On skein relations in class S theory towards \mathcal{N} =4 SYM, T_{N} & 4D-2D-1D applications

based on joint work arXiv:1504.00121 w/Y.Tachikawa (Hongo, Univ. Tokyo) and other work in progress (JHEP 06(2015)186)

渡辺伯陽 (Noriaki Watanabe)

Kavli IPMU, Graduate School of Science, The University of Tokyo

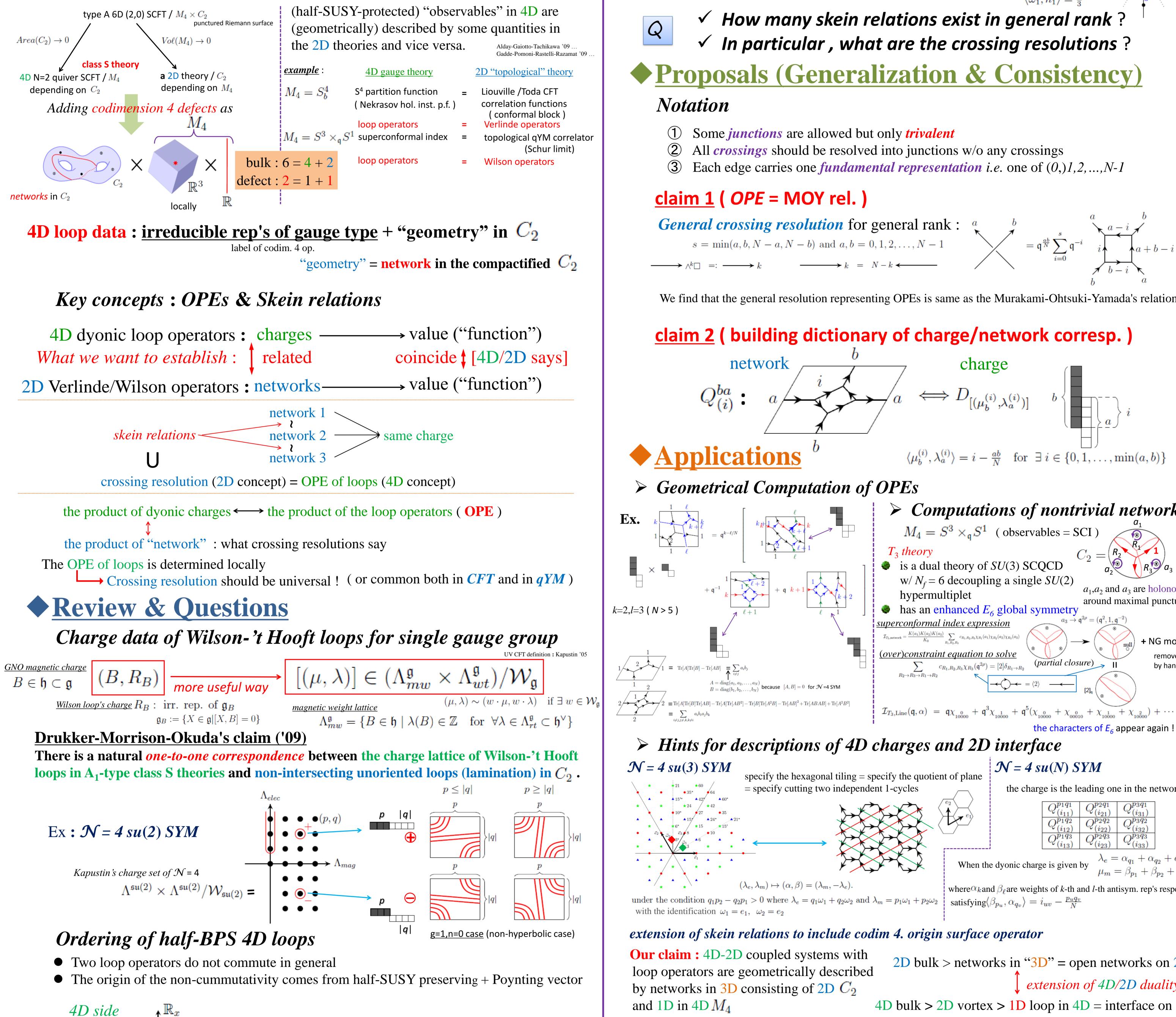
Introduction

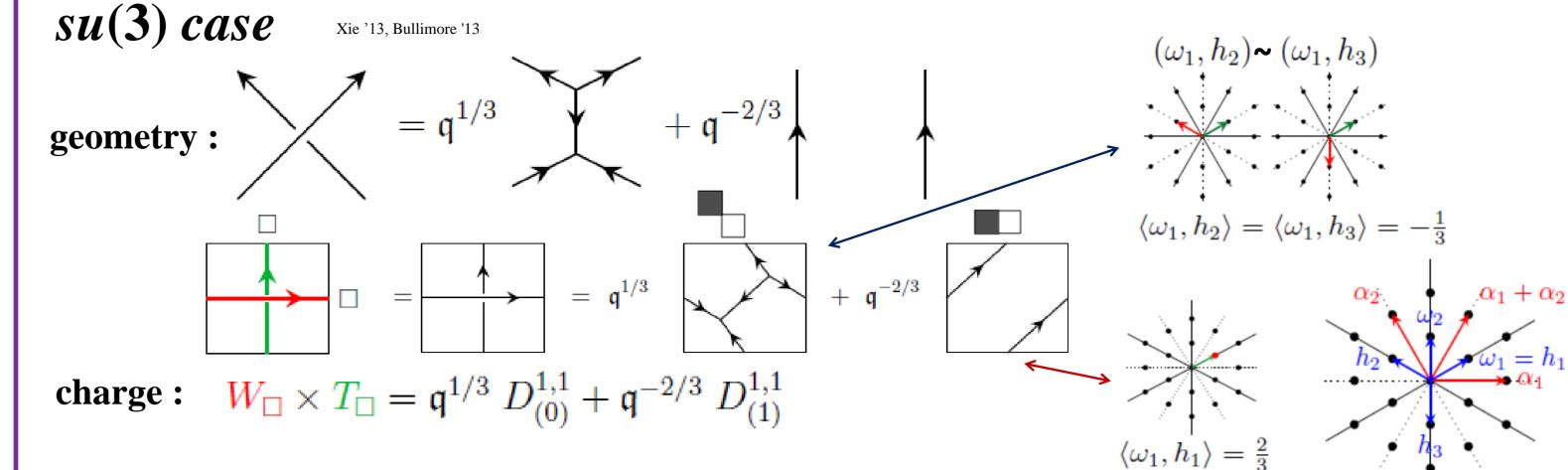
Motivation : Why defects ? **Defects** in QFT naturally appear in brane systems. (Ex. In 4D, local op., loop op., surface defect and domain wall...)

Here we focus on 4D half-BPS Wilson-'t Hooft loops in SCQCD (at first) w/ 8SUSY's...

