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Introduction

The 𝑪𝑷𝑵 Skyrme-Faddeev model and vortex solutions
The space 𝐶𝑃𝑁 =

𝑆𝑈 𝑁+1

𝑆𝑈 𝑁 ×𝑈 1
can be parametrized by Principal variable Ψ(𝑔) ≡ 𝑔𝜎 𝑔 −1

𝑔 ∈ 𝑆𝑈 𝑁 + 1
𝜎:involutive automorphism

𝜎 𝑘 = 𝑘, 𝑘 ∈ 𝑆𝑈 𝑁 ⨂𝑈 1

Ψ 𝑘 = 𝑘𝜎 𝑘 −1 = 𝑘𝑘−1 = 𝑒

Ψ(𝑔𝑘)= 𝑔𝑘𝜎 𝑔𝑘 −1

= 𝑔𝑘𝜎(𝑘−1𝑔−1)
= 𝑔𝑘𝜎 𝑘−1 𝜎(𝑔−1)
= 𝑔𝜎 𝑔 −1 = Ψ(𝑔)

𝑘 𝑒
・

・・
𝑔

Ψ(𝑔)

Ψ

Ψ

ℒ = −
𝑀2

2
Tr(Ψ−1𝜕𝜇Ψ)

2 +
1

𝑒2
Tr Ψ−1𝜕𝜇Ψ,Ψ

−1𝜕𝜈Ψ
2

The Lagrangian density

+
𝛽

2
Tr Ψ−1𝜕𝜇Ψ

2 2
+ 𝛾 Tr(Ψ−1𝜕𝜇ΨΨ−1𝜕𝜈Ψ)

2
− 𝜇2𝑉

𝑆𝑈(𝑁 + 1) 𝐶𝑃𝑁

Ψ =
𝟙𝑁×𝑁 0
0 −1

+
2

1 + 𝒖† ⋅ 𝒖
−𝒖⨂𝒖† 𝑖𝒖

𝑖𝒖† 1

𝜎 𝑇 ≡
𝟙𝑁×𝑁 0
0 −1

𝑇
𝟙𝑁×𝑁 0
0 −1

,

In 𝑁 + 1 -dim representation of 𝑆𝑈 𝑁 + 1 , 𝜎 and 𝑔 are defined as

𝑔 ≡
1

1 + 𝒖† ⋅ 𝒖

Δ 𝑖𝒖
𝑖𝒖† 1

Δ𝑖𝑗 = 1 + 𝒖† ⋅ 𝒖 𝛿𝑖𝑗 −
𝑢𝑖𝑢𝑗

∗

1 + 1 + 𝒖† ⋅ 𝒖
where 𝒖 is N-dim complex field and  

We introduce dimensionless cylindrical coordinates (𝑡, 𝜌, 𝜑, 𝑧)

𝑥0= 𝑟0𝑡, 𝑥
1 = 𝑟0 𝜌cos𝜑 , 𝑥

2 = 𝑟0𝜌 sin𝜑, 𝑥
3= 𝑟0𝑧 𝑟0

2 = −
4

𝑀2𝑒2
where

and adopt an axial symmetric ansatz 𝑢𝑗 = 𝑓𝑗 𝜌 e𝑖𝑛𝑗𝜑.

Note that the Lagrangian has a global symmetry Ψ → 𝐴Ψ𝐵† where 𝐴, 𝐵 ∈ 𝑆𝑈 𝑁 + 1 .
On account of this symmetry we can translate the variable into Hermitian such as

