Developments in String Theory and Quantum Field Theory at YITP

M5 branes on 3-manifolds

Dongmin Gang Kavli-IPMU

Based on Review
(Yamazaki-Terashima, Dimofte-Gukov-Gaiotto,.. : 2011~) +arXiv :1401.3595, 1409.6206, 1510.03884, 1510.05011 with N. Kim, S. Lee, M. Yamazaki, M. Romo

Introduction

String/M-theory : Solid Theoretical Frame-work 1) Very Rich,

Quantum Gravity (Blackhole,

Quantum field theories
(4d Class S,

Mathematics
(Calabi-Yau,

Introduction

String/M-theory : Solid Theoretical Frame-work 1) Very Rich, 2) Mysterious Dualities

Quantum Gravity
Quantum field theories
(4d Class S,

Mathematics
(Calabi-Yau,

Introduction

String/M-theory : Solid Theoretical Frame-work 1) Very Rich, 2) Mysterious Dualities

Quantum Gravity (Blackhole, AdS/CFT)

Quantum field theories
(4d Class S, S-duality)

Mathematics

(Calabi-Yau,Mirror-sym)

Introduction

Analogy with computer science

String/M-theory (Dualities)

Hardware

Operating System

Study of QG , QFT, Mathematics,...

Applications

Introduction

M5s on 3-manifolds \subset String/M-theory

1) Still Rich, 2) Still non-trivial Dualities

Quantum Gravity
(M-theory on AdS4)

Quantum field theories
(3d $N=2$ theories)

Mathematics
(Knot theory)

Introduction

M5s on 3 -manifolds \subset String $/ \mathrm{M}$-theory

M5 on 3-manifolds (3d/3d,AdS4/CFT3)

String/M-theory (Dualities)

Study of QG, QFT, Mathematics,...

Introduction

M5s on 3 -manifolds \subset string $/ \mathrm{M}$-theory

Introduction

M5s on 3-manifolds © String/M-theory

Introduction

Goal :
 Understand the hardware/OS of iWatch

Outline

*. M5s on 3-manifolds
(Manual of iWatch)
*. Computation tools
(Programing Languages)
*. Summary and discussion

A quick look at Apple Watch

M5s on 3-manifolds

$11 \mathrm{~d} \quad \mathbb{R}^{1,2} \times T^{*} M \times \mathbb{R}^{2}$
$N M 5 s \quad \mathbb{R}^{1,2} \times M \quad(M$: Closed 3-manifold $)$
IR world-volume theory : $T_{N}[M]$

M5s on 3-manifolds

11d $\quad \mathbb{R}^{1,2} \times T^{*} M \times \mathbb{R}^{2}$
NM5s $\mathbb{R}^{1,2} \times M$
(M :Closed 3-manifold)
IR world-volume theory : $T_{N}[M]$
Or, equivalently
$6 \mathrm{~d} \mathrm{~A}_{\mathrm{N}-1}(2,0)$ theory on $\mathbb{R}^{1,2} \times M$ Top'l twisting : $A^{\text {SO(3) }}=\omega_{M}$
$S O(3)_{M} \times S O(3)_{R}$

	$S O(3)_{\text {diag }}$	
$:$	2	$1 \oplus 3$
$\Rightarrow 1 / 4$	$B P S \Rightarrow 3 d$	$\mathcal{N}=2$

M

Codimension 4 defects in the $6 d$ theory

N M5 : 012345				
Defect $\{$ M5	0	3		89 \#
branes $\{$ M2	0	3	6	

6d An-1 $(2,0)$ theory
+ codimension 4 defect

Codimension 4 defects in the $6 d$ theory

N M5 : 0 12345
Defect
branes $\left\{\begin{array}{lllll}\text { M5 } & : & 0 & 3 & \\ \text { M2 } & : & 0 & 3 & 6\end{array}\right.$
S^{1}-reduction

N D4 : 012 45
Defect $\{$ D4 : 0
branes $\begin{cases}\text { F1 } & 0\end{cases}$

6d $\mathrm{A}_{\mathrm{N}-1}(2,0)$ theory

+ codimension 4 defect

5d $\mathcal{L}=2$ SU(N) SYM

+ Wilson line
$W_{R}=\operatorname{Tr}_{R}\left(P e^{\int A+i \phi}\right)$

Codimension 4 defects in the $6 d$ theory

N M5 : 0 12345
Defect

branes | M5 | $:$ | 0 | 3 | |
| :--- | :--- | :--- | :--- | :--- |
| M2 | $:$ | 0 | 3 | 6 |

S^{1}-reduction

N D4 : 012 45
Defect $\{$ D4 : 0
branes $\begin{cases}\text { F1 } & 0\end{cases}$

6d AN-1 $(2,0)$ theory

+ codimension 4 defect
Labelled by R
R : unitary rep of $\mathrm{SU}(\mathrm{N})$

5d $\mathcal{N}=2$ SU(N) SYM

+ Wilson line
$W_{R}=\operatorname{Tr}_{R}\left(P e^{\int A+i \phi}\right)$

Codimension 2 defects in the $6 d$ theory

$$
\text { N M5 : } 012345
$$

Defect M5 : 0123 789\#

6d An-1 $(2,0)$ theory
+ codimension 2 defect

Codimension 2 defects in the $6 d$ theory

$$
\text { N M5 : } 012345
$$

Defect
branes

M5 : $0123 \quad 789 \#$

6d AN-1 $(2,0)$ theory

+ codimension 2 defect
S^{1}-reduction
N D4 : 0 1245

5d $\mathcal{l}=2$ SU(N) SYM
$+3 \mathrm{~d} \mathrm{~T}_{\rho}[\mathrm{SU}(\mathrm{N})]$ theory

[Gaiotto,Witten '08]

Codimension 2 defects in the 6 d theory

N M5 : 0 12345

Defect
branes M5 : 0123 789\#
S^{1}-reduction
N D4 : 0 1245

6d An-1 $(2,0)$ theory

+ codimension 2 defect
Labelled by $\left(\rho, \mathfrak{M}_{\alpha}\right)$ $\alpha=1 \ldots \operatorname{rank}\left(H_{\rho}\right)$

