R-flux string sigma model and algebroid duality on Lie 3-algebroids

Marc Andre Heller

Tohoku University

Based on joint work with Taiki Bessho (Tohoku University), Noriaki Ikeda (Ritsumeikan University) and Satoshi Watamura (Tohoku University)

> arXiv:1511.03425 further paper in progress

Introduction and Motivation

- **1** There exist various fluxes in string theory, e.g. NS *H*-flux, *F*-flux
- Non-geometric fluxes Q and R are conjectured from T-duality considerations, but their proper description is still obscure [Shelton-Taylor-Wecht]

Introduction and Motivation

- **1** There exist various fluxes in string theory, e.g. NS *H*-flux, *F*-flux
- Non-geometric fluxes Q and R are conjectured from T-duality considerations, but their proper description is still obscure [Shelton-Taylor-Wecht]
- Solution Topological T-duality [Bouwknegt-Evslin-Mathai] concerns the transformation between *H* and *F*-flux and can well be described using generalized geometry (standard Courant algebroid on *TM* ⊗ *T***M*)
- [Asakawa-Muraki-Sasa-Watamura] proposed a variant of generalized geometry based on a Courant algebroid, defined on a Poisson manifold with Poisson tensor θ , (**Poisson Courant algebroid**, see Muraki-san's talk) that can describe the transformation between Q and R

Introduction and Motivation

- **1** There exist various fluxes in string theory, e.g. NS *H*-flux, *F*-flux
- Non-geometric fluxes Q and R are conjectured from T-duality considerations, but their proper description is still obscure [Shelton-Taylor-Wecht]
- Solution Topological T-duality [Bouwknegt-Evslin-Mathai] concerns the transformation between *H* and *F*-flux and can well be described using generalized geometry (standard Courant algebroid on *TM* ⊗ *T***M*)
- [Asakawa-Muraki-Sasa-Watamura] proposed a variant of generalized geometry based on a Courant algebroid, defined on a Poisson manifold with Poisson tensor θ , (**Poisson Courant algebroid**, see Muraki-san's talk) that can describe the transformation between Q and R
- Our goal is to construct a topological string theory with R-flux and to describe the transformation between H and R and find a complete generalization of topological T-duality incorporating all fluxes

 $\underbrace{H \longrightarrow F}_{\text{Courant Alg.}} \longrightarrow \underbrace{Q \longrightarrow R}_{\text{Poisson C. Alg}}$

A sketch of what is known

What we developed

Courant algebroid on vector bundle E

Vector bundle *E* over *M* with fiber metric $\langle \cdot, \cdot \rangle$, bundle map $\rho : E \longrightarrow TM$ and Dorfman bracket $[-, -]_D$ on $\Gamma(E)$ satisfying consistency conditions

Courant algebroid on vector bundle E

Vector bundle *E* over *M* with fiber metric $\langle \cdot, \cdot \rangle$, bundle map $\rho : E \longrightarrow TM$ and Dorfman bracket $[-, -]_D$ on $\Gamma(E)$ satisfying consistency conditions

QP-manifold $(\mathcal{M}, \omega, \Theta)$

- Nonnegatively graded manifold *M* with degree *n* symplectic structure ω, that induces a graded Poisson bracket {·,·} on C[∞](*M*)
- **2** Hamiltonian function Θ such that the classical master equation $\{\Theta,\Theta\}=0 \text{ holds}$
- **3** Hamiltonian vector field $Q = \{\Theta, \cdot\}$, that obeys $\mathcal{L}_Q \omega = 0$

Courant algebroid on vector bundle E

Vector bundle *E* over *M* with fiber metric $\langle \cdot, \cdot \rangle$, bundle map $\rho : E \longrightarrow TM$ and Dorfman bracket $[-, -]_D$ on $\Gamma(E)$ satisfying consistency conditions

