The (2,0) Superconformal Bootstrap

Leonardo Rastelli
Yang Institute for Theoretical Physics Stony Brook

Based on work with
Chris Beem, Madalena Lemos and Balt van Rees

YITP workshop
Developments in String Theory and Quantum Field Theory
Kyoto, November 132015

$(2,0)$ theories

Nahm's classification: superconformal algebras exist for $d \leqslant 6$. In $d=6,(\mathcal{N}, 0)$ algebras. Existence of $T_{\mu \nu}$ multiplet requires $\mathcal{N} \leqslant 2$.
$(2,0)$: maximal susy in maximal d. No marginal couplings allowed.
Interacting models inferred from string/M-theory: ADE catalogue.
Central to many recent developments in QFT.
"Mothers" of many interesting QFTs in $d<6$.
Key properties:

- Moduli space of vacua

$$
\mathcal{M}_{\mathfrak{g}}=\left(\mathbb{R}^{5}\right)^{r_{\mathfrak{g}}} / W_{\mathfrak{g}}, \quad \mathfrak{g}=\left\{A_{n}, D_{n}, E_{6}, E_{7}, E_{8}\right\} .
$$

- On $\mathbb{R}^{5} \times S^{1}$, IR description as $5 d$ MSYM with gauge algebra \mathfrak{g}.

At large n, A_{n} and D_{n} theories described through AdS/CFT: M-theory on $A d S_{7} \times S^{4}$ and $A d S_{7} \times \mathbb{R P}^{4}$.

The $(2,0)$ theories as abstract CFTs

No intrinsic field-theoretic formulation yet.
No conventional Lagrangian (hard to imagine one from RG lore).
Working hypothesis: (at least) for correlators of local operators in \mathbb{R}^{6}, the $(2,0)$ theory is just another CFT, defined by a local operator algebra

$$
\text { OPE : } \quad \mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k} c_{12 k}(x) \mathcal{O}_{k}(0)
$$

Can symmetry and basic consistency requirements completely determine the spectrum and OPE coefficients?

Abstract CFT Framework

A general Conformal Field Theory hasn't much to do with "fields" (of the kind we write in Lagrangians).
We'll think more abstractly. A CFT is defined by its local operators,

$$
\mathcal{A} \equiv\left\{\mathcal{O}_{k}(x)\right\}
$$

and their correlation functions $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle$.
\mathcal{A} is an algebra. Operator Product Expansion (OPE),

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k} c_{12 k}\left(\mathcal{O}_{k}(0)+\ldots\right)
$$

where the ... are fixed by conformal invariance. The sum converges.
Caveat I: This definition does not capture non-local observables, such as conformal defects. (E.g., Wilson lines in a conformal gauge theory.).

Reduce n pt to $(n-1) \mathrm{pt}$,

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle=\sum_{k} c_{12 k}\left(x_{2}\right)\left\langle\mathcal{O}_{k}\left(x_{2}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle
$$

1pt functions are trivial, $\left\langle\mathcal{O}_{i}(x)\right\rangle=0$ except for $\langle\mathbf{1}\rangle \equiv 1$.
$\mathcal{O}_{\Delta, \ell, f}(x)$ labeled by conformal dimension Δ, Lorentz representation ℓ and possibly flavor quantum number f.
The CFT data $\left\{\left(\Delta_{i}, \ell_{i}, f_{i}\right), c_{i j k}\right\}$ completely specify the theory.
But not anything goes! Consistency conditions:

- Associativity:

$$
\left(\mathcal{O}_{1} \mathcal{O}_{2}\right) \mathcal{O}_{3}=\mathcal{O}_{1}\left(\mathcal{O}_{2} \mathcal{O}_{3}\right)
$$

- Unitarity (reflection positivity): Lower bounds on Δ for given ℓ; $c_{i j k} \in \mathbb{R}$

Caveat II: In non-trivial geometries, $\langle\mathcal{O}\rangle \neq 0 \rightarrow$ additional constraints. In $d=2$, modularity. In $d>2$, harder to analyze, have been ignored so far.

The bootstrap program

Old aspiration (1970s) Ferrara Gatto Grillo, Polyakov. Associativity \equiv crossing symmetry of $4 p t$ functions

Vastly over-constrained system of equations for $\left\{\Delta_{i}, c_{i j k}\right\}$.
Classification and construction of CFTs reduced to an algebraic problem.

