Recurrence Relations for Finite-Temperature Correlators via $\mathbf{A d S}_{\mathbf{2}} / \mathbf{C F T}_{\mathbf{1}}$

Satoshi Ohya
Institute of Quantum Science, Nihon University
Based on:
SO, arXiv:1309.2939

Introduction

- Conformal symmetry is powerful enough to constrain possible forms of correlation functions.
- Indeed, up to overall normalization factors, two- and three-point functions are completely fixed by $S O(2, d)$ conformal symmetry in any spacetime dimension $d \geq 1$ [Polyakov '70]:

$$
\begin{aligned}
\left\langle\mathcal{O}_{\Delta_{1}}\left(x_{1}\right) \mathcal{O}_{\Delta_{2}}\left(x_{2}\right)\right\rangle & =\delta_{\Delta_{1} \Delta_{2}} \frac{C_{\Delta_{1} \Delta_{2}}}{\left|x_{1}-x_{2}\right|^{\Delta_{1}+\Delta_{2}}} \\
\left\langle\mathcal{O}_{\Delta_{1}}\left(x_{1}\right) \mathcal{O}_{\Delta_{2}}\left(x_{2}\right) \mathcal{O}_{\Delta_{3}}\left(x_{3}\right)\right\rangle & =\frac{C_{\Delta_{1} \Delta_{2} \Delta_{3}}}{\left|x_{1}-x_{2}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|x_{2}-x_{3}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}\left|x_{3}-x_{1}\right|^{\Delta_{3}+\Delta_{1}-\Delta_{2}}}
\end{aligned}
$$

- Conformal constraints work well in coordinate space.
- Then, what about conformal constraints in momentum space?

Introduction

- Correlation functions in momentum space are directly related to physical observables.
- Example: imaginary part of retarded two-point function $=$ spectral density
- So it would be desirable to understand how conformal symmetry constrains the possible forms of momentum-space correlators.
- In principle, momentum-space correlators are just obtained by Fourier transforms of position-space correlators.
- However, Fourier transforms of position-space correlators are generally hard.
- Indeed, in spite of its simplicity in coordinate space, three-point functions in momentum space are known to be very complicated.
- In fact, Fourier transform of three-point functions in finite-temperature CFT_{2} was first computed in 2014! [Becker-Cabrera-Su '14]
- The study of conformal constraints in momentum space is still ongoing
[Corianò-Delle Rose-Mottola-Serino '13] [Bzowski-McFadden-Skenderis '13].

Introduction

- Today I will present a simple algebraic approach to compute finite-temperature CFT two-point functions in momentum space.
- For the sake of simplicity I shall focus on finite-temperature CFT_{1}.
- The keys to my approach are:
- 1d conformal algebra $\mathfrak{S v}(2,1)$ in the basis in which the $S O(1,1)$ generator becomes diagonal; and
- Killing vectors of AdS_{2} black hole.

AdS $_{2}$ black hole

- The AdS_{2} black hole is a portion of AdS_{2}; it is just a single Rindler wedge of AdS_{2} and described by the following metric:

$$
d s_{\mathrm{AdS}_{2}}^{2}=-\left(\frac{r^{2}}{R^{2}}-1\right) d t^{2}+\frac{d r^{2}}{r^{2} / R^{2}-1}, \quad r \in(R, \infty)
$$

- AdS_{2} is topologically an infinite strip.
- The AdS_{2} black hole covers only a part of the whole AdS_{2}.
- $r=R$: Rindler horizon
- $r=\infty: \mathrm{AdS}_{2}$ boundary

AdS $_{2}$ black hole

- The AdS_{2} black hole is a portion of AdS_{2}; it is just a single Rindler wedge of AdS_{2} and described by the following metric:

$$
d s_{\mathrm{AdS}_{2}}^{2}=-\left(\frac{r^{2}}{R^{2}}-1\right) d t^{2}+\frac{d r^{2}}{r^{2} / R^{2}-1}, \quad r \in(R, \infty)
$$

- For the following discussions it is convenient to introduce a new coordinate system (t, x) via

$$
r=R \operatorname{coth}(x / R), \quad x \in(0, \infty)
$$

in which the metric becomes conformally flat:

$$
d s_{\mathrm{AdS}_{2}}^{2}=\frac{-d t^{2}+d x^{2}}{\sinh ^{2}(x / R)}
$$

- Below I will work in the units $R=1$.

