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I. Introduction




AdS/CFT correspondence

type 1B superstring on AdSsxS> <:> N =4 SU(N) SYM ( large N limit )

A remarkable feature : an integrable structure behind AdS/CFT

* The integrability plays an important role in testing the conjectured relations
in the AdS/CFT

e.g. anomalous dimensions, Wilson loops ....

In this talk, we will focus on the classical integrability on the string-theory side

* Type lIB superstring on AdSsxS? is realized as a coset sigma model

[Metsaev-Tseytlin, '98]

 The existence of Lax pair the classical integrablity
[Bena-Polchinski-Roiban, ‘03]



Next step

Integrable deformations of the AdS/CFT

Preserving the integrability while deforming the background (symmetry)
in @ non-trivial way

It would be significant to reveal a deeper integrable structure behind
gauge/gravity dualities beyond the conformal invariance

Here we focus on a g-deformation of AdSsxS> superstring
[Delduc-Magro-Vicedo, '13]



I1. g-deformation of
AdS_XxS° superstring



Integrable deformations : Yang-Baxter sigma models

/ Deformed principle chiral models \
1 ‘ 1 2 o
S=— /drdm“j Ir [g_l‘c)ag _ ] (g_lé),3g)] [Klimcik, "02,"08]
2 1 —nR |
, \{ Integrable deformation ]
n : deformation parameter
K R : asolution of modified classical Yang-Baxter equation (mCYBE) /
mCYBE (non-split) : [RX,RY] — R([RX,Y] + [X,RY]) =[X,Y], VX.Y €g
 The existence of a Lax pair classical integrability
* Generalized to symmetric coset models [Delduc-Magro-Vicedo, "13]
* type lIB superstring on AdSsxS> [Delduc-Magro-Vicedo, "13]

NOTE : Another kind of integrable deformations based on (non-modified) CYBE
[Kawaguchi-Matsumoto-Yoshida, '14] [Matsumoto-Yoshida, 15]

Many r-matrices have been identified with solutions of type IIB SUGRA



g-deformed superstring action

[Delduc-Magro-Vicedo, '13,"14]
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Group element: g € SU(2,2/4)

Deformation parameter:n < [0, 1)

/d, / daP“Stl[( “19,g) d o - L+ (“ldgq)]

1—-nR,od
~

~

[ Integrable deformation J

/

2
d=P + 2 Py — Py R,=Adg'oRoAdyg
—iX  (if Xis a positive root)
| R'Ope.rator- R(X) = 0 (if X is a Cartan)
( Drinfeld-limbo type ) + 11X (if X is a negative root)

The existence of Lax pairs

SU(2,2|4) symmetry |:>

kappa-invariance

classical integrablity

g-deformed SU(2,2|4)



A g-deformed AdSsxS> background

The g-deformed metric (in the string frame) and the B-field were derived

[Arutyunov-Borsato-Frolov, '13]
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Deformation parameter: C l_lng € [0,00)

Some arguments towards the complete SUGRA solution

[Lunin-Roiban-Tseytlin,’14] [Arutyunov-Borsato-Frolov,’15] [Hoare-Tseytlin,’15]
RR couplings fail to satisfy eom of 1IB SUGRA, despite the presence of k-symmetry

A possible gauge-theory dual has not been uncovered yet

, 1
A singularity surface (curvature singularity) exists at ps = arcsinh

C
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An interesting issue

Revealing the nature of the singularity surface

* GKP-like rotating string solutions have been considered as probes.

[Frolov, IGST14] |[T.K., Yoshida, '14]

 The Virasoro constraints imply

“ GKP-like strings never stretch beyond
the singularity surface ”

 We considered two kinds of limits to
express the energy E as a function of
the spin S explicitly

singularity surface .




A short string limit

Inthe large wcase: w >k

 The string is confined to a narrow region
near the origin of deformed AdS

* Spinbehavesas S/VA < 1

singularity surface

E* = 2VA(1+ C?)? 5[1 +(1+CYT =+ ] with S/VA <1

The undeformed limit ¢ — 0

j 2\[\5[- 25 ] The undeformed result is reproduced precisely

I+ —=+ ...
VA [Gubser-Klebanov-Polyakov, '02]
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A long string limit

Inthe limit: w — (V1+C2+C)k with « > 1,

the length of the string becomes maximum

singularity surface

N e =

-

WAV £ C2
E—(V1+CZ+0)S = ‘:X 12:C [(\/1+C‘2+C)arc-.sinh(,/1+(12—1)

—arctanh (1 +

c\-d

The result is quite different from the GKP relation

E—5— \/Xlog[%-

\/XS} 4o

—_—

/"

[Gubser-Klebanov-Polyakov, '02]
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I11. A holographic setup
for g-deformed geometry



Observation

e Classical string solutions such as GKP-like strings cannot stretch beyond
the singularity surface

* The causal structure around the singularity surface is very similar to
the boundary of the global AdS space

e.g. For massless particles, it takes infinite affine time to reach the singularity

The d.o.f. are confined into the region enclosed by the singularity surface?