- Famous success story in $d=2$, starting from BPZZ (1984).
$2 d$ conformal symmetry is infinite dimensional, $z \rightarrow f(z)$.
In some cases, finite-dimensional bootstrap problem (rational CFTs). Many exact solutions, partial classification.

Bootstrapping in two steps

For $d=6, \mathcal{N}=(2,0)$ SCFTs (as well as $d=4, \mathcal{N} \geqslant 2$ SCFTs)
the crossing equations split into
(1) Equations that depend only on intermediate BPS operators. Captured by the $2 d$ chiral algebra. "Minibootstrap"
(2) Equations that also include intermediate non-BPS operators.
"Maxibootstrap"
(1) are tractable and determine an infinite amount of CFT data.

This is essential input to the full-fledged bootstrap (2), which can be studied numerically.

Beem Lemos Liendo Peelaers LR van Rees, Beem LR van Rees

Meromorphy in $(2,0)$ SCFTs

Fix a plane $\mathbb{R}^{2} \subset \mathbb{R}^{6}$, parametrized by (z, \bar{z}).
Claim: \exists subsector $\mathcal{A}_{\chi}=\left\{\mathcal{O}_{i}\left(z_{i}, \bar{z}_{i}\right)\right\}$ with meromorphic

$$
\left\langle\mathcal{O}_{1}\left(z_{1}, \bar{z}_{1}\right) \mathcal{O}_{2}\left(z_{2}, \bar{z}_{2}\right) \ldots \mathcal{O}_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle=f\left(z_{i}\right) .
$$

Rationale: $\mathcal{A}_{\chi} \equiv$ cohomology of a nilpotent \mathbb{Q},

$$
\mathbb{Q}=\mathcal{Q}+\mathcal{S},
$$

\mathcal{Q} Poincaré, \mathcal{S} conformal supercharges.
\bar{z} dependence is \mathbb{Q}-exact: cohomology classes $[\mathcal{O}(z, \bar{z})]_{\mathbb{Q}} \rightsquigarrow \mathcal{O}(z)$.
Analogous to the $d=4, \mathcal{N}=1$ chiral ring:
cohomology classes $[\mathcal{O}(x)]_{\tilde{\mathcal{Q}}_{\dot{\alpha}}}$ are x-independent.

Cohomology

At the origin of $\mathbb{R}^{2}, \mathbb{Q}$-cohomology \mathcal{A}_{χ} easy to describe.
$\mathcal{O}(0,0) \in \mathcal{A}_{\chi} \leftrightarrow \mathcal{O}$ obeys the chirality condition

$$
\frac{\Delta-\ell}{2}=R
$$

Δ conformal dimension, ℓ angular momentum on \mathbb{R}^{2},
R Cartan generator of $S U(2)_{R} \cong S O(3)_{R} \subset S O(5)$ R-symmetry.

$$
[\mathbb{Q}, \mathfrak{s l}(2)]=0 \quad \text { but } \quad[\mathbb{Q}, \overline{\mathfrak{s l}(2)}] \neq 0
$$

To define \mathbb{Q}-closed operators $\mathcal{O}(z, \bar{z})$ away from origin, we twist the right-moving generators by $S U(2)_{R}$,

$$
\begin{gathered}
\widehat{L}_{-1}=\bar{L}_{-1}+\mathcal{R}^{-}, \quad \widehat{L}_{0}=\bar{L}_{0}-\mathcal{R}, \quad \widehat{L}_{1}=\bar{L}_{1}-\mathcal{R}^{+} \\
\widehat{\mathfrak{s l}(2)}=\{\mathbb{Q}, \ldots\}
\end{gathered}
$$

Q-closed operators are "twisted-translated"

$$
\begin{aligned}
\mathcal{O}(z, \bar{z}) & =e^{z L_{-1}+\bar{z} \hat{L}_{-1}} \mathcal{O}^{1 \ldots 1}(0) e^{-z L_{-1}-\bar{z} \hat{L}_{-1}} \\
& =u_{\mathcal{I}_{1}}(\bar{z}) \ldots u_{\mathcal{I}_{k}}(\bar{z}) \mathcal{O}^{\mathcal{I}_{1} \ldots \mathcal{I}_{k}}(z, \bar{z}) \quad u_{\mathcal{I}} \equiv(1, \bar{z})
\end{aligned}
$$

$S U(2)_{R}$ orientation correlated with position on \mathbb{R}^{2}.

