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∙ Conformal symmetry is powerful enough to constrain possible forms of correlation

functions.

∙ Indeed, up to overall normalization factors, two- and three-point functions are

completely fixed by SO(2, d) conformal symmetry in any spacetime dimension d ≥ 1

[Polyakov ’70]:
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⟨Δ1
(x1)Δ2

(x2)Δ3
(x3)⟩ =

CΔ1Δ2Δ3
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∙ Conformal constraints work well in coordinate space.

∙ Then, what about conformal constraints in momentum space?

http://www.jetpletters.ac.ru/ps/1737/article_26381.shtml
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∙ Correlation functions in momentum space are directly related to physical observables.

◦ Example: imaginary part of retarded two-point function = spectral density

∙ So it would be desirable to understand how conformal symmetry constrains the possible

forms of momentum-space correlators.

∙ In principle, momentum-space correlators are just obtained by Fourier transforms of

position-space correlators.

∙ However, Fourier transforms of position-space correlators are generally hard.

∙ Indeed, in spite of its simplicity in coordinate space, three-point functions in momentum

space are known to be very complicated.

◦ In fact, Fourier transform of three-point functions in finite-temperature CFT2 was

first computed in 2014! [Becker-Cabrera-Su ’14]

◦ The study of conformal constraints in momentum space is still ongoing

[Corianò-Delle Rose-Mottola-Serino ’13] [Bzowski-McFadden-Skenderis ’13].

http://arxiv.org/abs/1407.3415
http://arxiv.org/abs/1304.6944
http://arxiv.org/abs/1304.7760
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∙ Today I will present a simple algebraic approach to compute finite-temperature CFT

two-point functions in momentum space.

∙ For the sake of simplicity I shall focus on finite-temperature CFT1.

∙ The keys to my approach are:

◦ 1d conformal algebra so(2, 1) in the basis in which the SO(1, 1) generator becomes

diagonal; and

◦ Killing vectors of AdS2 black hole.
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∙ The AdS2 black hole is a portion of AdS2; it is just a single Rindler wedge of AdS2 and

described by the following metric:

ds2
AdS2

= −

(
r2

R2
− 1

)
dt2 +

dr2

r2∕R2 − 1
, r ∈ (R,∞)

r
=

R

r
=
R

r
=
∞

◦ AdS2 is topologically an infinite strip.

◦ The AdS2 black hole covers only a

part of the whole AdS2.

∙ r = R: Rindler horizon

∙ r = ∞: AdS2 boundary
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∙ The AdS2 black hole is a portion of AdS2; it is just a single Rindler wedge of AdS2 and

described by the following metric:

ds2
AdS2

= −

(
r2

R2
− 1

)
dt2 +

dr2

r2∕R2 − 1
, r ∈ (R,∞)

∙ For the following discussions it is convenient to introduce a new coordinate system (t, x)

via

r = R coth(x∕R), x ∈ (0,∞)

in which the metric becomes conformally flat:

ds2
AdS2

=
−dt2 + dx2

sinh2(x∕R)

∙ Below I will work in the units R = 1.
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∙ The one-dim’l conformal group SO(2, 1), which is the isometry of AdS2, contains three

distinct one-parameter subgroups:

◦ compact rotation group SO(2)

◦ noncompact Euclidean group E(1)

◦ noncompact Lorentz group SO(1, 1)

∙ Correspondingly, there exist three distinct classes of static AdS2 coordinate patches in

which time-translation Killing vectors generate these one-parameter subgroups SO(2),

E(1) and SO(1, 1).

∙ In Lorentzian signature, these coordinate patches are given by the global, Poincaré and

Rindler coordinates, respectively.

coordinate patch
time-translation group frequency spectrum

Lorentzian Euclidean Lorentzian Euclidean

global SO(2) SO(1, 1) discrete continuous

Poincaré E(1) E(1) continuous continuous

Rindler SO(1, 1) SO(2) continuous discrete
(Matsubara frequency)
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∙ The one-dim’l conformal algebra so(2, 1) is spanned by the three generators {J1, J2, J3}

that satisfy the commutation relations

[J1, J2] = iJ3, [J2, J3] = −iJ1, [J3, J1] = −iJ2

∙ In the Cartan-Weyl basis {J3, J± ∶= −J1 ± iJ2} the commutation relations become

[J3, J±] = ±J±, [J+, J−] = −2J3

∙ The quadratic Casimir of the Lie algebra so(2, 1) is

C = −J 2
1
− J 2

2
+ J 2

3
= J3(J3 ± 1) − J∓J±

∙ Let |Δ, !⟩ be a simultaneous eigenstate of C and J3 that satisfies

C|Δ, !⟩ = Δ(Δ − 1)|Δ, !⟩ and J3|Δ, !⟩ = !|Δ, !⟩

Then the state J±|Δ, !⟩ satisfies J3J±|Δ, !⟩ = (! ± 1)J±|Δ, !⟩, which implies the

ladder equations

J±|�, !⟩ ∝ |�, !± 1⟩
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∙ Let us next consider the following hermitian linear combinations