QP-manifold $(\mathcal{M}, \omega, \Theta)$

- Nonnegatively graded manifold *M* with degree *n* symplectic structure ω, that induces a graded Poisson bracket {·, ·} on C[∞](*M*)
- **2** Hamiltonian function Θ such that the **classical master equation** $\{\Theta,\Theta\}=0$ holds
- **3** Hamiltonian vector field $Q = \{\Theta, \cdot\}$, that obeys $\mathcal{L}_Q \omega = 0$

The QP-manifold construction generates a BV-formalism, with coordinates of (ghost-)degree (*commuting* and *anticommuting*)

Courant algebroid on vector bundle E

Vector bundle *E* over *M* with fiber metric $\langle \cdot, \cdot \rangle$, bundle map $\rho : E \longrightarrow TM$ and Dorfman bracket $[-, -]_D$ on $\Gamma(E)$ satisfying consistency conditions

QP-manifold $(\mathcal{M}, \omega, \Theta)$

- Nonnegatively graded manifold *M* with degree *n* symplectic structure ω, that induces a graded Poisson bracket {·,·} on C[∞](*M*)
- **2** Hamiltonian function Θ such that the **classical master equation** $\{\Theta,\Theta\}=0$ holds
- **3** Hamiltonian vector field $Q = \{\Theta, \cdot\}$, that obeys $\mathcal{L}_Q \omega = 0$

The QP-manifold construction generates a BV-formalism, with coordinates of (ghost-)degree (*commuting* and *anticommuting*)

QP-manifold of degree 2 \equiv Courant algebroid with vector bundle E

Special case of a Courant algebroid: Courant algebroid on Poisson manifold, based on generalized geometry on the cotangent bundle. Interesting for the formulation of non-geometric fluxes in string theory

Special case of a Courant algebroid: Courant algebroid on Poisson manifold, based on generalized geometry on the cotangent bundle. Interesting for the formulation of non-geometric fluxes in string theory

Poisson Courant Algebroid $(E = TM \oplus T^*M, \langle -, - \rangle, [-, -]_D, \rho = 0 \oplus \theta^{\sharp})$

Vector bundle $E = TM \oplus T^*M \to M$

 (M, θ) Poisson manifold with Poisson structure $\theta \in \Gamma(\wedge^2 TM)$ $R \in \Gamma(\wedge^3 TM)$ such that $[\theta, R]_S = 0$ (Schouten bracket on $\wedge^{\bullet} TM$) Bundle map $\rho : TM \oplus T^*M \to TM$ defined by $\rho(X + \alpha) = \theta^{ij}\alpha_i(x)\frac{\partial}{\partial x^j}$ Bilinear operation

$$[X + \alpha, Y + \beta]_D^{\theta} \equiv [\alpha, \beta]_{\theta} + L_{\alpha}^{\theta} Y - \iota_{\beta} d_{\theta} X - \iota_{\alpha} \iota_{\beta} R,$$

where $X + \alpha$, $Y + \beta \in \Gamma(TM \oplus T^*M)$ Lie bracket on T^*M (Koszul bracket) $[-, -]_{\theta} : T^*M \times T^*M \to T^*M$ Inner product $\langle -, - \rangle$ on $TM \oplus T^*M$

QP-formulation of the Poisson Courant algebroid on E

Graded manifold $\mathcal{M} = T^*[2]T[1]\mathcal{M}$, embedding map $j : E \otimes T\mathcal{M} \to \mathcal{M}$ Local coordinates (x^i, ξ_i, q^i, p_i) of (ghost-)degree (0, 2, 1, 1)Symplectic form $\omega = \delta x^i \wedge \delta \xi_i + \delta q^i \wedge \delta p_i$ induces graded P. bracket $\{\cdot, \cdot\}$

QP-formulation of the Poisson Courant algebroid on E

Graded manifold $\mathcal{M} = T^*[2]T[1]M$, embedding map $j : E \otimes TM \to \mathcal{M}$ Local coordinates (x^i, ξ_i, q^i, p_i) of (ghost-)degree (0, 2, 1, 1)Symplectic form $\omega = \delta x^i \wedge \delta \xi_i + \delta q^i \wedge \delta p_j$ induces graded P. bracket $\{\cdot, \cdot\}$ Hamiltonian function

$$\Theta = \theta^{ij}(x)\xi_i p_j - \frac{1}{2}\frac{\partial \theta^{jk}}{\partial x^i}(x)q^i p_j p_k + \frac{1}{3!}R^{ijk}(x)p_i p_j p_k$$