Example: free $(2,0)$ tensor multiplet

$$
\Phi_{I}, \quad \lambda_{a A}, \quad \omega_{a b}^{+}
$$

$I=S O(5)_{R}$ vector index.
Scalar in $S O(3)_{R} \subset S O(5)_{R}$ h.w. is only field obeying $\Delta-\ell=2 R$

$$
\Phi_{h . w .}=\frac{\Phi_{1}+i \Phi_{2}}{\sqrt{2}}, \quad \Delta=2 R=2, \quad \ell=0 .
$$

Cohomology class of twisted-translated field

$$
\begin{aligned}
& \Phi(z):=\left[\Phi_{h . w .}(z, \bar{z})+\bar{z} \Phi_{3}(z, \bar{z})+\bar{z}^{2} \Phi_{h . w .}^{*}(z, \bar{z})\right]_{\mathbb{Q}} \\
& \Phi(z) \Phi(0) \sim \bar{z}^{2} \Phi_{h . w .}^{*}(z, \bar{z}) \Phi_{h . w .}(0) \sim \frac{\bar{z}^{2}}{z^{2} \bar{z}^{2}}=\frac{1}{z^{2}} .
\end{aligned}
$$

$\Phi(z)$ is an $\mathfrak{u}(1)$ affine current, $\Phi(z) \rightsquigarrow J_{\mathfrak{u}(1)}(z)$.
$\chi_{6}: 6 d(2,0)$ SCFT \longrightarrow 2d Chiral Algebra.

- Global $\mathfrak{s l}(2) \rightarrow$ Virasoro, indeed $T(z):=\left[\Phi_{(I J)}(z, \bar{z})\right]_{\mathbb{Q}}$, with $\Phi_{(I J)}$ the stress-tensor multiplet superprimary.

$$
c_{2 d}=c_{6 d}
$$

in normalizations where $c_{6 d}$ (free tensor) $\equiv 1$.

- All $\frac{1}{2}$-BPS operators $(\Delta=2 R)$ are in \mathbb{Q} cohomology.

Generators of the $\frac{1}{2}$-BPS ring \rightarrow generators of the chiral algebra.

- Some semi-short multiplets with non-zero spin also play a role.

Chiral algebra for $(2,0)$ theory of type A_{N-1}

$$
\text { One } \frac{1}{2} \text {-BPS generator each of dimension } \Delta=4,6, \ldots 2 N
$$

\Downarrow
One chiral algebra generator each of dimension $h=2,3, \ldots N$.
Most economical scenario: these are all the generators.
Check: the superconformal index computed by Kim^{3} is reproduced:

$$
\begin{gathered}
\mathcal{I}(q, s):=\operatorname{Tr}(-1)^{F} q^{E-R} s^{h_{2}+h_{3}} \\
\mathcal{I}(q, s ; n)=\prod_{k=2}^{n} \prod_{m=0}^{\infty} \frac{1}{1-q^{k+m}}=\operatorname{PE}\left[\frac{q^{2}+\cdots+q^{n}}{1-q}\right] .
\end{gathered}
$$

Plausibly a unique solution to crossing for this set of generators.

- The chiral algebra of the A_{N-1} theory is \mathcal{W}_{N}, with

$$
c_{2 d}=4 N^{3}-3 N-1
$$

Generalization to all ADE cases: $\mathcal{W}_{\mathfrak{g}}$ with $c_{2 d}=4 d_{\mathfrak{g}} h_{\mathfrak{g}}^{\mathfrak{g}}$ $+r_{\mathfrak{g}}$.

Half-BPS 3pt functions of $(2,0)$ SCFT

OPE of $\mathcal{W}_{\mathfrak{g}}$ generators \Rightarrow half-BPS 3pt functions of SCFT.
Let us check the result at large N.
$W_{N \rightarrow \infty}$ with $c_{2 d} \sim 4 N^{3} \rightarrow$ a classical Poisson algebra.
We can use results on universal Poisson algebra $W_{\infty}[\mu]$, with $\mu=N$.
(Gaberdiel Hartman, Campoleoni Fredenhagen Pfenninger)
We find