AdS_{2} and $S O(2,1)$

- The one-dim'l conformal group $S O(2,1)$, which is the isometry of AdS_{2}, contains three distinct one-parameter subgroups:
- compact rotation group $S O(2)$
- noncompact Euclidean group $E(1)$
- noncompact Lorentz group $S O(1,1)$
- Correspondingly, there exist three distinct classes of static AdS_{2} coordinate patches in which time-translation Killing vectors generate these one-parameter subgroups $S O(2)$, $E(1)$ and $S O(1,1)$.
- In Lorentzian signature, these coordinate patches are given by the global, Poincaré and Rindler coordinates, respectively.

coordinate patch	time-translation group		frequency spectrum	
	Lorentzian	Euclidean	Lorentzian	Euclidean
global	$S O(2)$	$S O(1,1)$	discrete	continuous
Poincaré	$E(1)$	$E(1)$	continuous	continuous
Rindler	$S O(1,1)$	$S O(2)$	continuous	discrete (Matsubara frequency)

Correlator Recurrence Relations

1d conformal algebra: $S O(2)$ diagonal basis

- The one-dim'l conformal algebra $\mathfrak{s o}(2,1)$ is spanned by the three generators $\left\{J_{1}, J_{2}, J_{3}\right\}$ that satisfy the commutation relations

$$
\left[J_{1}, J_{2}\right]=i J_{3}, \quad\left[J_{2}, J_{3}\right]=-i J_{1}, \quad\left[J_{3}, J_{1}\right]=-i J_{2}
$$

- In the Cartan-Weyl basis $\left\{J_{3}, J_{ \pm}:=-J_{1} \pm i J_{2}\right\}$ the commutation relations become

$$
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm}, \quad\left[J_{+}, J_{-}\right]=-2 J_{3}
$$

- The quadratic Casimir of the Lie algebra $\mathfrak{g o}(2,1)$ is

$$
C=-J_{1}^{2}-J_{2}^{2}+J_{3}^{2}=J_{3}\left(J_{3} \pm 1\right)-J_{\mp} J_{ \pm}
$$

- Let $|\Delta, \omega\rangle$ be a simultaneous eigenstate of C and J_{3} that satisfies

$$
C|\Delta, \omega\rangle=\Delta(\Delta-1)|\Delta, \omega\rangle \quad \text { and } \quad J_{3}|\Delta, \omega\rangle=\omega|\Delta, \omega\rangle
$$

Then the state $J_{ \pm}|\Delta, \omega\rangle$ satisfies $J_{3} J_{ \pm}|\Delta, \omega\rangle=(\omega \pm 1) J_{ \pm}|\Delta, \omega\rangle$, which implies the ladder equations

$$
J_{ \pm}|\Delta, \omega\rangle \propto|\Delta, \omega \pm 1\rangle
$$

1d conformal algebra: $S O(1,1)$ diagonal basis

- Let us next consider the following hermitian linear combinations

$$
A_{1}=J_{1}, \quad A_{ \pm}=J_{2} \pm J_{3}
$$

which satisfy the commutation relations

$$
\left[A_{1}, A_{ \pm}\right]= \pm i A_{ \pm}, \quad\left[A_{+}, A_{-}\right]=2 i A_{1}
$$

- The quadratic Casimir of the Lie algebra $\mathfrak{S v}(2,1)$ is

$$
C=-J_{1}^{2}-J_{2}^{2}+J_{3}^{2}=-A_{1}\left(A_{1} \pm i\right)-A_{\mp} A_{ \pm}
$$

