Quantized states of vortex in a CP2 Skyrme-Faddeev type model
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Introduction

In this presentation we consider quantization of the vortex in the CP? Skyrme-Faddeev model.

It has been conjectured that the model can be seen as a low-energy effective classical model
of SU(3) Yang-Mills theory. And it has also several physical applications in condensed matter
physics.

For phenomenological point of view, it is worth to study several quantum excitations
concerning with the spin, angular momentum, so on.

There are two methods for quantizing solitons, the semiclassical and canonical quantization.

the semiclassical approach: solitons are considered as a classical rigid rotator and the angular
momenta are quantized in Bohr-Sommerfeld framework.

the canonical approach: in addition to the semiclassecal procedure the canonical commutation
relation is taken into account. Then new quantum correction to the mass spectrum appear.

By employing these two methods we derive the formula of mass spectrum of the quantized vortex.

The CP" Skyrme-Faddeev model and vortex solutions
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In (N + 1)-dim representation of SU(N + 1), 0 and g are defined as
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Note that the Lagrangian has a global symmetry ¥ — AWB" where 4,B € SU(N + 1).
On account of this symmetry we can translate the variable into Hermitian such as
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where u is N-dim complex field and  4;;

X makes the manipulation
of quantization much easier

We introduce dimensionless cylindrical coordinates (¢, p, @, z)
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and adopt an axial symmetric ansatz u;

Classical solutions

(i) Integrable sector

'he scale invariant solution
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Since the solutions satisfy the zero curvature condition,
they possess infinite number of conserved currents!
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(ii) Outside the integrable sector “The typical solution

In order to break scale invariance, we introduce a potential term
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Nmax : the highest positive integer in the set n;

Semiclassical quantization
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We shall quantize rotational zeromodes of the vortex in the CP? model by applying the standard
collective coordinate quantization method.

For standard Hamiltonian (quadratic in time derivatives), we set fe? + 2ye? = 0.
Symmetry of classical Lagrangian X(r) - AX(r)BT, A,B € SU(3)

This symmetry is spontaneously broken. Therefore we have to extract the proper

rotational degree of freedom. The rotational matrix A and B which correspond to symmetry
of the solution should satisfy
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X, depends on the combination of winding numbers (n4, n,). Therefore we need case analysis.
In this presentation, however, we concentrate on the case {n; > 0 Nn; > n,}. From the
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Commutation relations of the generators
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In order to remove degeneracy of the classical configuration, we consider time dependent rotation.

Dynamical ansatz X(r; A (t)) ADX)AT (),
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The angular velocities
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By virtue of the axial symmetry of the ansatz, several components have notable feature such as
I = 177, I, = I, and off diagonal components vanish except I .
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We promote the angular momenta to operators defined as [ Jp, A] = — %)LPA
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From this definition we find the set {J,, Jv, Jg + J% + J& } are simultaneously diagonalizable.
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The mass spectrum
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Canonical quantization

=Semiclassical quantization + the commutation relation [¢¢, a?] =
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We consider the problem in quantum mechanical way ab initio, of which we properly treat the

commutation relation of collective variables. Non-zero value of the variables induces a Goldstone
boson which was absent in the previous semiclassical analysis.

Main points of the modification
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After lengthy calculation, we derive the mass spectrum of the form
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The effective Goldstone boson mass term
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The vortices might be stable in terms of existence of such mass term, without any potential.




