Yang-Baxter deformations of Minkowski spacetime

Junichi Sakamoto (Kyoto U.) arXiv:1505.04553 JHEP 1510 (2015) 185

This is a collaboration with T. Matsumoto (Nagoya U.), D. Orlando (ENS), S. Reffert (Bern U.), K. Yoshida (Kyoto U.)

1. Introduction

Yang-Baxter sigma models [Klimcik, 2002,2008]

A systematic way to study integrable deformations of 2D NLSMs.

An integrable sigma model $AdS_5 \times S^5$ spacetime YB deformations Sigma modelsLunin-Maldacena, gravity duals of NCYM

Deformations are characterized by classical r-matrices –

Solutions of the classical Yang-Baxter equation

What we did is...

- Introduced Yang-Baxter deformations of Minkowski spacetime.
- Identified TsT-transformed backgrounds with classical r-matrices.
- Obtained T-dual of dS₄ and AdS₄ as Yang-Baxter deformations.

To investigate physical and mathematical structures of YB deformations

flat space is simpler than $AdS_5 \times S^5 \longrightarrow$ (Some) deformed models are exactly solvable

2. Coset construction of 4D Minkowski

Problem : The Killing form on ISO(1,3)/SO(1,3) is degenerate.

4D Minkowski is realized as a slice of Poincare AdS_5 .

Poincaré $\operatorname{AdS}_5 = \frac{SO(2,4)}{SO(1,4)}$ $g = \exp\left[p_0 x^0 + p_1 x^1 + p_2 x^2 + p_3 x^3\right] \exp\left[\hat{d}\log z\right]$ $ds^2 = \operatorname{Tr}(A\overline{P}(A)) = \frac{-(dx^0)^2 + \sum_{i=1}^3 (dx^i)^2 + dz^2}{z^2}$ $\overline{P}(x) = \frac{1}{4}\left[-\gamma_0 \operatorname{Tr}(\gamma_0 x) + \sum_{i=1}^3 \gamma_i \operatorname{Tr}(\gamma_i x) + \gamma_5 \operatorname{Tr}(\gamma_5 x)\right]$ $\overline{P}: \mathfrak{so}(2,4) \to \mathfrak{so}(2,4)/\mathfrak{so}(1,4)$

 $A = g^{-1} dg$ $p_{\mu} \equiv \frac{1}{2} (\gamma_{\mu} - 2n_{\mu 5}) \quad [p_{\mu}, p_{\nu}] = 0$ $\{ \gamma_{\mu}, \gamma_{\nu} \} = 2\eta_{\mu\nu}$ $\gamma_{5} = i\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{0} \qquad \hat{d} = \frac{\gamma_{5}}{2}$ $\frac{1}{4} [\gamma_{\mu}, \gamma_{\nu}] = n_{\mu\nu} \quad \frac{1}{4} [\gamma_{\mu}, \gamma_{5}] = n_{\mu 5}$

4. Twisted backgrounds

An abelian classical r-matrix

$$r = \frac{1}{2} p_3 \wedge n_{12}$$

The associated metric and B-field are given by

$$\begin{split} ds^2 &= -(dx^0)^2 + dr^2 + \frac{r^2 d\theta^2 + (dx^3)^2}{1 + \eta^2 r^2} \\ B &= \frac{\eta r^2}{1 + \eta^2 r^2} \, d\theta \wedge dx^3 \end{split}$$

Melvin background

This b.g. is also obtained as a TsT-trans. of Minkowski spacetime

[Hashimoto-Thomas,0410123]

Further development

Lax pairs can be constructed

[Kyono-JS-Yoshida, 1511.NNNNN]

5. Non-twisted backgrounds

A non-abelian r-matrix

 $r = \frac{1}{2}\hat{d} \wedge p_0$ $[\hat{d}, p_0] = p_0$

3. Yang-Baxter deformed Minkowski space

The action of Yang-Baxter sigma models of Minkowski spacetime (proposal)

$$S = -\frac{1}{2} \int_{-\infty}^{\infty} d\tau \int_{0}^{2\pi} d\sigma \left(\gamma^{\alpha\beta} - \epsilon^{\alpha\beta}\right) \operatorname{Tr} \left[A_{\alpha} P \circ \frac{1}{1 - 2\eta R_{g} \circ P} (A_{\beta}) \right]$$

 $R_g(X) \equiv g^{-1}R(gXg^{-1})g \quad X \in \mathfrak{so}(2,4)$

The R operator is defined by using a classical r-matrix:

The deformed background is

 $B = \frac{\eta^{\prime}}{1 - \eta^2 r^2} dx^0 \wedge dr \quad \text{(total derivative)}$

 $x^{1} = r \cos \phi \sin \theta, x^{2} = r \sin \phi \sin \theta, x^{3} = r \cos \theta$

 $x^{0} = t - \frac{1}{2\eta} \log(\eta^{2} r^{2} - 1)$

Perform a time-like T-duality and a coordinate transformation

$$ds^{2} = -(1 - \eta^{2}r^{2})dt^{2} + \frac{dr^{2}}{1 - \eta^{2}r^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

This is the metric of dS₄ in the static coordinates.

6. A list of deformed backgrounds and classical r-matrices

TsT-transformed backgrounds (exactly solvable models)

 $R(X) \equiv \langle r_{12}, 1 \otimes X \rangle = a \operatorname{Tr}(b X) - b \operatorname{Tr}(a X)$

This is a solution of the CYBE [R(X), R(Y)] - R([R(X), Y] + [X, R(Y)]) = 0

Classification of classical r-matrices

$$r = a \land b = a \otimes b - b \otimes a \qquad [a, b] = 0 \qquad [a, b] \neq 0$$

(a) $r = \text{Poincaré} \land \text{Poincaré} \qquad r \sim p_3 \land n_{12} \qquad r \sim (p_0 - p_3) \land n_{03}$
(b) $r = \text{Poincaré} \land \text{non-Poincaré} \qquad r \sim n_{12} \land \hat{d} \qquad r \sim p_0 \land \hat{d}$
(c) $r = \text{non-Poincaré} \land \text{non-Poincaré} \qquad r \sim k_1 \land k_2 \qquad r \sim k_0 \land \hat{d}$

	$r = \frac{1}{2\sqrt{2}} p_2 \wedge (n_{01} + n_{13})$	Melvin null twist	Hashimoto-Sethi
	$r = \frac{1}{2}n_{12} \wedge n_{03}$	R Melvin R twist	Spradlin-Takayanagi-Volovich
	$r = \frac{1}{2} p_{\mu} \wedge p_{\nu}$	Melvin shift twist	Locally flat spaces
	$r = \frac{1}{2}(p_0 + p_3) \wedge p_1$	Null Melvin shift twist	Locally flat spaces
Non-twisted backgrounds			
	$r = \frac{1}{2}\hat{d} \wedge p_0$	Non twist	T-dual of dS ₄
	$r = \frac{1}{2}\hat{d} \wedge p_1$	Non twist	T-dual of AdS_4
	$r = \frac{1}{2\sqrt{2}}(\hat{d} - n_{03}) \wedge (p_0 - p_3)$	Non twist	pp-wave
	κ -Poincare r-matrices $r = a^{\mu} n_{\mu\nu} \wedge p^{\nu}$ give same b.g.		
[D010w1cc-Ky0110-Lukiciski-JS-108111ua, 1510.05065]			0000]