5d $\mathfrak{l}=2$ SU(N) SYM
$+3 \mathrm{~d} \mathrm{~T}_{\rho}[\mathrm{SU}(\mathrm{N})]$ theory
[Gaiotto,Witten '08]
s NS5s

$$
\rho=\left[n_{1}, n_{2}, \ldots, n_{s}\right]\left(n_{i} \geq n_{i+1}\right)
$$

$$
\left(N=n_{1}+\ldots+n_{s}\right)
$$

$r_{1}=n_{s}, r_{2}=n_{s}+n_{s-1}, \ldots$
$\mathrm{T}_{\rho}[\mathrm{SU}(\mathrm{N})]: 3 d \mathcal{N}=4$
Flavor symmetry $\operatorname{SU}(N) \times H_{\rho}$ $H_{\rho}:=S\left(\prod_{\alpha=1} U\left(l_{\alpha}\right)\right)$ l_{α} : the number of times that α appears in ρ

Codimension 2 defects in the 6 d theory

Simplest codimension two defect :
$\rho=[N-1,1], H_{\rho}=S(U(1) \times U(1))=U(1)$
called 'simple' or 'minimal'

Maximal codimension two defect :
$\rho=\left[1^{N}\right], H_{\rho}=\operatorname{SU}(N)$
called 'full' or 'maximal'

M5s on 3-manifolds + defects

Adding Defects to the system
$6 \mathrm{~d} \mathrm{~A}_{\mathrm{N}-1}(2,0)$ theory on $\mathbb{R}^{1,2} \times M$

+ co-dimension 2 defect $\mathbb{R}^{1,2} \times K$ of type ρ + co-dimension 4 defect $\mathbb{R}^{1} \times \mathcal{K}$ of type R $T_{N}[M, K, \rho]+$ line defect $L(R, \mathcal{K})$

$T_{N}[M, K, \rho]: 3 d \mathcal{N}=2$ theory $\mathrm{w} /$ flavor symmetry H_{ρ}

Supersymmetric ptns

$Z\left[T_{N}[M, K, \rho]+L(R, \mathcal{K})\right.$ on $\left.B\right]$
Rigid SUSY background $B\left(e . g, S^{2} \times{ }_{q} S^{1}, S_{b}^{3} / \mathbb{Z}_{k}\right)$
$Z=\int[d \Phi]_{B} \exp (i S[\Phi])$

Supersymmetric ptns

$Z\left[T_{N}[M, K, \rho]+L(R, \mathcal{K})\right.$ on $\left.B\right]$
Rigid SUSY background $B\left(e . g, S^{2} \times{ }_{q} S^{1}, S_{b}^{3} / \mathbb{Z}_{k}\right)$
$Z=\int[d \Phi]_{B} \exp (i S[\Phi])$
$S^{2} \times_{q} S^{1}$: (generalized) Superconformal index

$$
\mathcal{I}\left(m_{\alpha}, u_{\alpha} ; q\right)=Z_{S^{2} \times s^{1}}=\operatorname{Tr}_{\mathcal{H}\left(s^{2}, m_{\alpha}\right)}(-1)^{2 j_{3}} q \prod_{\alpha=1}^{j_{3}+\frac{R}{2}} \prod_{\alpha=1}^{\operatorname{rank}\left(H_{\rho}\right)} u_{\alpha}^{F_{\alpha}}
$$

S_{b}^{3} : Squashed 3-sphere ptn $Z_{S_{b}^{3}}\left(m_{\alpha}\right)$

$$
\left\{b^{2}|z|^{2}+b^{-2}|w|^{2}=1\right\} \subset \mathbb{C}^{2}
$$

Entanglement(Reyni) Entropy

3d-3d Correspondence

[Yamazaki,Terashima:'II]
[Dimofte,Gukov, Gaiotto: 'II]
$Z\left[T_{N}[M]\right.$ on $\left.B\right]=Z\left[S L(N, \mathbb{C})_{(k, \sigma)} C S\right.$ on $\left.M\right]$

3d-3d Correspondence

[Yamazaki,Terashima:'II]

[Dimofte,Gukov, Gaiotto: 'II]
[Jafferis,Cordova:'I3]
[Yamazaki,Lee:'I3]
[Yagi 'I3]

1. Independent on relative size between B and M
2. $\mathrm{SL}(\mathrm{N}) \mathrm{CS}$ theory after reduction on B

$$
\begin{aligned}
& \mathcal{L}_{C S}=\frac{1}{2 \hbar} \operatorname{CS}[\mathcal{A}]+\frac{1}{2 \tilde{\hbar}} \operatorname{CS}[\overline{\mathcal{A}}], \quad \frac{4 \pi}{\hbar}=k+\sigma, \frac{4 \pi}{\tilde{\hbar}}=k-\sigma \\
& k=k, \sigma=k \frac{1-b^{2}}{1+b^{2}}\left(S^{3} / \mathbb{Z}_{k}\right) \quad \text { and } \quad k=0, \frac{4 \pi i}{\sigma}=\log q\left(S^{2} \times_{q} S^{1}\right) \\
& \mathcal{A}=A_{\mu}+i \phi_{\mu} \quad \begin{array}{llll}
A: & \mathbf{3}, & \mathbf{1} & \longrightarrow \mathbf{3}\left(A_{\mu}\right) \\
\phi: & \mathbf{1} & , \mathbf{3} \oplus \mathbf{1} \oplus \mathbf{1} & \longrightarrow \mathbf{3}\left(\phi_{\mu}\right) \oplus \mathbf{1} \oplus \mathbf{1}
\end{array}
\end{aligned}
$$

3d-3d Correspondence + Defects

$Z\left[A_{N-1}(2,0)\right.$ theory on $B \times M+$ codimension 2 on $B \times K+$ codimension 4 on $\left.\left(S^{1}\right)_{ \pm} \times \mathcal{K}\right]$
$Z\left[T_{N}[M, K]\right.$ on $B+L(R, K)$ on $\left.\left(S^{1}\right)_{ \pm}\right] \quad Z\left[S L(N, \mathbb{C}) C S\right.$ on $\left.M+V_{\rho}(K)+\left(\mathrm{W}_{R}\right)_{ \pm}(\mathcal{K})\right]$
[Kim,Yamazaki,Romo,DG:'I5]