QP-formulation of the Poisson Courant algebroid on E

Graded manifold $\mathcal{M} = T^*[2]T[1]M$, embedding map $j : E \otimes TM \to \mathcal{M}$ Local coordinates (x^i, ξ_i, q^i, p_i) of (ghost-)degree (0, 2, 1, 1)Symplectic form $\omega = \delta x^i \wedge \delta \xi_i + \delta q^i \wedge \delta p_j$ induces graded P. bracket $\{\cdot, \cdot\}$ Hamiltonian function

$$\Theta = \theta^{ij}(x)\xi_i p_j - \frac{1}{2} \frac{\partial \theta^{jk}}{\partial x^i}(x)q^i p_j p_k + \frac{1}{3!}R^{ijk}(x)p_i p_j p_k$$

Derived brackets recover operations on $\Gamma(E)$, for example:

$$[\mathbf{X} + \alpha, \mathbf{Y} + \beta]_D^{\theta} = j^* \{\{\mathbf{X}^i(\mathbf{x})\mathbf{p}_i + \alpha_i(\mathbf{x})\mathbf{q}^i, \Theta\}, \mathbf{Y}^j(\mathbf{x})\mathbf{p}_j + \beta_j(\mathbf{x})\mathbf{q}^j\}$$

QP-formulation of the Poisson Courant algebroid on E

Graded manifold $\mathcal{M} = T^*[2]T[1]M$, embedding map $j : E \otimes TM \to \mathcal{M}$ Local coordinates (x^i, ξ_i, q^i, p_i) of (ghost-)degree (0, 2, 1, 1)Symplectic form $\omega = \delta x^i \wedge \delta \xi_i + \delta q^i \wedge \delta p_j$ induces graded P. bracket $\{\cdot, \cdot\}$ Hamiltonian function

$$\Theta = \theta^{ij}(x)\xi_i p_j - \frac{1}{2} \frac{\partial \theta^{jk}}{\partial x^i}(x)q^i p_j p_k + \frac{1}{3!}R^{ijk}(x)p_i p_j p_k$$

Derived brackets recover operations on $\Gamma(E)$, for example:

$$[\mathbf{X} + \alpha, \mathbf{Y} + \beta]_D^{\theta} = j^* \{\{\mathbf{X}^i(\mathbf{x})\mathbf{p}_i + \alpha_i(\mathbf{x})\mathbf{q}^i, \Theta\}, \mathbf{Y}^j(\mathbf{x})\mathbf{p}_j + \beta_j(\mathbf{x})\mathbf{q}^j\}$$

Classical master equation $\{\Theta, \Theta\} = 0$ gives structural restrictions

QP-formulation of the Poisson Courant algebroid on E

Graded manifold $\mathcal{M} = T^*[2]T[1]M$, embedding map $j : E \otimes TM \to \mathcal{M}$ Local coordinates (x^i, ξ_i, q^i, p_i) of (ghost-)degree (0, 2, 1, 1)Symplectic form $\omega = \delta x^i \wedge \delta \xi_i + \delta q^i \wedge \delta p_j$ induces graded P. bracket $\{\cdot, \cdot\}$ Hamiltonian function

$$\Theta = \theta^{ij}(x)\xi_i p_j - \frac{1}{2} \frac{\partial \theta^{jk}}{\partial x^i}(x)q^i p_j p_k + \frac{1}{3!}R^{ijk}(x)p_i p_j p_k$$

Derived brackets recover operations on $\Gamma(E)$, for example:

$$[\mathbf{X} + \alpha, \mathbf{Y} + \beta]_D^{\theta} = j^* \{\{\mathbf{X}^i(\mathbf{x})\mathbf{p}_i + \alpha_i(\mathbf{x})\mathbf{q}^i, \Theta\}, \mathbf{Y}^j(\mathbf{x})\mathbf{p}_j + \beta_j(\mathbf{x})\mathbf{q}^j\}$$

Classical master equation $\{\Theta, \Theta\} = 0$ gives structural restrictions

Next step: A topological membrane is described by a Courant algebroid. Construct the topological membrane model with R-flux from this algebroid.