- Let $|\Delta, \omega\rangle$ be a simultaneous eigenstate of C and A_{1} that satisfies

$$
C|\Delta, \omega\rangle=\Delta(\Delta-1)|\Delta, \omega\rangle \quad \text { and } \quad A_{1}|\Delta, \omega\rangle=\omega|\Delta, \omega\rangle
$$

Then the state $A_{ \pm}|\Delta, \omega\rangle$ satisfies $A_{1} A_{ \pm}|\Delta, \omega\rangle=(\omega \pm i) A_{ \pm}|\Delta, \omega\rangle$, which implies the ladder equations

$$
A_{ \pm}|\Delta, \omega\rangle \propto|\Delta, \omega \pm i\rangle
$$

1d conformal algebra: $S O(1,1)$ diagonal basis

- In the AdS_{2} black hole problem, the $S O(2,1)$ generators (Killing vectors) are given by the following first-order differential operators:

$$
\begin{aligned}
& A_{1}=i \partial_{t} \\
& A_{ \pm}=\mathrm{e}^{ \pm t}\left[\sinh x\left(i \partial_{x}\right) \pm \cosh x\left(i \partial_{t}\right)\right]
\end{aligned}
$$

- The quadratic Casimir gives the d'Alembertian on the AdS_{2} black hole:

$$
C=A_{1}\left(A_{1} \pm i\right)-A_{\mp} A_{ \pm}=\sinh ^{2} x\left(-\partial_{t}^{2}+\partial_{x}^{2}\right)
$$

- The eigenvalue equations reduce to the Schrödinger equation:

$$
\begin{array}{ll}
A_{1}|\Delta, \omega\rangle=\omega|\Delta, \omega\rangle & \Leftrightarrow \quad i \partial_{t} \Phi_{\Delta, \omega}(t, x)=\omega \Phi_{\Delta, \omega}(t, x) \\
C|\Delta, \omega\rangle=\Delta(\Delta-1)|\Delta, \omega\rangle & \Leftrightarrow \quad\left(-\partial_{x}^{2}+\frac{\Delta(\Delta-1)}{\sinh ^{2} x}\right) \Phi_{\Delta, \omega}(t, x)=\omega^{2} \Phi_{\Delta, \omega}(t, x)
\end{array}
$$

- The ladder equations are

$$
A_{ \pm} \Phi_{\Delta, \omega} \propto \Phi_{\Delta, \omega \pm i}
$$

1d conformal algebra: $S O(1,1)$ diagonal basis

- Finite-temperature CFT_{1} lives on the boundary $x=0$. To analyze this, let us consider the asymptotic near-boundary limit $x \rightarrow 0$ of the Killing vectors

$$
\begin{aligned}
& A_{1}^{0}:=\lim _{x \rightarrow 0} A_{1}=i \partial_{t} \\
& A_{ \pm}^{0}:=\lim _{x \rightarrow 0} A_{ \pm}=\mathrm{e}^{ \pm t}\left(i x \partial_{x} \pm i \partial_{t}\right)
\end{aligned}
$$

- The quadratic Casimir near the boundary is

$$
C^{0}=A_{1}^{0}\left(A_{1}^{0} \pm i\right)-A_{\mp}^{0} A_{ \pm}^{0}=x^{2} \partial_{x}^{2}
$$

- The eigenvalue equations are

$$
\begin{aligned}
& i \partial_{t} \Phi_{\Delta, \omega}^{0}(t, x)=\omega \Phi_{\Delta, \omega}^{0}(t, x) \\
& \left(-\partial_{x}^{2}+\frac{\Delta(\Delta-1)}{x^{2}}\right) \Phi_{\Delta, \omega}^{0}(t, x)=0
\end{aligned}
$$

which are easily solved with the result

$$
\Phi_{\Delta, \omega}^{0}(t, x)=A_{\Delta}(\omega) x^{\Delta} \mathrm{e}^{-i \omega t}+B_{\Delta}(\omega) x^{1-\Delta} \mathrm{e}^{-i \omega t}
$$

where $A_{\Delta}(\omega)$ and $B_{\Delta}(\omega)$ are integration constants which may depend on Δ and ω.