𝑋 ≔
𝟙𝑁×𝑁 0
0 1

+
2

1 + 𝒖† ⋅ 𝒖
−𝒖⨂𝒖† 𝑖𝒖

−𝑖𝒖† −1

ii Outside the integrable sector  

Topological charge 𝑄top =
1

8𝜋
 𝑑2𝑥𝜀𝑖𝑗Tr 𝑋𝜕𝑖𝑋𝜕𝑗𝑋 =

 𝑘=1
𝑁 𝑛𝑘𝑓𝑘

2

1 +  𝑘=1
𝑁 𝑓𝑘

2
0

∞

= 𝑛max + 𝑛min

Classical solutions

i Integrable sector

The scale invariant solution

𝑢𝑗 = 𝑐𝑗𝜌
𝑛𝑗𝑒𝑖𝑛𝑗𝜑

𝑛max : the highest positive integer in the set 𝑛𝑗 𝑛min : the lowest negative integer in the same set 

𝑎 ≥ 0, 𝑏 > 0

new-baby type

old-baby type

𝜕𝜇𝑢𝑖𝜕
𝜇𝑢𝑗 = 0

𝛽𝑒2 + 𝛾𝑒2 = 2, 𝜇2= 0
 

Since the solutions satisfy the zero curvature condition,
they possess infinite number of conserved currents!

In order to break scale invariance, we introduce a potential term

𝑋0 ≡ 𝑋|𝜌=0 𝑋∞ ≡ 𝑋|𝜌→∞
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𝑛1, 𝑛2 = 2,1 , 𝑎, 𝑏 = 0,2
𝑀 = 0.5, 𝛽𝑒2 = 6, 𝛾𝑒2 = −3, 𝜇2 = 1

The typical solution

Semiclassical quantization

𝑋 𝒓 → 𝐴𝑋 𝒓 𝐵†, 𝐴, 𝐵 ∈ 𝑆𝑈 3

This symmetry is spontaneously broken. Therefore we have to extract the proper 
rotational degree of freedom. The rotational matrix 𝐴 and 𝐵 which correspond to symmetry 
of the solution should satisfy

 
𝑄top = 𝑄top

′ ≡
1

8𝜋
 𝑑2𝑥𝜀𝑖𝑗Tr 𝐴𝑋𝐵

†𝐴𝜕𝑖𝑋𝐵
†𝐴𝜕𝑗𝑋𝐵

†

𝐴𝑋∞𝐵
† = 𝑋∞

We shall quantize rotational zeromodes of the vortex in the 𝐶𝑃2 model by applying the standard 
collective coordinate quantization method.

For standard Hamiltonian (quadratic in time derivatives), we set 𝛽𝑒2 + 2𝛾𝑒2 = 0. 

Symmetry of classical Lagrangian

𝑋 makes the manipulation 
of quantization much easier

𝐴 = 𝐵 = e−𝑖𝜆u𝛼1/2e−𝑖𝜆7𝛼2/2e−𝑖𝜆u𝛼3/2e−𝑖𝜆v𝛼4/2 𝜆v = − 𝜆3 +
𝜆8

3
𝜆u = −

1

2
𝜆3 − 3𝜆8 ,

𝒥𝑃, 𝐴 = −
1

2
𝜆𝑃𝐴

From this definition we find the set 𝒥u, 𝒥v , 𝒥6
2 + 𝒥7

2 + 𝒥u
2 are simultaneously diagonalizable.