3d-3d Correspondence + Defects

$Z\left[A_{N-1}(2,0)\right.$ theory on $B \times M+$ codimension 2 on $B \times K+$ codimension 4 on $\left.\left(S^{1}\right)_{ \pm} \times \mathcal{K}\right]$
$Z\left[T_{N}[M, K]\right.$ on $B+L(R, K)$ on $\left.\left(S^{1}\right)_{ \pm}\right] \quad Z\left[S L(N, \mathbb{C}) C S\right.$ on $\left.M+V_{\rho}(K)+\left(\mathrm{W}_{R}\right)_{ \pm}(\mathcal{K})\right]$
[Kim,Yamazaki,Romo,DG:'I5]
Codimension 4 in $6 \mathrm{~d}(2,0)$ theory $\rightarrow \mathrm{Tr}_{R} P \exp \left(\int_{\{ \pm\} \times K}(A \pm i \phi)\right)$ in 5 d
$\rightarrow\left(W_{R}\right)_{+}(\mathcal{K}):=\operatorname{Tr}_{R} P \exp \left(\int_{\mathcal{K}} \mathcal{A}\right),\left(W_{R}\right)_{-}(\mathcal{K}):=\operatorname{Tr}_{R} P \exp \left(\int_{\mathcal{K}} \overline{\mathcal{A}}\right)$ in $\mathrm{SL}(\mathrm{N}) \mathrm{CS}$ theory

3d-3d Correspondence + Defects

$Z\left[A_{N-1}(2,0)\right.$ theory on $B \times M+$ codimension 2 on $B \times K+$ codimension 4 on $\left.\left(S^{1}\right)_{ \pm} \times \mathcal{K}\right]$
$Z\left[T_{N}[M, K]\right.$ on $B+L(R, K)$ on $\left.\left(S^{1}\right)_{ \pm}\right]$ $Z\left[S L(N, \mathbb{C}) C S\right.$ on $\left.M+V_{\rho}(K)+\left(\mathrm{W}_{R}\right)_{ \pm}(\mathcal{K})\right]$
[Kim,Yamazaki,Romo,DG:'I5]
Codimension 4 in $6 \mathrm{~d}(2,0)$ theory $\rightarrow \operatorname{Tr}_{R} P \exp \left(\int_{\{ \pm\} \times \mathcal{K}}(A \pm i \phi)\right)$ in 5 d
$\rightarrow\left(W_{R}\right)_{+}(\mathcal{K}):=\operatorname{Tr}_{R} P \exp \left(\int_{\mathcal{K}} \mathcal{A}\right),\left(W_{R}\right)_{-}(\mathcal{K}):=\operatorname{Tr}_{R} P \exp \left(\int_{\mathcal{K}} \overline{\mathcal{A}}\right)$ in $\mathrm{SL}(\mathrm{N})$ CS theory
Codimension 2 in $6 \mathrm{~d}(2,0)$ theory \rightarrow coupling $\mathrm{T}_{\rho}[\mathrm{SU}(\mathrm{N})]$ in 5 d
$\rightarrow V_{\rho, \mathfrak{M}}(K)=$ Modromay defect around K in $\operatorname{SL}(\mathrm{N}) \mathrm{CS}$ theory

$$
\begin{aligned}
& \log \left(P \exp \int_{\operatorname{around} K} \mathcal{A}\right) \sim \operatorname{diag}(\overbrace{\mathfrak{M}_{1}, . ., \mathfrak{M}_{1}}^{n_{1}} \overbrace{\mathfrak{M}_{2}, . ., \mathfrak{M}_{2}}^{n_{2}}, \ldots, \overbrace{\mathfrak{M}_{s}, \ldots, \mathfrak{M}_{s}}) \\
& \mathfrak{M}_{i}=2 \pi b m_{i} \text { for } Z_{S_{b}^{3}}\left(m_{i}\right) \quad \text { for } \mathcal{I}\left(m_{i}, u_{i} ; q\right) \quad \\
& \mathfrak{M}_{i}=(\log q / 2) m_{i}+\log u_{i} \quad \text {, }
\end{aligned}
$$

Holography

- $6 d A_{N-1}(2,0)$ theory on $\mathbb{R}^{1,2} \times M$

Holography

- $6 d A_{N-1}(2,0)$ theory on $\mathbb{R}^{1,2} \times M$

- Corresponding Holographic RG [Gauntett, kim, Waldram: 00] [Perrici, Sezgin: :85]

$$
\begin{array}{|l}
A d S_{7} \times S^{4} \\
d s_{11}^{2}=\frac{\left(1+\sin ^{2} \theta\right)^{1 / 3}}{g^{2}}\left[d s^{2}\left(A d S_{4}\right)+d s^{2}(M)+\frac{1}{2}\left(d \theta^{2}+\frac{\sin ^{2} \theta}{1+\sin ^{2} \theta} d \phi^{2}\right)+\frac{\cos ^{2} \theta}{1+\sin ^{2} \theta} d \tilde{\Omega}^{2}\right]
\end{array}
$$

for closed hyperbolic $M\left(R_{\mu \nu}=-2 g_{\mu \nu}\right)$

- Holography : $3 d T_{N}[M]$ theory $=M$ - theory on Pernici-Sezgin $A d S_{4}$ solution for closed hyperbolic $M\left(R_{\mu \nu}=-2 g_{\mu v}\right)$

Holography + Defects

- $6 d A_{N-1}(2,0)$ theory on $\mathbb{R}^{1,2} \times M$
$6 d A_{N-1}(2,0)$ on $\mathbb{R}^{1,5} \longrightarrow 3 d \mathcal{N}=2 S C F T T_{N}[M, K, \rho]$ on $\mathbb{R}^{1,2}$
+Co-dimension 2 defect ρ
+Co-dimension 4 defect R
+Line operator $L(R, \mathcal{K})$

Holography + Defects

- $6 d A_{N-1}(2,0)$ theory on $\mathbb{R}^{1,2} \times M$

$6 d A_{N-1}(2,0)$ on $\mathbb{R}^{1,5}$	
+Co-dimension 2 defect ρ +Co-dimension 4 defect R	$3 d \mathcal{N}=2 S C F T T_{N}[M, K, \rho]$ on $\mathbb{R}^{1,2}$
+Line operator $L(R, \mathcal{K})$	