Construction of the Topological Membrane

Describe embedding $X \to \mathcal{M}$ of topological membrane into target space

Construction of the Topological Membrane

Describe embedding $X \to \mathcal{M}$ of topological membrane into target space

- **1** Target space: our QP-manifold $(\mathcal{M}, \omega, \Theta)$
- Copological membrane: dg-manifold (X = T[1]X, D, μ) (X is 3-dim. membrane worldvolume)

Construction of the Topological Membrane

Describe embedding $X \to \mathcal{M}$ of topological membrane into target space

- **1** Target space: our QP-manifold $(\mathcal{M}, \omega, \Theta)$
- Copological membrane: dg-manifold (X = T[1]X, D, μ) (X is 3-dim. membrane worldvolume)

Alexandrov-Kontsevich-Schwarz-Zaboronsky formulation gives QP-structure on Map(T[1]X, M)(mapping space)

- **(**) Graded symplectic structure $\boldsymbol{\omega} = \int_{\chi} \mu \mathrm{ev}^* \omega$
- Pamiltonian function S
- Master equation {S, S} = 0 holds and leads to a
 BV-formalism of a topological membrane
- General Stress of the second stress o

The **topological string model with R-flux** is the boundary of the topological open membrane. It is a twisted Poisson sigma model.

Twisting the Topological Open Membrane

The **topological string model with R-flux** is the boundary of the topological open membrane. It is a twisted Poisson sigma model.

Twisting the Topological Open Membrane

The **topological string model with R-flux** is the boundary of the topological open membrane. It is a twisted Poisson sigma model.

Twisting $(\mathcal{M}, \omega, \Theta)$

Twist of the topological open membrane $(\partial \mathcal{X} \neq \emptyset)$ by canonical transformation generates a boundary term by changing the Lagrangian submanifold \mathcal{L} with respect to ω

Construction of the R-flux string sigma model

Topological open membrane on Map(T[1]X, M)

- 3-dimensional membrane worldvolume X with non-zero boundary $\partial X \neq \emptyset$
- **3** Symplectic structure $\boldsymbol{\omega} = \int_{\chi} \mu \left(\delta \boldsymbol{x}^{i} \wedge \delta \boldsymbol{\xi}_{i} + \delta \boldsymbol{q}^{i} \wedge \delta \boldsymbol{p}_{i} \right)$

Hamiltonian function
$$S = \int_{\mathcal{X}} \mu \left(-\boldsymbol{\xi}_i \boldsymbol{d} \boldsymbol{x}^i + \boldsymbol{p}_i \boldsymbol{d} \boldsymbol{q}^i + \theta^{ij}(\boldsymbol{x}) \boldsymbol{\xi}_i \boldsymbol{p}_j \right. \\ \left. - \frac{1}{2} \frac{\partial \theta^{jk}}{\partial x^i}(\boldsymbol{x}) \boldsymbol{q}^i \boldsymbol{p}_j \boldsymbol{p}_k + \frac{1}{3!} R^{ijk}(\boldsymbol{x}) \boldsymbol{p}_i \boldsymbol{p}_j \boldsymbol{p}_k \right)$$

Construction of the R-flux string sigma model

Topological open membrane on Map(T[1]X, M)

- **3**-dimensional membrane worldvolume *X* with non-zero boundary $\partial X \neq \emptyset$
- **3** Symplectic structure $\boldsymbol{\omega} = \int_{\chi} \mu \left(\delta \boldsymbol{x}^{i} \wedge \delta \boldsymbol{\xi}_{i} + \delta \boldsymbol{q}^{i} \wedge \delta \boldsymbol{p}_{i} \right)$

