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Introduction and Motivation

1 There exist various fluxes in string theory, e.g. NS H-flux, F -flux
2 Non-geometric fluxes Q and R are conjectured from T-duality

considerations, but their proper description is still obscure
[Shelton-Taylor-Wecht]

3 Topological T-duality [Bouwknegt-Evslin-Mathai] concerns the
transformation between H- and F -flux and can well be described using
generalized geometry (standard Courant algebroid on TM ⊗ T ∗M)

4 [Asakawa-Muraki-Sasa-Watamura] proposed a variant of generalized
geometry based on a Courant algebroid, defined on a Poisson manifold with
Poisson tensor θ, (Poisson Courant algebroid, see Muraki-san’s talk) that
can describe the transformation between Q and R

5 Our goal is to construct a topological string theory with R-flux and to
describe the transformation between H and R and find a complete
generalization of topological T-duality incorporating all fluxes

H −→ F︸ ︷︷ ︸
Courant Alg.

−→ Q −→ R︸ ︷︷ ︸
Poisson C. Alg.
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A sketch of what is known



What we developed



Preliminaries: Courant Algebroids and QP-Manifolds

Courant algebroid on vector bundle E

Vector bundle E over M with fiber metric 〈· , ·〉, bundle map ρ : E −→ TM
and Dorfman bracket [−,−]D on Γ(E ) satisfying consistency conditions

QP-manifold (M, ω,Θ)

1 Nonnegatively graded manifold M with degree n symplectic structure
ω, that induces a graded Poisson bracket {·, ·} on C∞(M)

2 Hamiltonian function Θ such that the classical master equation
{Θ,Θ} = 0 holds

3 Hamiltonian vector field Q = {Θ, ·}, that obeys LQω = 0

The QP-manifold construction generates a BV-formalism, with coordinates
of (ghost-)degree (commuting and anticommuting)

QP-manifold of degree 2 ≡ Courant algebroid with vector bundle E
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Poisson Courant Algebroids From QP-Manifolds

Special case of a Courant algebroid: Courant algebroid on Poisson
manifold, based on generalized geometry on the cotangent bundle.
Interesting for the formulation of non-geometric fluxes in string theory

Poisson Courant Algebroid
(E = TM ⊕ T ∗M , 〈−,−〉, [−,−]D , ρ = 0⊕ θ])

Vector bundle E = TM ⊕ T ∗M → M
(M, θ) Poisson manifold with Poisson structure θ ∈ Γ(∧2TM)
R ∈ Γ(∧3TM) such that [θ,R]S = 0 (Schouten bracket on ∧•TM)
Bundle map ρ : TM ⊕ T ∗M → TM defined by ρ(X + α) = θijαi (x) ∂

∂x j

Bilinear operation
[X + α,Y + β]θD ≡ [α, β]θ + LθαY − ιβdθX − ιαιβR,

where X + α,Y + β ∈ Γ(TM ⊕ T ∗M)
Lie bracket on T ∗M (Koszul bracket) [−,−]θ : T ∗M × T ∗M → T ∗M
Inner product 〈−,−〉 on TM ⊕ T ∗M
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Poisson Courant Algebroids From QP-Manifolds

QP-formulation of the Poisson Courant algebroid on E

Graded manifold M = T ∗[2]T [1]M, embedding map j : E ⊗ TM →M
Local coordinates (x i , ξi , q

i , pi ) of (ghost-)degree (0, 2, 1, 1)
Symplectic form ω = δx i ∧ δξi + δqi ∧ δpj induces graded P. bracket {·, ·}

Hamiltonian function

Θ = θij(x)ξipj −
1

2

∂θjk

∂x i
(x)qipjpk +

1

3!
R ijk(x)pipjpk

Derived brackets recover operations on Γ(E ), for example:

[X + α,Y + β]θD = j∗{{X i (x)pi + αi (x)qi ,Θ},Y j(x)pj + βj(x)qj}

Classical master equation {Θ,Θ} = 0 gives structural restrictions

Next step: A topological membrane is described by a Courant algebroid.
Construct the topological membrane model with R-flux from this algebroid.



