

Improved GLSM for Exotic Five-brane

Tetsuji KIMURA (Keio Univ.)

Work in progress In collaboration with Shin SASAKI (Kitasato Univ.)

THE Technique We Proposed in 2013

- logarithmic harmonic function (co-dim. 2) \rightarrow no well-defined asymptotic behaviors
- non-trivial monodromy charges \rightarrow globally non-geometric structure

etc...

 5_2^2 -brane has been investigated in supergravity from the "conventional spacetime viewpoint". Now we are ready to analyze it from the string worldsheet viewpoint, because the sigma model for NS5-branes/KK-monopoles is well established. String worldsheet theory will tell us much richer property of the 5_2^2 -brane, because the theory naturally contains B-field on the target space. Here, we report that we found the worldsheet model as a 2D N=(4,4) SUSY gauge theory (GLSM) for the 5_2^2 -brane (see the above), though it seemed hard to construct the worldsheet model caused by the above exotic features themselves.

spacetime	Buscher rule
	$(G_{mn}, B_{mn}) \to (G'_{mn}, B'_{mn})$
SUSY sigma model	Roček-Verlinde formula
	$chiral \leftrightarrow twisted \ chiral$

Two Techniques

(free) string

8

T-dual

along x^8

 $8 \mid 7 \mid \widetilde{9}$

T-dual

along x^9

8

 Ψ

|7|9

 Θ

T-duality

[I]

 Ψ

1: F-terms \rightarrow D-terms chiral superfield \rightarrow general superfield $\Phi_a = \overline{D}_+ \overline{D}_- C_a$ $\mathscr{L}_{\Psi} = \int d^4\theta \, \frac{1}{q^2} \overline{\Psi} \Psi + \sqrt{2} \sum_{i=1}^{k} \left\{ \int d^2\theta \left(-\Psi \Phi_a \right) + (h.c.) \right\}$ $= \int \mathrm{d}^4\theta \Big\{ \frac{c}{g^2} (\Psi + \overline{\Psi})^2 - \sqrt{2} (\Psi + \overline{\Psi}) \sum_{a=1}^k (C_a + \overline{C}_a) + \frac{2c-1}{2g^2} (\Psi - \overline{\Psi})^2 - \sqrt{2} (\Psi - \overline{\Psi}) \sum_{a=1}^k (C_a - \overline{C}_a) \Big\}$ $\mathscr{L}_{RSX\Xi} \equiv \int \mathrm{d}^4\theta \left\{ \frac{c}{g^2} R^2 - \sqrt{2}R \sum_{i=1}^k (C_a + \overline{C}_a) + R(\Xi_1 + \overline{\Xi}_1) + R(X + \overline{X}) \right\}$ $+\int \mathrm{d}^4\theta \left\{ \frac{2c-1}{2q^2} (\mathrm{i}S)^2 - \sqrt{2}(\mathrm{i}S) \sum_{i=1}^k (C_a - \overline{C}_a) + \mathrm{i}S(\Xi_2 - \overline{\Xi}_2) + \mathrm{i}S(X - \overline{X}) \right\}$ integrate out Ξ_1, Ξ_2 and $X \rightarrow \text{GLSM}$ for KK-monopoles

KK-monopole

H-monopole

sign-flip (parity) in right-mover

momentum \leftrightarrow winding

integrate out R and $\Xi_2 \rightarrow \text{new GLSM}$ (see the right above)

Worldsheet Model in IR

IR limit of the gauge theory is the NLSM on the $5\frac{2}{2}$ -brane with B-field. The procedure is parallel to the one in the case of KK-monopoles :

- find a SUSY vacuum $\mathscr{L}_{\text{GLSM}}^{\text{pot}} = 0$
- solve the constraints on charged fields in (Q_a, Q_a) 2.
- take IR limit $e_a \to \infty$ and integrate out the gauge fields 3.
- integrate out the T-dual Coordinate Fields 4.