- Corresponding Holographic RG

$A d S_{7} \times S^{4}$	Pernici-Sezgin AdS_{4} solution $A d S_{4} \times M \times \tilde{S}^{4}$
??	$+M 5$ on $A d S_{4} \times K \times S^{1}(\rho=$ simple $)$
$+M 2$ on AdS_{3} ($R=\square$)	$+M 2$ on $A d S_{2} \times \mathcal{K} \quad(R=\square)$
M 5 s on $\mathrm{AdS}_{3} \times S^{3} \quad\left(R=A_{k}, k \sim o(N)\right)$	M 5 s on $A d S_{2} \times \mathcal{K} \times S^{3}\left(R=A_{k}, k \sim o(N)\right)$

Holography + Defects

- $6 d A_{N-1}(2,0)$ theory on $\mathbb{R}^{1,2} \times M$

$6 d A_{N-1}(2,0)$ on $\mathbb{R}^{1,5}$	
+Co-dimension 2 defect ρ +Co-dimension 4 defect R	$3 d \mathcal{N}=2 S C F T T_{N}[M, K, \rho]$ on $\mathbb{R}^{1,2}$
+Line operator $L(R, \mathcal{K})$	

- Corresponding Holographic RG

AdS $\times S^{4}$	Pernici-Sezgin AdS_{4} solution $A d S_{4} \times M \times \tilde{S}^{4}$
$? ?$	$+M 5$ on $A d S_{4} \times K \times S^{1}(\rho=$ simple $)$
+M2 on $\operatorname{AdS}_{3}(R=\square)$	$+M 2$ on $A d S_{2} \times \mathcal{K} \quad(R=\square)$
M 5 s on $\operatorname{AdS}_{3} \times S^{3}\left(R=A_{k}, k \sim o(N)\right)$	M 5 s on $\operatorname{AdS} S_{2} \times \mathcal{K} \times S^{3}\left(R=A_{k}, k \sim o(N)\right)$

- Holography : $3 d T_{N}[M]$ theory $=M$ - theory on Pernici-Sezgin $A d S_{4}$ solution

Line operator $L(R, \mathcal{K})$

$$
M 2 \text { on } A d S_{2} \times \mathcal{K} \quad(R=\square)
$$

$T_{N}[M, K, \rho=$ simple $]-T_{N}[M] \quad M 5$ on $A d S_{4} \times K$

Computational tools

- 3d SCFT : Localization
- SL(N) CS Theory State-integral models
- Supergravity at large N

Localization in 3d theories

$3 d \mathcal{N}=2$ theory
Gauge group G, Chiral matters Φ in R,
$C S$ interactions $\overrightarrow{\mathrm{k}}$, superpotential $\mathrm{W}(\Phi)$
Localization on $B=S^{2} \times S^{1}, S_{b}^{3} / \mathbb{Z}_{k}$

$$
Z=\int[d \Phi]_{B} \exp (i S[\Phi ;(G, R, \vec{k}, W(\Phi))])
$$

$$
\xrightarrow{\text { Localized }} \int d \phi_{0} 0^{i S\left[\phi_{0}\right]} Z^{1-\text { loop }}\left[\phi_{0}\right] \text { (finite dimensional integration) }
$$

If we know the Lagrangian description of $T_{N}[M, K, \rho]$ But most of $T_{N}[M, K, \rho]$, we do not know.

Lagrangian description of $T_{N}[M, K, \rho]$

Duality wall theory

$$
\begin{aligned}
& T[S U(N), \varphi] \\
& \begin{array}{c|c}
\\
4 d \mathcal{N}=2^{*} & 4 d \mathcal{N}=2^{*} \\
\tau & \varphi(\tau)
\end{array} \\
& \left(\Sigma_{1,1} \times I\right)_{\varphi} \\
& \underbrace{}_{\Sigma_{1,1}}
\end{aligned}
$$

$3 d \mathcal{N}=2$ theory with $S U(N) \times S U(N) \times U(1)_{\text {axial }}$

$$
\left(U(1)_{R} \times U(1)_{\text {axial }} \subset S O(4)_{R}\right)
$$

Lagrangian description of $T_{N}[M, K, \rho]$

Duality wall theory

$3 d \mathcal{N}=2$ theory with $S U(N) \times S U(N) \times U(1)_{\text {axial }}$

$$
\left(U(1)_{R} \times U(1)_{\text {axial }} \subset S O(4)_{R}\right)
$$

Topology on mapping torus

Lagrangian description of $T_{N}[M, K, \rho]$

$T[S U(N), \varphi]$ theory

$4 d \mathcal{N}=2^{*}$	$4 d \mathcal{N}=2^{*}$
τ	$\varphi(\tau)$

$\operatorname{Tr}(T[S U(N), \varphi])$
theory obtained by
gauging diagonal $\mathrm{SU}(\mathrm{N})$
of $T[S U(N), \varphi])$

$$
\left(\Sigma_{1,1} \times I\right)_{\varphi}
$$

$\left(\Sigma_{1,1} \times S^{1}\right)_{\varphi}$
$:=\left(\Sigma_{1,1} \times[0,1]\right) / \sim$,
$(x, 0) \sim(\varphi(x), 0)$.
$\operatorname{Tr}(T[S U(N), \varphi])=T_{N}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\right.$ simple $]$

State-integrals in SL(N) CS theory

$Z=\int[d \mathcal{A}]_{(M \backslash K, \rho)} \exp \left(i S_{C S}[\mathcal{A}, \overline{\mathcal{A}} ; k, \sigma]\right)$
$\longrightarrow \int d X \exp \left(\frac{1}{2 \hbar} X \cdot B^{-1} A X+..\right) \prod \psi_{\hbar}(X)$ (finite dimensional integration)

- Firstly developed for 'maximal' co-dimension 2 defects
- Extend to include for co-dimension 4 defects and nonmaximal ρ for some examples
- Can be used to find field theory description for $T_{N}[M, K, \rho]$: Abelian description

State-integrals in SL(N) CS theory

$Z=\int[d \mathcal{A}]_{(M \backslash K, \rho)} \exp \left(i S_{C S}[\mathcal{A}, \overline{\mathcal{A}} ; k, \sigma]\right)$
$\longrightarrow \int d X \exp \left(\frac{1}{2 \hbar} X \cdot B^{-1} A X+..\right) \prod \psi_{\hbar}(X)$ (finite dimensional integration)

