Yang-Baxter deformations of Minkowski spacetime

Junichi Sakamoto (Kyoto U.) arXiv:1505.04553 JHEP 1510 (2015) 185
This is a collaboration with T. Matsumoto (Nagoya U.), D. Orlando (ENS), S. Reffert (Bern U.), K. Yoshida (Kyoto U.)

1. Introduction

Yang-Baxter sigma models [Klimcik, 2002,2008]

A systematic way to study integrable deformations of 2D NLSMs.

An integrable sigma model
$\operatorname{AdS}_{5} \times \mathrm{S}^{5}$ spacetime

YB deformations

Integrable deformed sigma models

Deformations are characterized by classical r-matrices
Solutions of the classical Yang-Baxter equation
To investigate physical and mathematical structures of YB deformations
flat space is simpler than $\operatorname{AdS}_{5} \times \mathrm{S}^{5} \longrightarrow$ (Some) deformed models are exactly solvable

2. Coset construction of 4D Minkowski

Problem : The Killing form on $\operatorname{ISO}(1,3) / \mathrm{SO}(1,3)$ is degenerate
$\Rightarrow 4 \mathrm{D}$ Minkowski is realized as a slice of Poincare AdS_{5}.

$$
\begin{aligned}
& \text { Poincaré } \operatorname{AdS}_{5}=\frac{S O(2,4)}{S O(1,4)} \\
& \begin{array}{l}
g=\exp \left[p_{0} x^{0}+p_{1} x^{1}+p_{2} x^{2}+p_{3} x^{3}\right] \exp [\hat{d} \log z] \\
d s^{2}=\operatorname{Tr}(A \bar{P}(A))=\frac{-\left(d x^{0}\right)^{2}+\sum_{i=1}^{3}\left(d x^{i}\right)^{2}+d z^{2}}{z^{2}} \\
\bar{P}(x)=\frac{1}{4}\left[-\gamma_{0} \operatorname{Tr}\left(\gamma_{0} x\right)+\sum_{i=1}^{3} \gamma_{i} \operatorname{Tr}\left(\gamma_{i} x\right)+\gamma_{5} \operatorname{Tr}\left(\gamma_{5} x\right)\right] \\
\bar{P}: \mathfrak{s o}(2,4) \rightarrow \mathfrak{s o}(2,4) / \mathfrak{s o}(1,4)
\end{array}
\end{aligned}
$$

Minkowski spacetime

$g=\exp \left[p_{0} x^{0}+p_{1} x^{1}+p_{2} x^{2}+p_{3} x^{3}\right]$
$d s^{2}=\operatorname{Tr}(A P(A))=-\left(d x^{0}\right)^{2}+\sum_{i=1}^{3}\left(d x^{i}\right)^{2}$
$P(x)=\frac{1}{4}\left[-\gamma_{0} \operatorname{Tr}\left(\gamma_{0} x\right)+\sum_{i=1}^{3} \gamma_{i} \operatorname{Tr}\left(\gamma_{i} x\right)\right]$

3. Yang-Baxter deformed Minkowski space

The action of Yang-Baxter sigma models of Minkowski spacetime (proposal)

$$
\begin{aligned}
& S=-\frac{1}{2} \int_{-\infty}^{\infty} d \tau \int_{0}^{2 \pi} d \sigma\left(\gamma^{\alpha \beta}-\epsilon^{\alpha \beta}\right) \operatorname{Tr}\left[A_{\alpha} P \circ \frac{1}{1-2 \eta R_{g} \circ P}\left(A_{\beta}\right)\right] \\
& R_{g}(X) \equiv g^{-1} R\left(g X g^{-1}\right) g \quad X \in \mathfrak{s o}(2,4)
\end{aligned}
$$

The R operator is defined by using a classical r-matrix:

$$
R(X) \equiv\left\langle r_{12}, 1 \otimes X\right\rangle=a \operatorname{Tr}(b X)-b \operatorname{Tr}(a X)
$$

This is a solution of the CYBE $\quad[R(X), R(Y)]-R([R(X), Y]+[X, R(Y)])=0$
Classification of classical r-matrices
$r=a \wedge b=a \otimes b-b \otimes a$
$[a, b]=0$
$[a, b] \neq 0$
$\begin{array}{lrc}\text { (a) } r=\text { Poincaré } \wedge \text { Poincaré } & r \sim p_{3} \wedge n_{12} & r \sim\left(p_{0}-p_{3}\right) \wedge n_{03} \\ \text { (b) } r=\text { Poincaré } \wedge \text { non-Poincaré } & r \sim n_{12} \wedge \hat{d} & r \sim p_{0} \wedge \hat{d} \\ \text { (c) } r=\text { non-Poincaré } \wedge \text { non-Poincaré } & r \sim k_{1} \wedge k_{2} & r \sim k_{0} \wedge \hat{d}\end{array}$

What we did is...