<u>Physical meaning</u>: Insert a heavy (non-dynamical) dyon and see a response as the result of gauge interactions with charged dynamical matters (sometimes play a role of order parameter) Set-up : Class S Theory & 4D-2D duality

type A 6D (2,0) SCFT / $M_4 imes C_2$ punctured Riemann surface $Area(C_2) \rightarrow$ $Vo\ell(M_4) \to 0$ lass S theory **a** 2D theory $/C_2$ 4D N=2 quiver SCFT / M_4 depending on M_4 depending on C_2



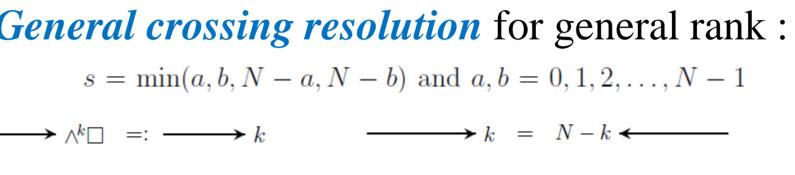


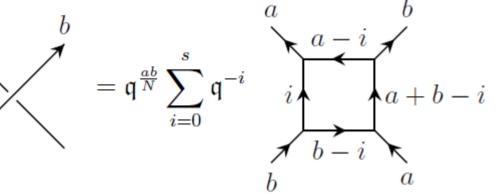
✓ How many skein relations exist in general rank ? \checkmark In particular , what are the crossing resolutions ?