$$
\begin{aligned}
& C\left(k_{1}, k_{2}, k_{3}\right)=\frac{2^{2 \alpha-2}}{(\pi N)^{\frac{3}{2}}} \Gamma\left(\frac{\alpha}{2}\right)\left(\frac{\Gamma\left(\frac{k_{123}+1}{2}\right) \Gamma\left(\frac{k_{231}+1}{2}\right) \Gamma\left(\frac{k_{312}+1}{2}\right)}{\sqrt{\Gamma\left(2 k_{1}-1\right) \Gamma\left(2 k_{2}-1\right) \Gamma\left(2 k_{3}-1\right)}}\right) \\
& k_{i j k} \equiv k_{i}+k_{j}-k_{k}, \alpha \equiv k_{1}+k_{2}+k_{3},
\end{aligned}
$$

in precise agreement with calculation in $11 d$ sugra on $A d S_{7} \times S^{4}$!
(Corrado Florea McNees, Bastianelli Zucchini)
$1 / N$ corrections in $W_{N} \mathrm{OPE} \Rightarrow$ quantum M -theory corrections.
$(2,0)$ maxibootstrap Beem Lemos LR van Rees

Universal 4pt function of $\Phi_{(I J)}$, superprimary of $T_{\mu \nu}$ multiplet. Unique structure in superspace.

Only input: $6 d$ Weyl anomaly coefficient c.
For ADE theories,

$$
c=4 d_{\mathfrak{g}} h_{\mathfrak{g}}^{\vee}+r_{\mathfrak{g}}
$$

but we keep it general.

Double OPE expansion

$$
\langle\Phi \Phi \Phi \Phi\rangle=\sum_{\mathcal{O} \in \Phi \times \Phi} f_{\Phi \Phi \mathcal{O}}^{2} G_{\mathcal{O}}^{\Phi}
$$

We impose the absence of higher-spin currents.
The $\mathcal{O} s \in \Phi \times \Phi$ are:

- Infinite set $\left\{\mathcal{O}_{\chi}\right\}$ of \mathbb{Q}-chiral BPS multiplets, fixed from χ-algebra.
- Infinite tower of BPS multiplet $\left\{\mathcal{D}, \mathcal{B}_{1}, \mathcal{B}_{3}, \ldots\right\}$, not in χ-algebra.
- Infinite set of non-BPS multiplets $\mathcal{L}_{\Delta, \ell}, \mathfrak{s o}(5)_{R}$ singlets.

Bose symmetry $\rightarrow \ell$ is even. Unitarity bound $\Delta \geqslant \ell+6$.
Unfixed BPS multiplets correspond to long multiplets at threshold,

$$
\lim _{\Delta \rightarrow \ell+6} G_{\mathcal{L}_{\Delta, \ell}}^{\Phi}=G_{\mathcal{B}_{\ell-1}}^{\Phi} \quad\left(\mathcal{D} \equiv \mathcal{B}_{-1}\right)
$$

Bootstrap sum rule

When the dust settles, a single sum rule

$$
\sum f_{\Delta, \ell}^{2} \mathcal{F}_{\Delta, \ell}(z, \bar{z})+\mathcal{F}^{\chi}(z, \bar{z} ; c)=0
$$

long superprimaries
z, \bar{z} : conformal cross ratios;
$\mathcal{F}_{\Delta, \ell} \equiv \mathcal{G}_{\Delta, \ell}-\mathcal{G}_{\Delta, \ell}^{\times}:$superconformal block minus its crossing;
$\mathcal{F}^{\chi}(z, \bar{z} ; c)$: an explicitly known function (from minibootstrap).
The unknown CFT data to be constrained are:

- Set of (dimension, spin) $\left\{\left(\Delta_{i}, \ell_{i}\right)\right\}$ of the intermediate multiplets.
- The (squared) OPE coefficients $f_{\Delta_{i}, \ell_{i}}^{2}$. Non-negative by unitarity.

The numerical oracle (Rattazzi Rychkov Tonni Vichi)

$$
\sum_{\Delta, \ell} f_{\Delta, \ell}^{2} \mathcal{F}_{\Delta, \ell}(z, \bar{z})+\mathcal{F}^{\text {known }}(z, \bar{z} ; c)=0
$$

Use the sum rule to constrain the space of CFT data.
For example, consider a trial spectrum with $\Delta \geqslant \bar{\Delta}_{\ell}$ for operators of $\operatorname{spin} \ell$. If there exists a linear functional χ such that

$$
\begin{gathered}
\chi \cdot \mathcal{F}_{\Delta, \ell}(z, \bar{z}) \geqslant 0 \quad \text { when } \Delta \geqslant \bar{\Delta}_{\ell} \\
\chi \cdot \mathcal{F}^{\text {known }}(z, \bar{z} ; c)=1
\end{gathered}
$$

that trial spectrum is ruled out - oracle says NO.
If one cannot find such a χ, oracle says MAYBE.
Implemented by linear programming or semi-definite programming. Surprisingly powerful!