𝒥u = −𝑖
𝜕

𝜕𝛼1
𝒥6 = 𝑖 cos𝛼1cot𝛼2

𝜕

𝜕𝛼1
+ sin𝛼1

𝜕

𝜕𝛼2
−
cos𝛼1
sin𝛼2

𝜕

𝜕𝛼3
,

𝒥v = −𝑖
𝜕

𝜕𝛼4
𝒥7 = 𝑖 sin𝛼1cot𝛼2

𝜕

𝜕𝛼1
− cos𝛼1

𝜕

𝜕𝛼2
−
sin𝛼1
sin𝛼2

𝜕

𝜕𝛼3
,

𝜓𝑚,𝑘,𝑌
𝑗

∝ 𝒟𝑚 𝑘
𝑗

𝛼1, 𝛼2, 𝛼3 e𝑖𝑌𝛼4The eigenfunction

𝐸 = 𝑀cl +
1

2𝐼66
𝑗 𝑗 + 1 −𝑚2 +

1

𝐼uu𝐼vv − 𝐼uv
2

𝐼uu
2
𝑚2 − 𝐼uv𝑚𝑌 +

𝐼vv
2
𝑌2

The mass spectrum

𝜆𝑖 , 𝜆𝑗 = 2𝜖𝑖𝑗𝑘𝜆𝑘 𝜆𝑖 , 𝜆v = 0 𝐴 = 𝐵 ∈ 𝑆𝑈 2 × 𝑈(1)𝑖, 𝑗, 𝑘 = 6,7, u

The angular velocities  𝐴 =
1

𝑟0

𝜕𝐴

𝜕𝑡
𝐴†  𝐴 = −

𝑖

2
𝜆𝑃Ω

𝑃

Dynamical ansatz 𝑋 𝒓; 𝐴 𝑡 = 𝐴 𝑡 𝑋 𝒓 𝐴† 𝑡 ,

The effective Lagrangian

The quantum Hamiltonian

𝐻q = 𝑀cl +
1

2𝐼66
𝒥6
2 + 𝒥7

2 +
1

𝐼uu𝐼vv − 𝐼uv
2

𝐼uu
2
𝒥v
2 − 𝐼uv𝒥u𝒥v +

𝐼vv
2
𝒥u
2

Legendre transf. 𝐻q = 𝒥𝑃Ω
𝑃 − 𝐿eff

The inertia tensor

+
𝛽𝑒2

2
 Tr 𝜆𝑃, 𝑋 𝜆𝑄 , 𝑋 Tr 𝜕𝑘𝑋𝜕𝑘𝑋   −2Tr 𝜆𝑃, 𝑋 𝜕𝑘𝑋 Tr 𝜆𝑄 , 𝑋 𝜕𝑘𝑋

𝐼𝑃𝑄 =
2𝜋

𝑒2
 𝜌d𝜌  Tr 𝜆𝑃, 𝑋 𝜆𝑄 , 𝑋 + Tr 𝜆𝑃, 𝑋 , 𝜕𝑘𝑋 𝜆𝑄 , 𝑋 , 𝜕𝑘𝑋

𝐿eff =
1

2
𝐼𝑃𝑄Ω

𝑃Ω𝑄 −𝑀cl

By virtue of the axial symmetry of the ansatz, several components have notable feature such as 
𝐼66 = 𝐼77, 𝐼uv= 𝐼vu, and off diagonal components vanish except 𝐼uv.

𝒥𝑃 =
𝜕𝐿eff
𝜕Ω𝑃

We promote the angular momenta to operators defined as

𝑋∞ depends on the combination of winding numbers 𝑛1, 𝑛2 . Therefore we need case analysis.
In this presentation, however, we concentrate on the case {𝑛1 > 0 ∩ 𝑛1 > 𝑛2}. From the 
conditions, one can find    

Commutation relations of the generators 

In order to remove degeneracy of the classical configuration, we  consider time dependent rotation. 

Semiclassical Canonical

Ω𝑃  𝛼𝑎𝐶𝑎
𝑃(𝛼) {  𝛼𝑎, 𝐶𝑎

𝑃(𝛼)}/2

 𝐴  𝛼𝑎𝜕𝑎𝐴(𝛼) {  𝛼𝑎, 𝜕𝑎𝐴(𝛼)}/2

𝑖

2
𝜆𝑃Ω

𝑃
𝑖

2
𝜆𝑃Ω

𝑃 +
𝑖

8
𝑔𝑃𝑄𝜆𝑃 𝜆𝑄𝐴†  𝐴

𝑎, 𝑏 = 1~4.

where  𝑔𝑃𝑄 = 𝑓𝑎𝑏𝐶𝑎
𝑃𝐶𝑏

𝑄
,

𝑃, 𝑄 = 6,7, u, v.