Proposals (Generalization & Consistency)

All *crossings* should be resolved into junctions w/o any crossings

Each edge carries one *fundamental representation i.e.* one of (0,)1,2,...,N-1





 a_1, a_2 and a_3 are holonomies

around maximal punctures

+ NG modes

removed

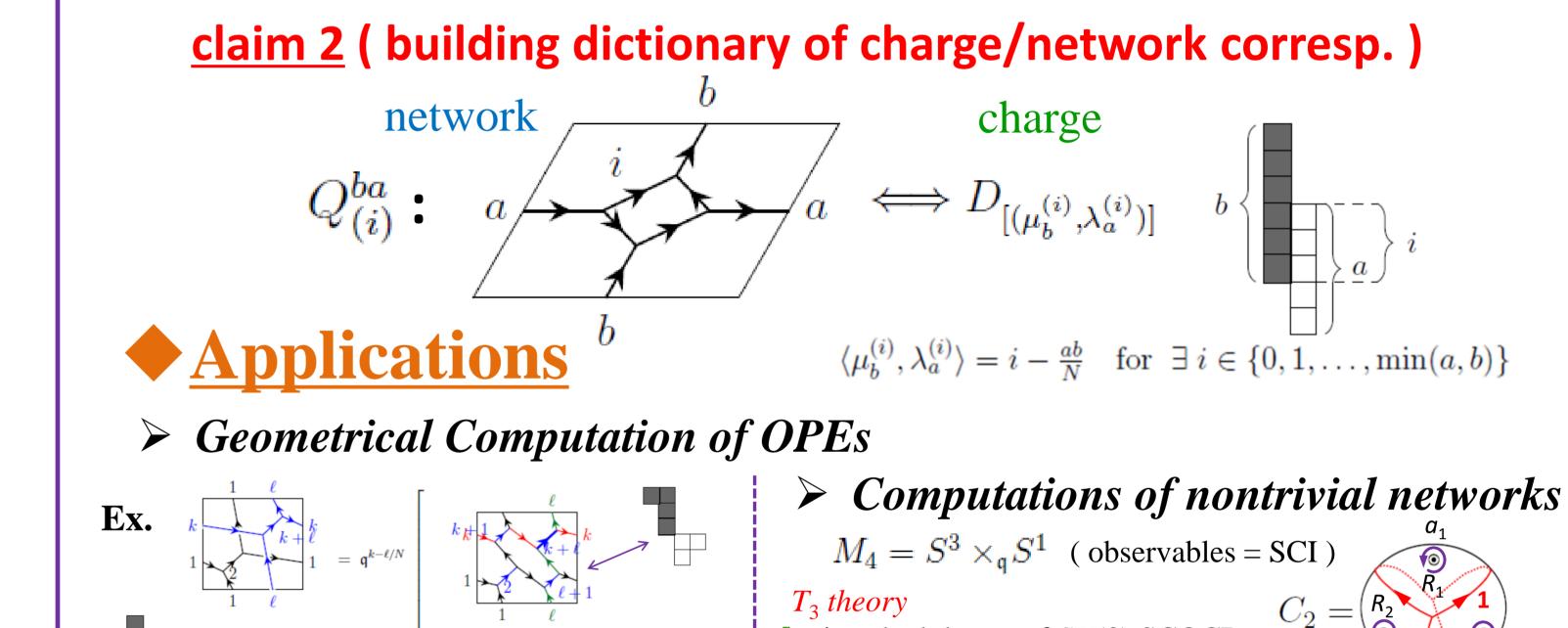
by hand

 $a_3 \rightarrow \mathfrak{q}^{2\rho} = (\mathfrak{q}^2, 1, \mathfrak{q}^{-2})$

the characters of E_6 appear again !