Hamiltonian function
$$S = \int_{\mathcal{X}} \mu \left(-\boldsymbol{\xi}_i \boldsymbol{d} \boldsymbol{x}^i + \boldsymbol{p}_i \boldsymbol{d} \boldsymbol{q}^i + \theta^{ij}(\boldsymbol{x}) \boldsymbol{\xi}_i \boldsymbol{p}_j \right)$$

 $-\frac{1}{2} \frac{\partial \theta^{jk}}{\partial x^i}(\boldsymbol{x}) \boldsymbol{q}^i \boldsymbol{p}_j \boldsymbol{p}_k + \frac{1}{3!} R^{ijk}(\boldsymbol{x}) \boldsymbol{p}_i \boldsymbol{p}_j \boldsymbol{p}_k \right)$

• $\delta S|_{\partial X} = 0$ determines boundary conditions

Construction of the R-flux string sigma model

Topological open membrane on Map(T[1]X, M)

- **③** 3-dimensional membrane worldvolume *X* with non-zero boundary $\partial X \neq \emptyset$
- **3** Symplectic structure $\boldsymbol{\omega} = \int_{\chi} \mu \left(\delta \boldsymbol{x}^{i} \wedge \delta \boldsymbol{\xi}_{i} + \delta \boldsymbol{q}^{i} \wedge \delta \boldsymbol{p}_{i} \right)$

Hamiltonian function
$$S = \int_{\mathcal{X}} \mu \left(-\boldsymbol{\xi}_i \boldsymbol{d} \boldsymbol{x}^i + \boldsymbol{p}_i \boldsymbol{d} \boldsymbol{q}^i + \theta^{ij}(\boldsymbol{x}) \boldsymbol{\xi}_i \boldsymbol{p}_j \right)$$

 $-\frac{1}{2} \frac{\partial \theta^{jk}}{\partial x^i}(\boldsymbol{x}) \boldsymbol{q}^i \boldsymbol{p}_j \boldsymbol{p}_k + \frac{1}{3!} R^{ijk}(\boldsymbol{x}) \boldsymbol{p}_i \boldsymbol{p}_j \boldsymbol{p}_k \right)$

- $\delta S|_{\partial \mathcal{X}} = 0$ determines boundary conditions
- Twist by $\alpha = \frac{1}{2}B_{ij}(x)q^iq^j$ leads to twisted master equation $H = dB = \wedge^3 B^{\flat} R$ on the boundary

Construction of the R-flux String Sigma Model

Topological string with R-flux WZ term in two dimensions

For $B = \theta^{-1}$, the boundary model is a twisted AKSZ sigma model in two dimensions with WZ term

$$S = \int_{\partial \mathcal{X}} \mu_{\partial \mathcal{X}} (\theta^{-1})_{ij} \boldsymbol{q}^{i} \boldsymbol{d} \boldsymbol{x}^{j} - \frac{1}{2} B_{ij}(\boldsymbol{x}) \boldsymbol{q}^{i} \boldsymbol{q}^{j} + \int_{\mathcal{X}} \mu \frac{1}{3!} R^{ijk}(\boldsymbol{x}) (\theta^{-1})_{il} (\theta^{-1})_{jm} (\theta^{-1})_{kn} \boldsymbol{d} \boldsymbol{x}^{l} \boldsymbol{d} \boldsymbol{x}^{m} \boldsymbol{d} \boldsymbol{x}^{n}$$