Poisson Courant Algebroids From QP-Manifolds

QP-formulation of the Poisson Courant algebroid on E

Graded manifold M = T ∗[2]T [1]M, embedding map j : E ⊗ TM →M
Local coordinates (x i , ξi , q

i , pi ) of (ghost-)degree (0, 2, 1, 1)
Symplectic form ω = δx i ∧ δξi + δqi ∧ δpj induces graded P. bracket {·, ·}
Hamiltonian function

Θ = θij(x)ξipj −
1

2

∂θjk

∂x i
(x)qipjpk +

1

3!
R ijk(x)pipjpk

Derived brackets recover operations on Γ(E ), for example:

[X + α,Y + β]θD = j∗{{X i (x)pi + αi (x)qi ,Θ},Y j(x)pj + βj(x)qj}

Classical master equation {Θ,Θ} = 0 gives structural restrictions

Next step: A topological membrane is described by a Courant algebroid.
Construct the topological membrane model with R-flux from this algebroid.



Poisson Courant Algebroids From QP-Manifolds

QP-formulation of the Poisson Courant algebroid on E

Graded manifold M = T ∗[2]T [1]M, embedding map j : E ⊗ TM →M
Local coordinates (x i , ξi , q

i , pi ) of (ghost-)degree (0, 2, 1, 1)
Symplectic form ω = δx i ∧ δξi + δqi ∧ δpj induces graded P. bracket {·, ·}
Hamiltonian function

Θ = θij(x)ξipj −
1

2

∂θjk

∂x i
(x)qipjpk +

1

3!
R ijk(x)pipjpk

Derived brackets recover operations on Γ(E ), for example:

[X + α,Y + β]θD = j∗{{X i (x)pi + αi (x)qi ,Θ},Y j(x)pj + βj(x)qj}

Classical master equation {Θ,Θ} = 0 gives structural restrictions

Next step: A topological membrane is described by a Courant algebroid.
Construct the topological membrane model with R-flux from this algebroid.



Poisson Courant Algebroids From QP-Manifolds

QP-formulation of the Poisson Courant algebroid on E

Graded manifold M = T ∗[2]T [1]M, embedding map j : E ⊗ TM →M
Local coordinates (x i , ξi , q

i , pi ) of (ghost-)degree (0, 2, 1, 1)
Symplectic form ω = δx i ∧ δξi + δqi ∧ δpj induces graded P. bracket {·, ·}
Hamiltonian function

Θ = θij(x)ξipj −
1

2

∂θjk

∂x i
(x)qipjpk +

1

3!
R ijk(x)pipjpk

Derived brackets recover operations on Γ(E ), for example:

[X + α,Y + β]θD = j∗{{X i (x)pi + αi (x)qi ,Θ},Y j(x)pj + βj(x)qj}

Classical master equation {Θ,Θ} = 0 gives structural restrictions

Next step: A topological membrane is described by a Courant algebroid.
Construct the topological membrane model with R-flux from this algebroid.



Poisson Courant Algebroids From QP-Manifolds

QP-formulation of the Poisson Courant algebroid on E

Graded manifold M = T ∗[2]T [1]M, embedding map j : E ⊗ TM →M
Local coordinates (x i , ξi , q

i , pi ) of (ghost-)degree (0, 2, 1, 1)
Symplectic form ω = δx i ∧ δξi + δqi ∧ δpj induces graded P. bracket {·, ·}
Hamiltonian function

Θ = θij(x)ξipj −
1

2

∂θjk

∂x i
(x)qipjpk +

1

3!
R ijk(x)pipjpk

Derived brackets recover operations on Γ(E ), for example:

[X + α,Y + β]θD = j∗{{X i (x)pi + αi (x)qi ,Θ},Y j(x)pj + βj(x)qj}

Classical master equation {Θ,Θ} = 0 gives structural restrictions

Next step: A topological membrane is described by a Courant algebroid.
Construct the topological membrane model with R-flux from this algebroid.