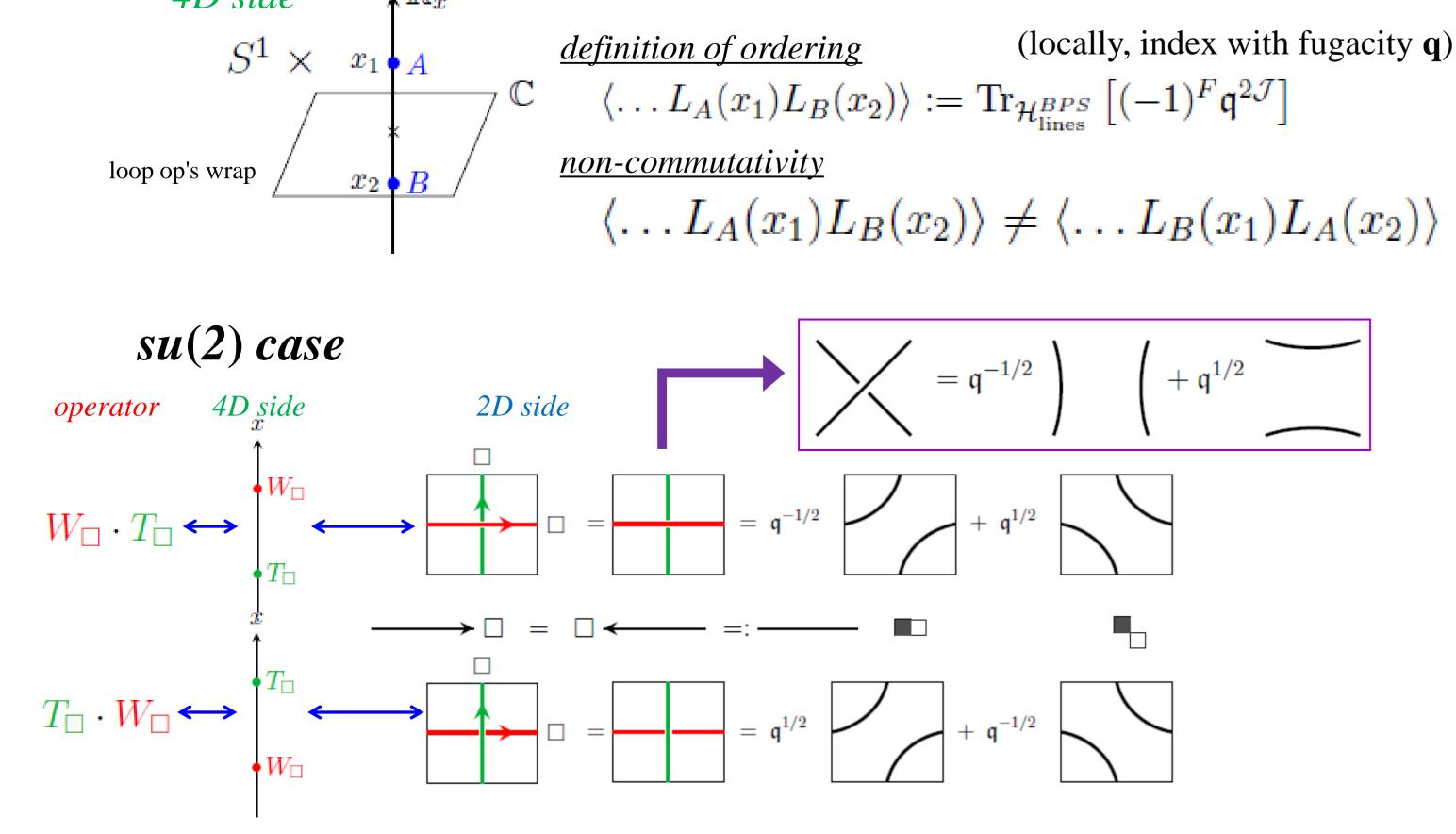
(partial closure)