Construction of the R-flux String Sigma Model

Topological string with R-flux WZ term in two dimensions

For $B = \theta^{-1}$, the boundary model is a twisted AKSZ sigma model in two dimensions with WZ term

$$S = \int_{\partial \mathcal{X}} \mu_{\partial \mathcal{X}} (\theta^{-1})_{ij} \boldsymbol{q}^{i} \boldsymbol{d} \boldsymbol{x}^{j} - \frac{1}{2} B_{ij}(\boldsymbol{x}) \boldsymbol{q}^{i} \boldsymbol{q}^{j} + \int_{\mathcal{X}} \mu \frac{1}{3!} R^{ijk}(\boldsymbol{x}) (\theta^{-1})_{il} (\theta^{-1})_{jm} (\theta^{-1})_{kn} \boldsymbol{d} \boldsymbol{x}^{l} \boldsymbol{d} \boldsymbol{x}^{m} \boldsymbol{d} \boldsymbol{x}^{n}$$

• It is a Poisson sigma model deformed by an R-flux WZ term and equivalent to the standard H-twisted Poisson sigma model

Construction of the R-flux String Sigma Model

Topological string with R-flux WZ term in two dimensions

For $B = \theta^{-1}$, the boundary model is a twisted AKSZ sigma model in two dimensions with WZ term

$$S = \int_{\partial \mathcal{X}} \mu_{\partial \mathcal{X}} (\theta^{-1})_{ij} \boldsymbol{q}^{i} \boldsymbol{d} \boldsymbol{x}^{j} - \frac{1}{2} B_{ij}(\boldsymbol{x}) \boldsymbol{q}^{i} \boldsymbol{q}^{j} + \int_{\mathcal{X}} \mu \frac{1}{3!} R^{ijk}(\boldsymbol{x}) (\theta^{-1})_{il} (\theta^{-1})_{jm} (\theta^{-1})_{kn} \boldsymbol{d} \boldsymbol{x}^{l} \boldsymbol{d} \boldsymbol{x}^{m} \boldsymbol{d} \boldsymbol{x}^{n}$$

- It is a Poisson sigma model deformed by an R-flux WZ term and equivalent to the standard H-twisted Poisson sigma model
- O Through the existence of the Poisson tensor θ, this model realizes a lifting to a topological membrane theory, that is different from the lifting of the H-twisted Poisson sigma model

Duality between H-Flux and R-Flux Geometry

• Standard Courant algebroid with H-flux and Poisson Courant algebroid with R-flux both are realized on $(T^*[2]T[1]M, \omega)$ with different Hamiltonian functions

$$\Theta_{H} = \xi_{i}q^{i} + \frac{1}{3!}H_{ijk}q^{i}q^{j}q^{k}$$
$$\Theta_{R} = \theta^{ij}\xi_{i}p_{j} - \frac{1}{2}\frac{\partial\theta^{jk}}{\partial x^{i}}q^{i}p_{j}p_{k} + \frac{1}{3!}R^{ijk}p_{i}p_{j}p_{k}$$

Duality between H-Flux and R-Flux Geometry

• Standard Courant algebroid with H-flux and Poisson Courant algebroid with R-flux both are realized on $(T^*[2]T[1]M, \omega)$ with different Hamiltonian functions

$$\Theta_{H} = \xi_{i}q^{i} + \frac{1}{3!}H_{ijk}q^{i}q^{j}q^{k}$$
$$\Theta_{R} = \theta^{ij}\xi_{i}p_{j} - \frac{1}{2}\frac{\partial\theta^{jk}}{\partial x^{i}}q^{i}p_{j}p_{k} + \frac{1}{3!}R^{ijk}p_{i}p_{j}p_{k}$$

2 Duality transformation between H-flux and R-flux Symplectomorphism $T : \Theta_H \mapsto \Theta_R = e^{\delta_b} e^{\delta_\beta} \Theta_H$ on $(T^*[2]T[1]M, \omega)$ where canonical transf. e^{δ_b} and e^{δ_β} generate b- and β -transform

Duality between H-Flux and R-Flux Geometry

• Standard Courant algebroid with H-flux and Poisson Courant algebroid with R-flux both are realized on $(T^*[2]T[1]M, \omega)$ with different Hamiltonian functions

$$\Theta_{H} = \xi_{i}q^{i} + \frac{1}{3!}H_{ijk}q^{i}q^{j}q^{k}$$
$$\Theta_{R} = \theta^{ij}\xi_{i}p_{j} - \frac{1}{2}\frac{\partial\theta^{jk}}{\partial x^{i}}q^{i}p_{j}p_{k} + \frac{1}{3!}R^{ijk}p_{i}p_{j}p_{k}$$