 $d^2\theta (\Psi - \overline{\Psi})(C_a - \overline{C}_a)$ plays a crucial role in process 4.

We successfully produced the exotic five-brane metric with B-field ! (see the left above "10D spacetime description")

But, very complicated...

2: shift symmetry vs dual coordinate analysis

- The term $\int d^2 \theta (\Psi \overline{\Psi}) (C_a \overline{C}_a)$ looks pathological because this breaks the shift symmetry, i.e., the isometry on the geometry. BUT, this term plays an **essential** role! *If absent, ...*
- IR theory is reduced to a chiral model: conflict w/ N=(4,4) SUSY,
- Target space metric is single-valued: trivial monodromy,
- Target space B-field does not appear: conflict w/ Buscher rule.

This term yields the T-dual (non-geometric) coordinate, which is inevitable to derive the exotic brane geometry!

- ✓ We have to prepare many auxiliary superfields in the first order
 - Lagrangian such as R, iS, X, Ξ_1, Ξ_2 , so noisy!!
- ✓ Integration rule is so complicated.
- \checkmark It is hard to applied this method to other nongeometric systems.

Improved GLSM for Exotic Five-brane

Tetsuji KIMURA (Keio Univ.)

Work in progress In collaboration with Shin SASAKI (Kitasato Univ.)

THE Technique We Show in 2015

Duality transformation without isometry by virtue of reducible superfields

(reviewed by M.Grisaru, M.Massar, A.Sevrin, J.Troost in hep-th9801080)

$$\mathscr{L} = K(A, \overline{A}, L, \overline{L}) - AL - \overline{A}\overline{L}$$

$$= K(A,\overline{A},L,\overline{L}) - \frac{1}{2}(A+\overline{A})(L+\overline{L}) - \frac{1}{2}(A-\overline{A})(L-\overline{L})$$

chiral to complex linear

twisted chiral to complex twisted linear

$$\frac{1}{g^2}\Psi \sim \overline{L} + 2\sqrt{2}\overline{C} \quad 0 = \overline{D}_+\overline{D}_-L \qquad \frac{1}{g^2}\Theta \sim -\overline{\widetilde{L}} - 2V \quad 0 = \overline{D}_+D_-\widetilde{L}$$
$$\mathscr{L}_{\Psi\Theta} = \frac{1}{g^2}\int \mathrm{d}^4\theta \left\{ + |\Psi|^2 - |\Theta|^2 \right\}$$

$$-\left\{\sqrt{2}\int d^2\theta \,\Psi\Phi + (h.c.)\right\} - \left\{\sqrt{2}\int d^2\tilde{\theta}\,\Theta\Sigma + (h.c.)\right\}$$

 \mathbf{P}

$$\sim g^2 \int d^4\theta \left\{ -\left|L + 2\sqrt{2}C\right|^2 + \left|\widetilde{L} + 2V\right|^2 \right\}$$

It is quite simple and easy to formulate N=(2,2) systems. Of course, we can apply this method to systems with isometry.

The complex (twisted) linear superfields are reducible, i.e., they can be described as a sum of irreducible superfields such as chiral and twisted chiral superfields.

$$\begin{cases} L = X + Y + \overline{Z} & \text{complex linear} \\ \widetilde{L} = X + Y + \overline{W} & \text{complex twisted linear} \\ \text{where} & \begin{cases} X, W : & \text{chiral} \\ Y, Z : & \text{twisted chiral} \end{cases}$$

This method will admit further T-duality transformations, and give us new descriptions of globally nongeometric objects (maybe).

IDCTC

- Analyze worldsheet instantons via gauge theory instantons (see our work arXiv:1305.4439)
- \checkmark Explore quantum moduli space as in N=(4,4) GLSM
- \checkmark Relation to DFT and β -supergravity (see works by Hull and Zwiebach, Andriot, and many guys)
- ✓ S-duality

✓ Etc., etc...

YITP Workshop 2015 @ Yukawa Institute, Kyoto University (November 11, 2015)