A1 = J1, A± = J2 ± J3

which satisfy the commutation relations

[A1, A±] = ±iA±, [A+, A−] = 2iA1

∙ The quadratic Casimir of the Lie algebra so(2, 1) is

C = −J 2
1
− J 2

2
+ J 2

3
= −A1(A1 ± i) − A∓A±

∙ Let |Δ, !⟩ be a simultaneous eigenstate of C and A1 that satisfies

C|Δ, !⟩ = Δ(Δ − 1)|Δ, !⟩ and A1|Δ, !⟩ = !|Δ, !⟩

Then the state A±|Δ, !⟩ satisfies A1A±|Δ, !⟩ = (! ± i)A±|Δ, !⟩, which implies the

ladder equations

A±|�, !⟩ ∝ |�, !± i⟩
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∙ In the AdS2 black hole problem, the SO(2, 1) generators (Killing vectors) are given by

the following first-order differential operators:

A1 = i)t

A± = e±t
[
sinhx(i)x) ± cosh x(i)t)

]

∙ The quadratic Casimir gives the d’Alembertian on the AdS2 black hole:

C = A1(A1 ± i) − A∓A± = sinh2 x
(
−)2

t
+ )2

x

)

∙ The eigenvalue equations reduce to the Schrödinger equation:

A1|Δ, !⟩ = !|Δ, !⟩ ⇔ i)tΦΔ,!(t, x) = !ΦΔ,!(t, x)

C|Δ, !⟩ = Δ(Δ − 1)|Δ, !⟩ ⇔

(
−)2

x
+

Δ(Δ − 1)

sinh2 x

)
ΦΔ,!(t, x) = !2ΦΔ,!(t, x)

∙ The ladder equations are

A±��,! ∝ ��,!±i
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∙ Finite-temperature CFT1 lives on the boundary x = 0. To analyze this, let us consider

the asymptotic near-boundary limit x → 0 of the Killing vectors

A0
1
∶= lim

x→0
A1 = i)t

A0
±
∶= lim

x→0
A± = e±t

(
ix)x ± i)t

)

∙ The quadratic Casimir near the boundary is

C0 = A0
1
(A0

1
± i) − A0

∓
A0

±
= x2)2

x

∙ The eigenvalue equations are

i)tΦ
0
Δ,!

(t, x) = !Φ0
Δ,!

(t, x)
(
−)2

x
+

Δ(Δ − 1)

x2

)
Φ0

Δ,!
(t, x) = 0

which are easily solved with the result

Φ0
Δ,!

(t, x) = AΔ(!)x
Δe−i!t + BΔ(!)x

1−Δe−i!t

where AΔ(!) and BΔ(!) are integration constants which may depend on Δ and !.
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∙ The ladder equations A0
±
Φ0

Δ,!
∝ Φ0

Δ,!±i
become

(iΔ ± !)AΔ(!)x
Δe−i(!±i)t + (i(1 − Δ) ± !)BΔ(!)x

1−Δe−i(!±i)t

∝ AΔ(! ± i)xΔe−i(!±i)t + BΔ(! ± i)x1−Δe−i(!±i)t

from which we get

(iΔ ± !)AΔ(!) ∝ AΔ(! ± i)

(i(1 − Δ) ± !)BΔ(!) ∝ BΔ(! ± i)

∙ According to the real-time prescription of AdS/CFT correspondence, two-point

functions of dual CFT1 are given by the ratio [Iqbal-Liu ’09]

GΔ(!) = (2Δ − 1)
AΔ(!)

BΔ(!)

which satisfies the recurrence relations

G�(!) =
−1 + � ± i!

−�± i!
G�(!± i)

http://arxiv.org/abs/0903.2596
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∙ The recurrence relations

GΔ(!) =
−1 + Δ ± i!

−Δ ± i!
GΔ(! ± i)

are easily solved by iteration. Minimal solutions are

G
A∕R

Δ
(!) =

Γ(Δ ± i!)

Γ(1 − Δ ± i!)
gA∕R(Δ)

where gA∕R(Δ) are !-independent normalization factors.

∙ Restoring R via ! → !R, we get the advanced/retarded two-point functions for a scalar

primary operator of scaling dimension Δ:

G
A∕R

Δ
(!) =

Γ(Δ ±
i!

2�T
)

Γ(1 − Δ ±
i!

2�T
)
gA∕R(Δ)

where T is the Hawking temperature given by

T =
1

2�R
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Summary

∙ SO(2, 1) isometry of the AdS2 black hole induces the recurrence relations for

finite-temperature CFT1 two-point functions:

GΔ(!) =
−1 + Δ ± i!

−Δ ± i!
GΔ(! ± i)

∙ The minimal solutions to the recurrence relations give the advanced/retarded two-point

functions in frequency space.

Outlook

∙ Generalizations to finite-temperature CFTd . The simplest approach would be to consider

the Rindler-AdSd+1 described by the metric

ds2
AdSd+1

= −

(
r2

R2
− 1

)
dt2 +

dr2

r2∕R2 − 1
+ r2dH2

d−1

where dHd−1 stands for the line element of (d − 1)-dim’l hyperbolic space ℍ
d−1.

(The case d = 2 has been done in the previous work arXiv:1312.7348.)

http://arxiv.org/abs/1312.7348
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