φ̄jU

†
ij) + iηi[Φ̄i,Φi]− χi(Yi − 2µi)

]

=
1

2g2

∑

i

Tr
[
|ΦiUij − UijΦj|2 + |[Φi, Φ̄i]|2 − Yi(Yi − 2µi)

−iΛij(U
†
ijηi − ηjU

†
ij) + iΛij(U

†
ijΛijU

†
ijΦ̄i − Φ̄jU

†
ijΛijU

†
ij) (4.4)

+iηi[Φi, ηi] + iχi[Φi,χi]− 2χi
δµi

δUij
Λij

]

Combining the variables except for Φ into bosonic and fermionic vectors $B = (Uij, Φ̄i, Yi)

and $F = (Λij, ηi,χi), the Q-exact action can be simply written by

S =
1

2g2
QTr

[
$F ·Q $F + 2

∑

i∈F

χiµi

]
, (4.5)

where “ · ” denotes a suitable inner product with summation over corresponding variables

associated with the lattice structure. F is a set of the sites including the independent

loops (faces).

Using this notation, the 1-loop determinant can be evaluated by a determinant of a

super Hessian matrix

(1-loop det.) =

√√√√Det δQ "B
δ "F

Det δQ "F
δ "B

. (4.6)

V : set of sites (vertices), L: set of links, F : set of independent loops (faces).

After fixing the gauge, which diagonalize all Φi by Φi = diag(φi,1,φi,2, . . . ,φi,N), the

integral measure of ΦI becomes

∫ ∏

i∈V

DΦi =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏

i∈V

∏

a<b

(φi,a − φi,b)
2, (4.7)

due to the gauge fixing ghosts.

Thus we can evaluate the 1-loop determinant explicitly

(1-loop det.) =

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
∏

i∈V
∏

a<b(φi,a − φi,b)
(4.8)

In summary, we obtain the partition function

Z =

∫ ∏

i∈V

N∏

a=1

dφi,a

∏
i∈V

∏
a<b(φi,a − φi,b)

∏
i∈F

∏
a<b(φi,a − φi,b)∏

<ij>∈L
∏

a≤b(φi,a − φj,b)
e−βHsKM (4.9)
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5 Conclusion and Discussion

Acknowledgements

A Derivation of the 1-loop Determinants

General arguments:

Consider the bosonic variables BI and the fermionic variables F I , except for Φ. We

assume that δQFI

δFJ = δQBI

δBJ = 0.

The Q-exact action is

S = tQTr

[
gIJF IQFJ

]

= tTr

[
||Q !F||2 − F IQ(gIJQFJ)

]
,

(A.1)

where the metric gIJ is a scalar function of !B only.

The path integral localizes at the fixed point equation QF I = QBI = 0. We denote

the solution of the fixed point equation by BI
0 and F I

0 .

Expanding the fields around the fixed point by

BI = BI
0 +

1√
t
B̃I ,

F I = F I
0 +

1√
t
F̃ I ,

(A.2)

the quadratic action becomes

S = Tr

[
GIJ B̃IB̃J − ΩIJF̃ IF̃J

]
+O(1/

√
t), (A.3)

where

GIJ =
δ2

δBIδBJ
||Q !F||2

∣∣∣∣
"B= "B0

,

ΩIJ =
1

2

(
δ

δF I
Q(gJKQFK)− δ

δFJ
Q(gIKQFK)

)∣∣∣∣
"F= "F0

(A.4)

The quadratic action (A.3) itself should be Q-closed (supersymmetric), so we find

GIJ(QB̃I)B̃J = ΩIJ(QF̃ I)F̃J . (A.5)

Note QGIJ = QΩIJ = 0 since they set on the fixed point value.
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・To look into the HessianLet us consider an expansion of QF I and QBI around the fixed point

QF I = QF I
∣∣
!B= !B0

+
1√
t

δQF I

δBJ

∣∣∣∣
!B= !B0

B̃J ,

QBI = QBI
∣∣
!F= !F0

+
1√
t

δQBI

δFJ

∣∣∣∣
!F= !F0

F̃J

(A.6)

while, from (A.2), we see

QF I = QF I
0 +

1√
t
QF̃ I ,

QBI = QBI
0 +

1√
t
QB̃I .

(A.7)

Then we have

QF̃ I =
δQF I

δBJ

∣∣∣∣
!B= !B0

B̃J ,

QB̃I =
δQBI

δFJ

∣∣∣∣
!F= !F0

F̃J

(A.8)

Substituting (A.8) into (A.5), we find

GIJ
δQF I

δBK

∣∣∣∣
!B= !B0

= ΩIK
δQBI

δFJ

∣∣∣∣
!F= !F0

(A.9)

Thus we obtain
DetGIJ

DetΩIJ
=

Det δQBI

δFJ

Det δQFI

δBJ

, (A.10)

at the fixed points.

Explicit example:
"B = (X, Φ̄) and "F = (ψ, η).

QΦ = 0, Q "B = (ψ, η) = "F and Q "F = (i[X,Φ], i[Φ̄,Φ]).

The Q-exact action is

S = tQTr

[
iψ[X, Φ̄] + iη[Φ, Φ̄]

]
(A.11)

= tTr

[
|[X,Φ]|2 + |[Φ̄,Φ]|2 + iψ[Φ̄,ψ]− iψ[X, η]− iη[Φ, η]

]
(A.12)

Solution of the fixed point equation

[X0,Φ] = [Φ̄0,Φ] = 0 (A.13)

11
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