Correlator recurrence relations

- The ladder equations $A_{ \pm}^{0} \Phi_{\Delta, \omega}^{0} \propto \Phi_{\Delta, \omega \pm i}^{0}$ become

$$
\begin{aligned}
& (i \Delta \pm \omega) A_{\Delta}(\omega) x^{\Delta} \mathrm{e}^{-i(\omega \pm i) t}+(i(1-\Delta) \pm \omega) B_{\Delta}(\omega) x^{1-\Delta} \mathrm{e}^{-i(\omega \pm i) t} \\
& \propto \quad A_{\Delta}(\omega \pm i) x^{\Delta} \mathrm{e}^{-i(\omega \pm i) t}+\quad B_{\Delta}(\omega \pm i) x^{1-\Delta} \mathrm{e}^{-i(\omega \pm i) t}
\end{aligned}
$$

from which we get

$$
\begin{aligned}
(i \Delta \pm \omega) A_{\Delta}(\omega) & \propto A_{\Delta}(\omega \pm i) \\
(i(1-\Delta) \pm \omega) B_{\Delta}(\omega) & \propto B_{\Delta}(\omega \pm i)
\end{aligned}
$$

- According to the real-time prescription of AdS/CFT correspondence, two-point functions of dual CFT_{1} are given by the ratio [Iqbal-Liu '09]

$$
G_{\Delta}(\omega)=(2 \Delta-1) \frac{A_{\Delta}(\omega)}{B_{\Delta}(\omega)}
$$

which satisfies the recurrence relations

$$
G_{\Delta}(\omega)=\frac{-1+\Delta \pm i \omega}{-\Delta \pm i \omega} G_{\Delta}(\omega \pm i)
$$

Correlator recurrence relations

- The recurrence relations

$$
G_{\Delta}(\omega)=\frac{-1+\Delta \pm i \omega}{-\Delta \pm i \omega} G_{\Delta}(\omega \pm i)
$$

are easily solved by iteration. Minimal solutions are

$$
G_{\Delta}^{A / R}(\omega)=\frac{\Gamma(\Delta \pm i \omega)}{\Gamma(1-\Delta \pm i \omega)} g^{A / R}(\Delta)
$$

where $g^{A / R}(\Delta)$ are ω-independent normalization factors.

- Restoring R via $\omega \rightarrow \omega R$, we get the advanced/retarded two-point functions for a scalar primary operator of scaling dimension Δ :

$$
G_{\Delta}^{A / R}(\omega)=\frac{\Gamma\left(\Delta \pm \frac{i \omega}{2 \pi T}\right)}{\Gamma\left(1-\Delta \pm \frac{i \omega}{2 \pi T}\right)} g^{A / R}(\Delta)
$$

where T is the Hawking temperature given by

$$
T=\frac{1}{2 \pi R}
$$

Summary \& Outlook

Summary \& outlook

Summary

- $S O(2,1)$ isometry of the AdS_{2} black hole induces the recurrence relations for finite-temperature CFT_{1} two-point functions:

$$
G_{\Delta}(\omega)=\frac{-1+\Delta \pm i \omega}{-\Delta \pm i \omega} G_{\Delta}(\omega \pm i)
$$

- The minimal solutions to the recurrence relations give the advanced/retarded two-point functions in frequency space.

Outlook

- Generalizations to finite-temperature CFT_{d}. The simplest approach would be to consider the Rindler-AdS ${ }_{d+1}$ described by the metric

$$
d s_{\mathrm{AdS}_{d+1}}^{2}=-\left(\frac{r^{2}}{R^{2}}-1\right) d t^{2}+\frac{d r^{2}}{r^{2} / R^{2}-1}+r^{2} d H_{d-1}^{2}
$$

where $d H_{d-1}$ stands for the line element of $(d-1)$-dim'l hyperbolic space \mathbb{W}^{d-1}.
(The case $d=2$ has been done in the previous work arXiv:1312.7348.)