- Firstly developed for 'maximal' co-dimension 2 defects
- Extend to include for co-dimension 4 defects and nonmaximal ρ for some examples
- Can be used to find field theory description for $T_{N}[M, K, \rho]$: Abelian description

Supergravity at large N

- Free energy at large N
- Codimension 4 defects
- Simple Codimension 2 defect

Supergravity at large N

- Free energy at large N

$$
\mathcal{F}_{b}\left(T_{N}[M]\right):=\log \left|Z_{S_{b}^{3}}\left(T_{N}[M]\right)\right|=\frac{\operatorname{vol}(M)}{12 \pi}\left(b+b^{-1}\right)^{2} N^{3}+(\text { subleading in } 1 / N)
$$

- Codimension 4 defects
- Simple Codimension 2 defect

Supergravity at large N

- Free energy at large N
$\mathcal{F}_{b}\left(T_{N}[M]\right):=\log \left|Z_{S_{b}^{3}}\left(T_{N}[M]\right)\right|=\frac{\operatorname{vol}(M)}{12 \pi}\left(b+b^{-1}\right)^{2} N^{3}+($ subleading in $1 / N)$
- Codimension 4 defects
$\mathcal{F}_{b}\left(T_{N}[M]+L(R=\square, \mathcal{K})_{ \pm}\right)-\mathcal{F}_{b}\left(T_{N}[M]\right):=\frac{\ell(\mathcal{K})}{2}\left(1+b^{ \pm 2}\right) N^{2}+($ subleading in $1 / N)$
- Simple Codimension 2 defect

Supergravity at large N

- Free energy at large N
$\mathcal{F}_{b}\left(T_{N}[M]\right):=\log \left|Z_{S_{b}^{3}}\left(T_{N}[M]\right)\right|=\frac{\operatorname{vol}(M)}{12 \pi}\left(b+b^{-1}\right)^{2} N^{3}+($ subleading in $1 / N)$
- Codimension 4 defects
$\mathcal{F}_{b}\left(T_{N}[M]+L(R=\square, \mathcal{K})_{ \pm}\right)-\mathcal{F}_{b}\left(T_{N}[M]\right):=\frac{\ell(\mathcal{K})}{2}\left(1+b^{ \pm 2}\right) N^{2}+($ subleading in $1 / N)$
$\mathcal{F}_{b}\left(T_{N}[M]+L\left(R=A_{k}, \mathcal{K}\right)_{ \pm}\right)-\mathcal{F}_{b}\left(T_{N}[M]\right):=\frac{\ell(\mathcal{K})}{2} \frac{k}{N}\left(1-\frac{k}{N}\right)\left(1+b^{ \pm 2}\right) N^{2}+($ subleading in $1 / N)$
for $k \sim o(N)$
- Simple Codimension 2 defect

Supergravity at large N

- Free energy at large N

$$
\mathcal{F}_{b}\left(T_{N}[M]\right):=\log \left|Z_{S_{b}^{3}}\left(T_{N}[M]\right)\right|=\frac{\operatorname{vol}(M)}{12 \pi}\left(b+b^{-1}\right)^{2} N^{3}+(\text { subleading in } 1 / N)
$$

- Codimension 4 defects
$\mathcal{F}_{b}\left(T_{N}[M]+L(R=\square, \mathcal{K})_{ \pm}\right)-\mathcal{F}_{b}\left(T_{N}[M]\right):=\frac{\ell(\mathcal{K})}{2}\left(1+b^{ \pm 2}\right) N^{2}+($ subleading in $1 / N)$
$\mathcal{F}_{b}\left(T_{N}[M]+L\left(R=A_{k}, \mathcal{K}\right)_{ \pm}\right)-\mathcal{F}_{b}\left(T_{N}[M]\right):=\frac{\ell(\mathcal{K})}{2} \frac{k}{N}\left(1-\frac{k}{N}\right)\left(1+b^{ \pm 2}\right) N^{2}+($ subleading in $1 / N)$ for $k \sim o(N)$
- Simple Codimension 2 defect

$$
\mathcal{F}_{b=1}\left(T_{N}[M, K, \rho=\text { simple }]\right)-\mathcal{F}_{b=1}\left(T_{N}[M]\right):=\frac{\ell(K)}{3} N^{2}+(\text { subleading in } 1 / N)
$$

Consistency Checks

- Localization/State-integral model

$$
\begin{aligned}
& \mathcal{I}\left(T_{N=3}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\operatorname{simple}\right]\right)_{\text {Iocalization }} \\
& \left.=Z\left[S L(3)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]\right]_{\text {state- interal }}
\end{aligned}
$$

$$
\mathcal{I}\left(T_{N=2}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]+\text { loop operators }\right)_{\text {localization }}
$$

$$
\left.=Z\left[S L(2)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }+ \text { Wilson loop }\right]\right)_{\text {state-ingtral }}
$$

Consistency Checks

- Localization/State-integral model

$$
\begin{aligned}
& \mathcal{I}\left(T_{N=3}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\operatorname{simple}\right]\right)_{\text {localization }} \\
& \left.=Z\left[S L(3)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]\right)_{\text {state-ingrgal }}
\end{aligned}
$$

$$
\mathcal{I}\left(T_{N=2}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]+\text { loop operators }\right)_{\text {localization }}
$$

$$
\left.=Z\left[S L(2)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }+ \text { Wilson loop }\right]\right)_{\text {state-ingtral }}
$$

- State-integral/Holography computation

Holographic computations show that the b-dependence of $\left(S_{b}^{3}\right)$ - free-energy is very simple at large N (only b^{-2}, b^{0}, b^{2}).
In CS theory, $\hbar=2 \pi i b^{2} . \quad Z(S L(N) \mathrm{CS}$ on $M) \xrightarrow{\hbar \rightarrow 0} \frac{1}{\hbar} S^{0}+S^{1}+S^{2} \hbar+\ldots$

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{0}=-\frac{i}{6} \operatorname{vol}(M), \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{1}=-\frac{1}{6 \pi} \operatorname{vol}(M), \\
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{2}=\frac{i}{24 \pi^{2}} \operatorname{vol}(M), \\
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{j}=0(j \geq 3),
\end{aligned}
$$