Scalar bound in general $d=3$ CFT

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin and Vichi, PRD 86, 025022]

Exclusion plot in the subspace of $d=3$ CFT data $\left(\Delta_{\sigma}, \Delta_{\epsilon}\right)$ with $\sigma \times \sigma=1+\epsilon+\ldots$, from the bootstrap of a single 4pt function $\langle\sigma \sigma \sigma \sigma\rangle$.

Two real surprises:

- $3 d$ Ising appears to lie on the exclusion curve (i.e. it saturates the bound)
- $3 d$ Ising appears to sit at a special kink on the exclusion curve.

Multiple Correlators [Kos, Poland, Simmons-Duffin, '14]

CFT_{3} with \mathbb{Z}_{2} symmetry. σ odd, ϵ even, $\sigma \times \sigma=\mathbf{1}+\epsilon+\ldots$ System of correlators $\langle\sigma \sigma \sigma \sigma\rangle,\langle\sigma \sigma \epsilon \epsilon\rangle,\langle\epsilon \epsilon \epsilon \epsilon\rangle$.
Allowed region assuming that only one odd scalar is relevant $\left(\Delta_{\sigma^{\prime}} \geqslant 3\right)$:

$3 d$ Ising gets cornered! $\Delta_{\sigma}=0.518151(5), \Delta_{\epsilon}=1.41263(5)$, most accurate to date [Simmons-Duffin '15]

A lower bound on c

There is a minimum anomaly $c_{\min }$ compatible with crossing and unitarity. The bound $c_{\text {min }}$ increases as we increase the search space for the functional, parametrized by a cutoff Λ.

Extrapolating, $c_{\text {min }} \rightarrow 25$, the value of the A_{1} theory (\equiv two $M 5 \mathrm{~s}$)! (We are disallowing the free theory $(c=1)$ by forbidding HS currents.)

For $c<c_{\text {min }}$, the oracle says NO. Why?

For $c<c_{\text {min }}$, solutions to crossing have $\lambda_{D}^{2}<0$, violating unitarity.
$\lambda_{D}^{2}=0$ precisely at $c=c_{\text {min }}$.
Agrees with conjecture of Batthacharyya and Minwalla about $\frac{1}{4} \mathrm{BPS}$ partition function of A_{1} theory: \mathcal{D} multiplet absent!

Bootstrapping the A_{1} theory

For $c=c_{\text {min }} \rightarrow 25, \exists$ unique unitary solution to crossing.
Claim: The A_{1} theory can be completely bootstrapped!

Upper bounds on the dimension of the leading-twist unprotected scalar, under different assumptions. Perfectly consistent.

Exclusion region in (Δ_{0}, Δ_{2}) plane for $c=25$ (A_{1} value).
The corner values are conjectured to be the true leading-twist dimensions of the physical A_{1} theory.

General c

Bounds for the leading-twist unprotected operators of spin $\ell=0,2$.
For $c \rightarrow \infty$, they appear to be saturated by $A d S_{7} \times S^{4}$ sugra, including $1 / c$ corrections.

For large c, leading-twist unprotected operators are double-traces of the form $\mathcal{O}_{s}=\mathcal{O}_{\mathbf{1 4}} \partial^{s} \mathcal{O}_{\mathbf{1 4}}$, with $\Delta_{s}=8+s-O(1 / c)$.
Summary: Both at small and large c the bootstrap bounds appear to be saturated by physical $(2,0)$ theories.

Outlook

The $(2,0)$ theories can be successfully studied by bootstrap methods.

- Exact results from the chiral algebra, e.g. $\frac{1}{2}$ BPS $3 p t$ functions. Systematic $1 / N$ expansion and its M -theory interpretation?

A derivation of the AGT correspondence?
Codimension-two defects \Rightarrow Toda vertex operators?

- Numerical results for the non-protected spectrum.
A_{1} theory completely cornered by bootstrap equations.
Beginning of a systematic algorithm to solve it.
$A_{n>1}$ theories need input on BPS spectrum and multiple correlators.
Precision numerics? Multiple correlators?
Further analytic insights?