Canonical quantization

𝜆𝑃
2
, 𝑋 ≡ 𝑍𝑃𝑄𝜆𝑅 ,

𝜆𝑃
2
, 𝑋 , 𝜕𝑘𝑋 ≡ 𝑊𝑘𝑃𝑄𝜆𝑄

𝜆𝑃
2
, 𝑋 𝜕𝑘𝑋 ≡ 𝑉𝑘𝑃𝑄𝜆𝑄 , 𝜕𝑘𝑋

𝜆𝑃
2
, 𝑋 ≡ 𝑈𝑘𝑃𝑄𝜆𝑄

𝑔66= 𝑔77 =
1

𝐼66
, 𝑔uu=

𝐼vv
𝐼uu𝐼vv − 𝐼uv

2
, 𝑔uv= 𝑔vu =

−𝐼uv
𝐼uu𝐼vv − 𝐼uv

2
, 𝑔vv=

𝐼uu
𝐼uu𝐼vv − 𝐼uv

2

Θ6 = Θ7 = 0, Θu=
1

3
𝑔uv, Θv =

1

8
2𝑔66 + 𝑔uu −

4

3
𝑔vv

𝐸 = 𝑀cl + Δ𝑀 +
1

2𝐼66
𝑗 𝑗 + 1 −𝑚2 +

1

𝐼uu𝐼vv − 𝐼uv
2

𝐼uu
2
𝑚2 − 𝐼uv𝑚𝑌 +

𝐼vv
2
𝑌2

We consider the problem in quantum mechanical way ab initio, of which we properly treat the 
commutation relation of collective variables. Non-zero value of the variables induces a Goldstone 
boson which was absent in the previous semiclassical analysis.

Main points of the modification

𝛥𝑀 =
2𝜋

𝑒2
 𝜌𝑑𝜌  2𝑍𝑃𝑅𝑍𝑄𝑆 − 2𝑊𝑘𝑃𝑅𝑊𝑘𝑄𝑆 + 𝛽𝑒2𝑍𝑃𝑅𝑍𝑄𝑆Tr 𝑋

−1𝜕𝑘𝑋
2
2

1

× Θ𝑃Θ𝑄Tr 𝜆𝑅𝜆𝑆 − Θ𝑃𝑔𝑄𝑇 Tr 𝜆𝑅𝜆𝑆𝜆𝑇 +
1

4
𝑔𝑃𝑇𝑔𝑄𝑈Tr 𝜆𝑇𝜆𝑅𝜆𝑆𝜆𝑈

 +
𝛽𝑒2

2
𝑉𝑘𝑃𝑅𝑉𝑘𝑄𝑆 + 𝑈𝑘𝑃𝑅𝑈𝑘𝑄𝑆 𝑔𝑃𝑇𝑔𝑄𝑆Tr 𝜆𝑅𝜆𝑆 Tr 𝜆𝑅𝜆𝑆

The vortices might be stable in terms of existence of such mass term, without any potential.

𝛼 :Euler angles.=Semiclassical quantization + the commutation relation  𝛼𝑎, 𝛼𝑏 = −𝑖𝑓𝑎𝑏 𝛼

The effective Goldstone boson mass term

After lengthy calculation, we derive the mass spectrum of the form

By employing these two methods we derive the formula of mass spectrum of the quantized vortex. 

In this presentation we consider quantization of the vortex in the 𝐶𝑃2 Skyrme-Faddeev model. 

It has been conjectured that the model can be seen as a low-energy effective classical model 
of 𝑆𝑈 3 Yang-Mills theory. And it has also several physical applications in condensed matter 
physics.

For phenomenological point of view, it is worth to study several quantum excitations 
concerning with the spin, angular momentum, so on.

There are two methods for quantizing solitons, the semiclassical and canonical quantization.
・the semiclassical approach: solitons are considered as a classical rigid rotator and the angular

momenta are quantized in Bohr-Sommerfeld framework.
・the canonical approach: in addition to the semiclassecal procedure the canonical commutation 

relation is taken into account. Then new quantum correction to the mass spectrum appear. 

Zero curvature condition
Constraints for parameters 