Consistency Checks

- Localization/State-integral model

$$
\begin{aligned}
& \mathcal{I}\left(T_{N=3}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\operatorname{simple}\right]\right)_{\text {Iocalization }} \\
& \left.=Z\left[S L(3)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]\right]_{\text {state- interal }}
\end{aligned}
$$

$$
\mathcal{I}\left(T_{N=2}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]+\text { loop operators }\right)_{\text {localization }}
$$

$$
\left.=Z\left[S L(2)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }+ \text { Wilson loop }\right]\right)_{\text {state-ingtral }}
$$

- State-integral/Holography computation

Holographic computations show that the b-dependence of $\left(S_{b}^{3}\right)$ - free-energy is very simple at large N (only b^{-2}, b^{0}, b^{2}). In CS theory, $\hbar=2 \pi i b^{2} . \quad Z(S L(N) \operatorname{CS}$ on $M) \xrightarrow{\hbar \rightarrow 0} \frac{1}{\hbar} S^{0}+S^{1}+S^{2} \hbar+\ldots$

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{0}=-\frac{i}{6} \operatorname{vol}(M), \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{1}=-\frac{1}{6 \pi} \operatorname{vol}(M), \text { analytically confirmed } \\
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{2}=\frac{i}{24 \pi^{2}} \operatorname{vol}(M), \\
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{j}=0(j \geq 3),
\end{aligned}
$$

Consistency Checks

- Localization/State-integral model

$$
\begin{aligned}
& \mathcal{I}\left(T_{N=3}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\operatorname{simple}\right]\right)_{\text {Iocalization }} \\
& \left.=Z\left[S L(3)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]\right]_{\text {state- interal }}
\end{aligned}
$$

$$
\mathcal{I}\left(T_{N=2}\left[M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }\right]+\text { loop operators) }\right)_{\text {Iocalization }}
$$

$$
\left.=Z\left[S L(2)_{k=0} \text { on } M=\left(\mathbb{T}^{2} \times S^{1}\right)_{\varphi}, K_{\varphi}, \rho=\text { simple }+ \text { Wilson loop }\right]\right)_{\text {state-ingtral }}
$$

- State-integral/Holography computation

Holographic computations show that the b-dependence of $\left(S_{b}^{3}\right)$ - free-energy is very simple at large N (only b^{-2}, b^{0}, b^{2}). In CS theory, $\hbar=2 \pi i b^{2} . \quad Z(S L(N) \operatorname{CS}$ on $M) \xrightarrow{\hbar \rightarrow 0} \frac{1}{\hbar} S^{0}+S^{1}+S^{2} \hbar+\ldots$

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{0}=-\frac{i}{6} \operatorname{vol}(M), \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{1}=-\frac{1}{6 \pi} \operatorname{vol}(M), \text { analytically confirmed } \\
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{2}=\frac{i}{24 \pi^{2}} \operatorname{vol}(M), \text { numerically confirmed } \\
& \lim _{N \rightarrow \infty} \frac{1}{N^{3}} S_{j}=0(j \geq 3),
\end{aligned}
$$

Conclusion

- Various aspects of M5s on 3-manifold + defects

- Applications?

Thank you

for your attention

CS ptn on mapping torus

- For the case, $M-\bigcup_{i=1}^{h} N_{K_{i}}=\left(\Sigma_{g, h} \times S^{1}\right)_{\varphi}$
- Regarding the circle as 'time’

$$
\begin{aligned}
& Z\left[S L(N) C S\left(\Sigma_{g, h} \times S^{1}\right)_{\varphi},\left(\rho_{a}, \overline{\mathfrak{M}}_{\alpha}\right)\right]=\operatorname{Tr}_{\mathcal{H}_{\mathbb{N}}\left(\Sigma_{g, h},\left(\rho_{a}, \bar{M}_{\alpha}\right)\right)} \hat{\varphi} \\
& \mathcal{H}_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right): \text { Quantization of }\left(P_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right), \omega_{k, \sigma}\right) \\
& P_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right):=\left\{\text { Flat } S L(N) \text { connections on } \Sigma_{g, h} \text { with b.c }\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right\} \\
& \omega_{k, \sigma}:=\frac{1}{\hbar} \int_{\Sigma_{g, h}} \operatorname{Tr}(\delta A \wedge \delta A)+\frac{1}{\tilde{\hbar}} \int_{\Sigma_{g, h}} \operatorname{Tr}(\delta \bar{A} \wedge \delta \bar{A}),\left(\frac{1}{\hbar}=\frac{k+\sigma}{8 \pi}, \frac{1}{\tilde{\hbar}}=\frac{k-\sigma}{8 \pi}\right) .
\end{aligned}
$$

- Find a good coordinate system of the phase-space

Loop coordinates: $\operatorname{Tr}_{R}\left(\operatorname{Hol}\left(\gamma_{i}\right)\right), \quad\left\{\gamma_{i}\right\}$: generators of $\pi_{1}\left(\Sigma_{g, h}\right)$
Difficult to quantize (complicated relations and $\omega_{k, \sigma}$)

CS ptn on mapping torus

- For the case, $M-\bigcup_{i=1}^{h} N_{K_{i}}=\left(\Sigma_{g, h} \times S^{1}\right)_{\varphi}$
- Regarding the circle as 'time’

$$
\begin{aligned}
& Z\left[S L(N) C S\left(\Sigma_{g, h} \times S^{1}\right)_{\varphi},\left(\rho_{a}, \overrightarrow{\mathcal{M}_{\alpha}}\right)\right]=\operatorname{Tr}_{\mathcal{H}_{N}\left(\Sigma_{g, h},\left(\rho_{a}, \overline{\left.M_{\alpha}\right)}\right)\right.} \hat{\varphi} \\
& \mathcal{H}_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right): \text { Quantization of }\left(P_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right), \omega_{k, \sigma}\right) \\
& P_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right):=\left\{\text { Flat } S L(N) \text { connections on } \Sigma_{g, h} \text { with b.c }\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right\} \\
& \omega_{k, \sigma}:=\frac{1}{\hbar} \int_{\Sigma_{g, h}} \operatorname{Tr}(\delta A \wedge \delta A)+\frac{1}{\tilde{\hbar}} \int_{\Sigma_{g, h}} \operatorname{Tr}(\delta \bar{A} \wedge \delta \bar{A}),\left(\frac{1}{\hbar}=\frac{k+\sigma}{8 \pi}, \frac{1}{\tilde{\hbar}}=\frac{k-\sigma}{8 \pi}\right) .
\end{aligned}
$$