- Introduced Yang-Baxter deformations of Minkowski spacetime.
- Identified TsT-transformed backgrounds with classical r-matrices.
- Obtained T-dual of dS_{4} and AdS_{4} as Yang-Baxter deformations.

4. Twisted backgrounds

An abelian classical r-matrix

$$
r=\frac{1}{2} p_{3} \wedge n_{12}
$$

The associated metric and B-field are given by

$$
\begin{aligned}
& d s^{2}=-\left(d x^{0}\right)^{2}+d r^{2}+\frac{r^{2} d \theta^{2}+\left(d x^{3}\right)^{2}}{1+\eta^{2} r^{2}} \quad \text { Melvin background } \\
& B=\frac{\eta r^{2}}{1+\eta^{2} r^{2}} d \theta \wedge d x^{3}
\end{aligned}
$$

This b.g. is also obtained as a TsT-trans. of Minkowski spacetime
[Hashimoto-Thomas,0410123]

Further development

Lax pairs can be constructed
[Kyono-JS-Yoshida, 1511.NNNNN]

5. Non-twisted backgrounds

A non-abelian r-matrix

$$
r=\frac{1}{2} \hat{d} \wedge p_{0} \quad\left[\hat{d}, p_{0}\right]=p_{0}
$$

The deformed background is

$$
\begin{gathered}
d s^{2}=\frac{-\left(d x^{0}\right)^{2}+d r^{2}}{1-\eta^{2} r^{2}}+r^{2} \sin ^{2} \theta d \phi^{2}+r^{2} d \theta^{2} \\
B=\frac{\eta r}{1-\eta^{2} r^{2}} d x^{0} \wedge d r \quad \text { (total derivative) } \\
x^{1}=r \cos \phi \sin \theta, x^{2}=r \sin \phi \sin \theta, x^{3}=r \cos \theta
\end{gathered}
$$

Perform a time-like T-duality and a coordinate transformation

$$
d s^{2}=-\left(1-\eta^{2} r^{2}\right) d t^{2}+\frac{d r^{2}}{1-\eta^{2} r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

This is the metric of dS_{4} in the static coordinates.

6. A list of deformed backgrounds and classical r-matrices

TsT-transformed backgrounds (exactly solvable models)

$r=\frac{1}{2} p_{3} \wedge n_{12}$	Melvin twist	Melvin background
$r=\frac{1}{2 \sqrt{2}}\left(p_{0}-p_{3}\right) \wedge n_{12}$	Null Melvin twist	pp-wave
$r=\frac{1}{2 \sqrt{2}} p_{2} \wedge\left(n_{01}+n_{13}\right)$	Melvin null twist	Hashimoto-Sethi
$r=\frac{1}{2} n_{12} \wedge n_{03}$	R Melvin R twist	Spradlin-Takayanagi-Volovich
$r=\frac{1}{2} p_{\mu} \wedge p_{\nu}$	Melvin shift twist	Locally flat spaces
$r=\frac{1}{2}\left(p_{0}+p_{3}\right) \wedge p_{1}$	Null Melvin shift twist	Locally flat spaces

Non-twisted backgrounds

$\left.\begin{array}{lll}r=\frac{1}{2} \hat{d} \wedge p_{0} & \text { Non twist } & \text { T-dual of } \mathrm{dS}_{4} \\ r=\frac{1}{2} \hat{d} \wedge p_{1} & \text { Non twist } & \text { T-dual of } \mathrm{AdS}_{4}\end{array}\right]$		
$r=\frac{1}{2 \sqrt{2}}\left(\hat{d}-n_{03}\right) \wedge\left(p_{0}-p_{3}\right)$	Non twist	pp-wave
κ-Poincare r-matrices $r=a^{\mu} n_{\mu \nu} \wedge p^{\nu}$ give same b.g. [Borowiec-Kyono-Lukierski-JS-Yoshida, 1510.03083]		