Construction of the Topological Membrane

Describe embedding X →M of topological membrane into target space

1 Target space: our QP-manifold (M, ω,Θ)

2 Topological membrane: dg-manifold (X = T [1]X ,D, µ)
(X is 3-dim. membrane worldvolume)

Alexandrov-Kontsevich-Schwarz-Zaboronsky
formulation gives QP-structure on Map(T [1]X ,M)

(mapping space)

1 Graded symplectic structure ω =
∫
χ µev∗ω

2 Hamiltonian function S

3 Master equation {S ,S} = 0 holds and leads to a
BV-formalism of a topological membrane

4 Target space variables 7→ Superfields.
Degree zero part is physical degree
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Twisting the Topological Open Membrane

The topological string model
with R-flux is the boundary of
the topological open membrane.
It is a twisted Poisson sigma
model.

Twisting (M, ω,Θ)

Twist of the topological open membrane (∂X 6= ∅) by canonical
transformation generates a boundary term by changing the Lagrangian
submanifold L with respect to ω
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Construction of the R-flux string sigma model

Topological open membrane on Map(T [1]X ,M)

1 3-dimensional membrane worldvolume X with non-zero boundary
∂X 6= ∅

2 Symplectic structure ω =
∫
χ µ (δx i ∧ δξi + δq i ∧ δpi )

Hamiltonian function S =

∫
X
µ
(
−ξidx i + pidq

i + θij(x)ξipj

−1

2

∂θjk

∂x i
(x)q ipjpk +

1

3!
R ijk(x)pipjpk

)

3 δS |∂X = 0 determines boundary conditions

4 Twist by α = 1
2Bij(x)qiqj leads to twisted master equation

H = dB = ∧3B[R on the boundary
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Construction of the R-flux String Sigma Model

Topological string with R-flux WZ term in two dimensions

For B = θ−1, the boundary model is a twisted AKSZ sigma model in two
dimensions with WZ term

S =

∫
∂X

µ∂X (θ−1)ijq
idx j − 1

2
Bij(x)q iq j

+

∫
X
µ

1

3!
R ijk(x)(θ−1)il(θ

−1)jm(θ−1)kndx
ldxmdxn

1 It is a Poisson sigma model deformed by an R-flux WZ term and
equivalent to the standard H-twisted Poisson sigma model

2 Through the existence of the Poisson tensor θ, this model realizes a
lifting to a topological membrane theory, that is different from the
lifting of the H-twisted Poisson sigma model
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Duality between H-Flux and R-Flux Geometry

1 Standard Courant algebroid with H-flux and Poisson Courant
algebroid with R-flux both are realized on (T ∗[2]T [1]M, ω) with
different Hamiltonian functions

ΘH = ξiq
i +

1

3!
Hijkq

iqjqk

ΘR = θijξipj −
1

2

∂θjk

∂x i
qipjpk +

1

3!
R ijkpipjpk

2 Duality transformation between H-flux and R-flux
Symplectomorphism T : ΘH 7→ ΘR = eδbeδβΘH on (T ∗[2]T [1]M, ω)
where canonical transf. eδb and eδβ generate b- and β-transform

On the mapping space The duality transformation between H-flux and
R-flux can be interpreted as the change of boundary conditions of the
topological membrane
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Courant Algebroids from Lie 3-Algebroids and Duality

1 Duality between H-flux and R-flux can be rephrased using the
structure of a Lie 3-algebroid

2 This Lie 3-algebroid is constructed by a QP-manifold of degree 3,
which contains a Hamiltonian function Θ of degree 4 and induces
higher Dorfman brackets

3 Twisted Lagrangian submanifolds within the Lie 3-algebroid lead to
Courant algebroids realizing different flux configurations

Algebroid Duality

Symplectomorphism of QP manifolds T :M1 →M2 that

Preserves the QP structure

Transformes Lagrangian submanifolds T : L1 → L2
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Summary and Outlook

1 Constructed a Courant algebroid on Poisson manifold, based on
generalized geometry on the cotangent bundle, using QP-manifolds

2 Developed a topological string model with R-flux, which is equivalent
to the H-twisted Poisson sigma model, but lifts to a different
topological membrane theory

3 Realized a duality transformation that relates the topological string
model with R-flux to the topological string with H-flux using a
symplectomorphism of QP-manifolds

4 Rephrased this duality transformation as an algebroid duality between
substructures of a Lie 3-algebroid

1 We are aiming to use this framework to find a complete generalization
of topological T-duality, that connects all (H, F, Q and R) fluxes
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