- Find a good coordinate system of the phase-space

Fock-Goncharov Coordinates for $\rho_{\alpha}=$ 'maximal'
(linear relations and simple $\omega_{k, \sigma}$)

FG coordinates

- Ideal triangulation -> Tessellation -> FG quiver

ideal triangulation of $\Sigma_{1,1}$

$N=2$

$N=4$
- $\mathrm{N}=2$, once-punctured torus

$$
\begin{aligned}
& P_{N=2}\left(\Sigma_{1,1},(\rho, \mathfrak{M})\right)=\left\{y_{1}, y_{2}, y_{3}: y_{1} y_{2} y_{3}=e^{\mathfrak{M}}\right\} \\
& \omega_{\mathrm{k}, \sigma}:\left\{Y_{i}, Y_{j}\right\}_{P \cdot B}=\hbar Q_{i j},\left\{\bar{Y}_{i}, \bar{Y}_{j}\right\}_{P . B}=\tilde{\hbar} Q_{i j}, Q_{12}=Q_{23}=Q_{31}=2 .
\end{aligned}
$$

- Holonomy computation

$$
\operatorname{Hol}\left(\gamma_{x}\right)=\left(\begin{array}{cc}
\frac{\left(y_{1}+1\right) y_{3}}{\sqrt{y_{3} y_{3}}} & \sqrt{\frac{y_{3}}{y_{1}}} \\
\frac{1}{\sqrt{y_{y_{3}}}} & \frac{1}{\sqrt{y_{1} y_{3}}}
\end{array}\right) \text {, Hol (}\left(\gamma_{y}\right)=\left(\begin{array}{cc}
\frac{y_{2}+1}{\sqrt{y_{2} y_{3}}} & -\sqrt{y_{2} y_{3}} \\
-\sqrt{\frac{y_{2}}{y_{3}}} & \sqrt{y_{2} y_{3}}
\end{array}\right)
$$

Cluster algebra

- Cluster Algebra generated by FG quiver $\left(q:=e^{\hbar}, \tilde{q}:=e^{\tilde{\hbar}}\right)$

$$
\mathcal{A}_{Q}:=\left\{y_{i}, \bar{y}_{i(i \in I)} \mid y_{j} y_{i}=q^{Q_{i j}} y_{i} y_{j}, \bar{y}_{j} \bar{y}_{i}=\tilde{q}^{Q_{i j}} y_{i} y_{j}, \bar{y}_{j} y_{i}=y_{i} \bar{y}_{j}\right\}
$$

- Mutation

$$
\begin{aligned}
& \hat{\mu}_{k} \mathrm{y}_{i} \hat{\mu}_{k}^{-1}=q^{\frac{1}{2} Q_{i k}\left[Q_{i k}\right]+\mathrm{y}_{i} y_{k}^{\left[Q_{i k}\right]+}} \prod_{m=1}^{\left|Q_{k i}\right|}\left(1+q^{\operatorname{sgn}\left(Q_{k i}\right)\left(m-\frac{1}{2}\right)} y_{k}^{-1}\right)^{-\operatorname{sgn}\left(Q_{k i}\right)} \\
& \left(\mu_{k} Q\right)_{i j}:= \begin{cases}-Q_{i j} & (i=k \text { or } j=k), \\
Q_{i j}+\left[Q_{i k}\right]_{+}\left[Q_{k j}\right]_{+}-\left[Q_{j k}\right]_{+}\left[Q_{k i}\right]_{+} & (i, j \neq k),\end{cases}
\end{aligned}
$$

- Representation of MCG (mapping class group)

$$
\begin{aligned}
& \hat{\varphi}:=\hat{\mu}_{2} \hat{\sigma}_{L}, \sigma_{L}: y_{2} \leftrightarrow y_{3}, \text { for } \varphi=L:=S T^{-1} S^{-1} \\
& \hat{\varphi}:=\hat{\mu}_{1} \hat{\sigma}_{R}, \sigma_{R}: y_{1} \leftrightarrow y_{3}, \text { for } \varphi=R:=T
\end{aligned}
$$

CS ptn on mapping torus

- Regarding the circle as 'time’

$$
\begin{aligned}
& Z\left[S L(N) C S\left(\Sigma_{g, h} \times S^{1}\right)_{\varphi},\left(\rho_{a}, \overline{\mathfrak{M}_{\alpha}}\right)\right]=\operatorname{Tr}_{\mathcal{H}_{N}\left(\Sigma_{g, h},\left(\rho_{a}, \bar{M}_{\alpha}\right)\right)} \hat{\varphi} \\
& \mathcal{H}_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right): \text { Quantization of }\left(P_{N}\left(\Sigma_{g, h},\left(\rho_{\alpha}, \mathfrak{M}_{\alpha}\right)\right), \omega_{k, \sigma}\right)
\end{aligned}
$$

Use FG Coordinates for $\rho_{\alpha}=$ 'maximal'

- Inclusion of Wilson loop operator

$$
\begin{aligned}
& Z\left[S L(N) C S\left(\Sigma_{g, h} \times S^{1}\right)_{\varphi}+\text { Wilson loop along } \gamma \in \pi_{1}\left(\Sigma_{\mathrm{g}, \mathrm{~h}}\right),\left(\rho_{a}, \overline{\mathcal{M}_{\alpha}}\right)\right] \\
& =\operatorname{Tr}_{\mathcal{H}_{\boldsymbol{N}}\left(\Sigma_{g h,},\left(\rho_{a}, \overline{\left.M_{\alpha}\right)}\right)\right.}, \overline{\operatorname{Tr}_{R} \operatorname{Hol}(\gamma) \hat{\varphi}}
\end{aligned}
$$

$$
\operatorname{Tr}_{R} \operatorname{Hol}(\gamma)=\sum_{k} c_{k} e^{a_{i}^{a_{i}^{\left(\gamma_{Y}\right)}}} \xrightarrow{\text { Quantization }} \widehat{\operatorname{Tr}_{R} \operatorname{Hol}(\gamma)}=\sum_{k} \widehat{c_{k}} \hat{c}^{e^{(k)} Y_{i}}, c_{k} \in \mathbb{N} \cup\{0\}
$$

$$
\hat{1}=1, \hat{2}=q^{a}+q^{-a}, \ldots . . \text { ambiguity in quantization unless } c_{k}=1
$$