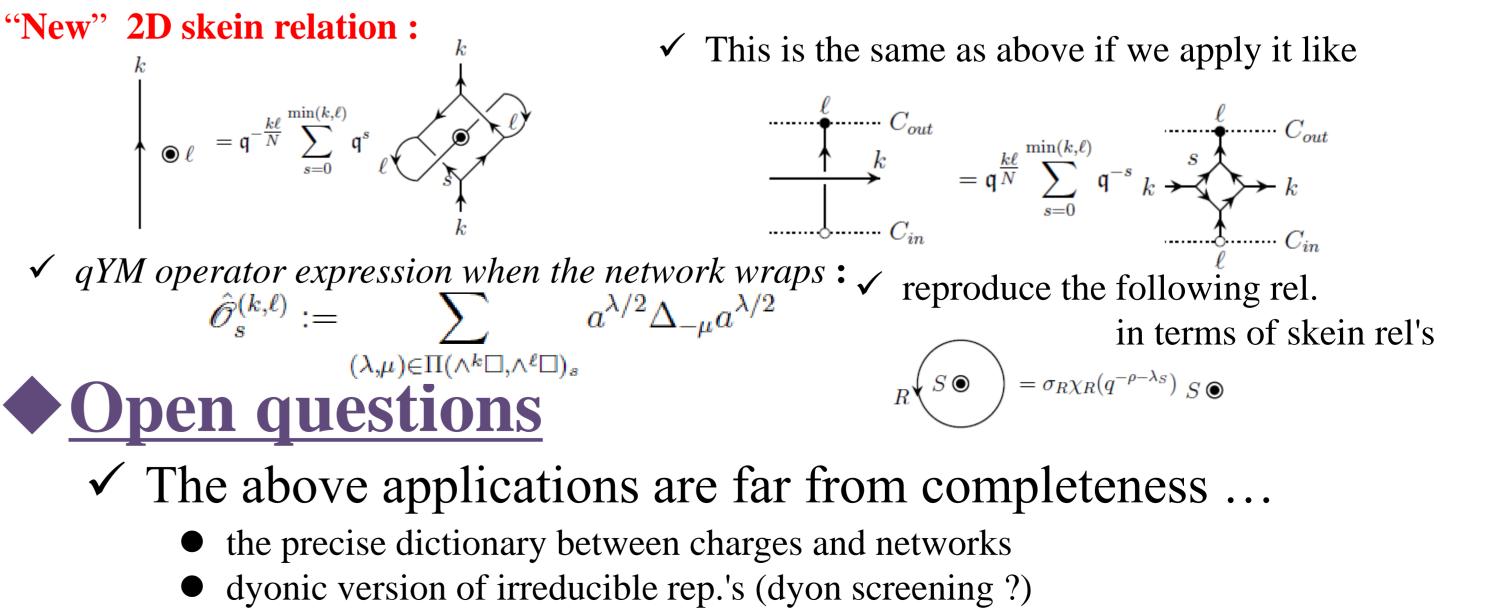
We find that the general resolution representing OPEs is same as the Murakami-Ohtsuki-Yamada's relation.



the charge is the leading one in the network like $\mathscr{V}(i_{31})$ $\mathfrak{V}(i_{21})$ $O^{p_2q_2}$ $= \alpha_{q_1} + \alpha_{q_2} + \alpha_{q_3}$ When the dyonic charge is given by $\mu_m = \beta_{p_1} + \beta_{p_2} + \beta_{p_3}$ where α_k and β_l are weights of k-th and l-th antisym. rep's respectively satisfying $\langle \beta_{p_u}, \alpha_{q_v} \rangle = i_{uv} - \frac{p_u q_v}{N}$

2D bulk > networks in "3D" = open networks on 2D *extension of 4D/2D duality* 4D bulk > 2D vortex > 1D loop in 4D = interface on 2D





- general computations of indices (based on quantum groups)
- How to define such interfaces on 2D $\mathcal{N} = (2,2)$ SQCD on surface defects ?

✓ How to define open networks and classify them...? ✓ Relations to stringy descriptions (MQCD + M2's) ...