— QOur conjecture

The singularity surface might be treated as the holographic screen

* |t would be worth trying to look for a coordinate system which describes
spacetime only inside the singularity surface

analogue : the tortoise coordinates for black holes



Another coordinate system for g-deformed AdS.

cosh p

V1 — C2sinh? p

Performing the coordinate transformation : = cosh x

p € [0,arcsinh(1/C))  ismappedto x € [0,00)

i) g-deformed AdS ii) g-deformed AdS with new coordinates

-

‘ Singularity surface ‘

dy?
14+ C?

ds idSo = RQ(l + CQ)% — cosh? X dt® + .
cosh” y

(1 + C? cosh® y) sinh?

2 - — (d¢* + cos® ¢ d?) +
(1+ C?cosh® x)? + C?sinh* y sin® ¢ € )

sinh? y sin? ¢ (lpg]
1 + C2cosh? y

The singularity surface is now located at infinity of the radial direction
14



IV. Minimal surfaces



Minimal surfaces for the g-deformed background

e Within the usual AdS/CFT case, Wilson loops are calculated by an area of
an open string extending to the boundary of AdS ( minimal surface )

* For the deformed case, we consider minimal surfaces which end on
the “boundary” ( singularity surface )

e These solutions reduce to usual solutions in the undeformed limit

To seek for the mysterious gauge-theory dual, minimal surfaces might be a good clue

* For this purpose, it is helpful to use Poincaré coordinates for g-deformed AdS,

. ‘ dz? + dr? C?(zdz + rdr)?
ds% .. = R*V1+ C? 4+ — 7
Ads 2+ C222 412 22(22 4 CF(22 4 12))

) ) D) 9 . 7 . P9

22 4+ C? (2% 4+ 1?))r? . . . rsin” ¢ diy
o (. D" (4 cost g + o S
(22 4 C2(22 +12))” + C2rtsin® ¢ 22+ C%(2% +17)

The singularity surface is now located at z =0 ( boundary)
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1) g-deformed AdS, : a minimal surface with a circular boundary

 We constructed a minimal surface which ends at the boundary of
the g-deformed AdS with the Poincaré coordinates

whose boundary ( 2 =0 ) shape is a circle ( radius = q )

Ansatz: x=vaZ—12,  r=r(0), Ui=Ui(1), p=(=0,

with the conformal gauge

Induced metric ey Rv1+Clr [ & dr” +d "’]
. A8y jq. = — ‘ — , awy
Ads: = T+ a2 — 2 2@ —12) 7 7
a '
Solution: z =atanho, r= ‘ UV =T.

cosho’
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Evaluating the classical Euclidean action ( area of the minimal surface )

\/X 27 oo 2
S=—V1+C? [ d d
4 T /0 " /0 ’ [sinh2 o + C2 cosh? a]
./ 2
= \/Xl%c arccot|C]

The minimal surface area can be computed without any regularization
in contrast with the undeformed case

The result would come from the finiteness of the space-like proper distance
to the singularity surface

g-deformation may be regarded as a UV regularization

NOTE: An additional contribution (total derivative) coming from the boundary
vanishes when C' # 0
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2) g-deformed AdS;xS? : a cusped minimal surface

2 _ p2
dS)qas,xst = B

The bc is two lines separated by m — ¢ on the boundary of the g-deformed
AdS and § on the sphere part

The string solution fits inside g-deformed AdS,xS?:

Jire dz? + dr? + rdy? C%(zdz + rdr)?

4y
22+ C%(22 +12) % (22 + C%(2% +r2)) "

As world-sheet coordinates we can take r and ®
and the ansatz for the other coordinates is
T

z = : ¥ =Yg
f() 2
The two conserved quantities are
1 J 1+ C*1+ f?
p = — q = — — (2 f ) r&/
E E [

The resulting equations are elliptic and the classical solution is expressed as

elliptic integrals of first and third kind
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In the limit : ¢ & m, the two curves approach antiparallel lines

Undeformed case : [Drukker-Forini,’11]

In the case C << 1, the classical action leads to a repulsive potential

T\/TE — (1 -k)K (k) 8 N 16C  E (k) — (1 —k*)K (k?)
T Am T—¢ (m—0)? kVvI-—REK(k?)

A strong repulsive force between quark and antiquark if they are close enough

analogy to gravity duals for non-commutative gauge theories

s/ (TVA/(am))1s

10

=0.02 = 1/2
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V. Summary
&Discussion



Summary

We have discussed the nature of the singularity surface of the g-deformed

AdSsxS> superstring and classical string solutions

* GKP-like strings cannot stretch beyond the singularity surface

* The singularity surface may be regarded as the holographic screen

* We have introduced a coordinate system which describes the
spacetime only inside the singularity surface

* Area of minimal surfaces does not have a linear divergence,
in contrast with the undeformed case

A quark-antiquark potential from the g-deformed AdSsxS> has
an analogy to gravity duals for non-commutative gauge theories



Outlook

-

\_

A possible gauge-theory dual ?

To find more support for the conjecture of the singularity
surface acting as a holographic screen

One-loop beta function ?
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