Ex) $\Sigma_{1,1}$ with $N=2, \operatorname{Tr}\left(\operatorname{Hol}\left(\gamma_{x}\right)\right)=y_{1}^{1 / 2} y_{3}^{-1 / 2}+y_{3}^{1 / 2} y_{1}^{-1 / 2}+y_{1}^{-1 / 2} y_{3}^{-1 / 2}$

$$
\widehat{\operatorname{Tr}\left(\operatorname{Hol}\left(\gamma_{x}\right)\right)}=e^{1 / 2 Y_{1}-1 / 2 Y_{3}}+e^{-1 / 2 Y_{1}+1 / 2 Y_{3}}+e^{-1 / 2 Y_{1}-1 / 2 Y_{3}}
$$

CS ptn on mapping torus

- For Non-maximal case, cluster coordinates?

The answer seems to be "yes"

Quiver for $\Sigma_{1,1}, N=3$ and $\rho=[2,1]$.

$$
\hat{\varphi}=\hat{\mu}_{5} \hat{\sigma}_{S}, \sigma_{S}:\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \rightarrow\left(y_{4}, y_{3}, y_{1}, y_{2}\right) \text { for } \varphi=S
$$

$$
\hat{\varphi}=\hat{\mu}_{1} \hat{\mu}_{2} \hat{\sigma}_{T}, \sigma_{T}:\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \rightarrow\left(y_{3}, y_{4}, y_{1}, y_{2}\right) \text { for } \varphi=T
$$

For $k=0$ and $4 \pi i / \sigma=\hbar=\log q$

$$
\begin{aligned}
& Z\left[\operatorname{SL}(3)_{(k, \sigma)} C S\left(\Sigma_{1,1} \times S^{1}\right)_{\varphi=S T S^{-1} T},\left(\rho=[2,1], \mathfrak{M}=\frac{\hbar}{2} m+\log \eta\right)\right] \\
& =\operatorname{Tr}_{\mathcal{H}_{N=S}\left(\Omega, S 1,1,\left(\rho=\left[2,1,1, m=\frac{\hbar}{2} m+\log \eta \eta\right)\right.\right.}\left(\hat{\mu}_{5} \hat{\sigma}_{S} \hat{\mu}_{1} \hat{\mu}_{2} \hat{\sigma}_{T} \hat{\sigma}_{S}^{-1} \hat{\mu}_{5} \hat{\mu}_{1} \hat{\mu}_{2}\right) \\
& =1+\left(2 \eta+\frac{2}{\eta}\right) q^{\frac{3}{2}}+\left(8+2 \eta^{2}+\frac{2}{\eta^{2}}\right) q^{2}+\left(6 \eta+\frac{6}{\eta}\right) q^{\frac{5}{2}}+\left(2-3 \eta^{2}-\frac{3}{\eta^{2}}\right) q^{3}+\ldots
\end{aligned}
$$

It matches the index computed using localization on $\operatorname{Tr}\left(T\left[S U(3), \varphi=S T S^{-1} T\right]\right)$!!

Cluster partition function

- Generalizing the previous computation, we consider

$$
\operatorname{Tr}_{Q, \bar{m}, \bar{\sigma}}^{(k, \sigma)}(\overrightarrow{\mathfrak{M}})=\operatorname{Tr}_{\mathcal{H}^{(k, \sigma)}(Q, \bar{M})}\left(\hat{\mu}_{m_{1}} \hat{\sigma}_{1} \hat{\mu}_{m_{2}} \hat{\sigma}_{2} \ldots \hat{\mu}_{m_{i}} \hat{\sigma}_{\ddot{y}}\right)
$$

- After explicit computation, the ptn can be written as

$$
\begin{aligned}
& \left.\left.\operatorname{Tr}_{Q, \vec{m}, \bar{\sigma}}^{(k, \sigma}\right)(\overrightarrow{\mathfrak{M}})=\left\langle C_{I}=0, \mathfrak{M}_{\alpha} \mid \nabla^{\otimes \sharp}\right\rangle=\int d^{\sharp} \bar{X}\left\langle C_{I}=0, \mathfrak{M}_{\alpha} \mid \vec{X}\right\rangle\langle\vec{X} \mid\rangle^{\otimes \sharp}\right\rangle \\
& =\int d^{\sharp} \vec{X}\left\langle C_{I}=0, \mathfrak{M}_{\alpha} \mid \vec{X}\right\rangle \prod_{i=1}^{\#} \psi_{\hbar, \tilde{\hbar}}\left(X_{i}\right) \\
& \quad\left|\diamond^{\otimes \sharp}\right\rangle:=(|\diamond\rangle)^{\otimes \sharp},\left|C_{I}, \mathfrak{M}_{\alpha}\right\rangle \in\left(\mathcal{H}^{(k, \sigma)}\right)^{\otimes \nexists}, \quad\langle X \mid \diamond\rangle=\prod_{r=0}^{\infty} \frac{1-q^{r+1} e^{-x}}{1-\tilde{q}^{-r} e^{-X}}
\end{aligned}
$$

$$
\mathcal{H}^{(k, \sigma)}=\{\text { spanned by position basis }|X\rangle\} \text {, Hilber-space obtained by quantizing }
$$

$$
\text { a phase-space } P=\left\{\left(x:=e^{x}, p:=e^{P}\right)\right\}=\left(\mathbb{C}^{*}\right)^{2}, \omega=\frac{1}{\hbar} d X \wedge d P+\frac{1}{\tilde{\hbar}} d \bar{X} \wedge d \bar{P}
$$

$$
\binom{C_{I}}{\mathfrak{M}_{\alpha}}_{\sharp}=A_{\sharp \times \nless \sharp} \cdot X_{\sharp}+B_{\sharp \times \nless \sharp} \cdot P_{\sharp} \quad(A, B)_{\sharp \times(2 \sharp)} \text { form upper block of } \operatorname{Sp}(2 \sharp, \mathbb{Q}) i . e,\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(2 \sharp, \mathbb{Q})
$$