2 Duality transformation between H-flux and R-flux Symplectomorphism $T : \Theta_H \mapsto \Theta_R = e^{\delta_b} e^{\delta_\beta} \Theta_H$ on $(T^*[2]T[1]M, \omega)$ where canonical transf. e^{δ_b} and e^{δ_β} generate b- and β -transform

On the mapping space The duality transformation between H-flux and R-flux can be interpreted as the **change of boundary conditions of the topological membrane**

 Duality between H-flux and R-flux can be rephrased using the structure of a Lie 3-algebroid

- Duality between H-flux and R-flux can be rephrased using the structure of a Lie 3-algebroid
- Phis Lie 3-algebroid is constructed by a QP-manifold of degree 3, which contains a Hamiltonian function Θ of degree 4 and induces higher Dorfman brackets

- Duality between H-flux and R-flux can be rephrased using the structure of a Lie 3-algebroid
- Phis Lie 3-algebroid is constructed by a QP-manifold of degree 3, which contains a Hamiltonian function Θ of degree 4 and induces higher Dorfman brackets
- Twisted Lagrangian submanifolds within the Lie 3-algebroid lead to Courant algebroids realizing different flux configurations

- Duality between H-flux and R-flux can be rephrased using the structure of a Lie 3-algebroid
- Phis Lie 3-algebroid is constructed by a QP-manifold of degree 3, which contains a Hamiltonian function Θ of degree 4 and induces higher Dorfman brackets
- Twisted Lagrangian submanifolds within the Lie 3-algebroid lead to Courant algebroids realizing different flux configurations

Algebroid Duality

Symplectomorphism of QP manifolds $\mathcal{T}:\mathcal{M}_1\to\mathcal{M}_2$ that

- Preserves the QP structure
- Transformes Lagrangian submanifolds $T : \mathcal{L}_1 \to \mathcal{L}_2$

 Constructed a Courant algebroid on Poisson manifold, based on generalized geometry on the cotangent bundle, using QP-manifolds

- Constructed a Courant algebroid on Poisson manifold, based on generalized geometry on the cotangent bundle, using QP-manifolds
- Obveloped a topological string model with R-flux, which is equivalent to the H-twisted Poisson sigma model, but lifts to a different topological membrane theory

- Constructed a Courant algebroid on Poisson manifold, based on generalized geometry on the cotangent bundle, using QP-manifolds
- Obveloped a topological string model with R-flux, which is equivalent to the H-twisted Poisson sigma model, but lifts to a different topological membrane theory
- Realized a duality transformation that relates the topological string model with R-flux to the topological string with H-flux using a symplectomorphism of QP-manifolds

- Constructed a Courant algebroid on Poisson manifold, based on generalized geometry on the cotangent bundle, using QP-manifolds
- Obveloped a topological string model with R-flux, which is equivalent to the H-twisted Poisson sigma model, but lifts to a different topological membrane theory
- Realized a duality transformation that relates the topological string model with R-flux to the topological string with H-flux using a symplectomorphism of QP-manifolds
- Rephrased this duality transformation as an *algebroid duality* between substructures of a Lie 3-algebroid

- Constructed a Courant algebroid on Poisson manifold, based on generalized geometry on the cotangent bundle, using QP-manifolds
- Obveloped a topological string model with R-flux, which is equivalent to the H-twisted Poisson sigma model, but lifts to a different topological membrane theory
- Realized a duality transformation that relates the topological string model with R-flux to the topological string with H-flux using a symplectomorphism of QP-manifolds
- Rephrased this duality transformation as an *algebroid duality* between substructures of a Lie 3-algebroid
- We are aiming to use this framework to find a complete generalization of topological T-duality, that connects all (H, F, Q and R) fluxes