Prospects of LHC Run II

a phenomenologist view

Koji TSUMURA (Kyoto U.) "Developments in String Theory and Quantum Field Theory" YITP Workshop, Kyoto, Nov 9-13, 2015

Plan of Talk

 LHC Status
 Run I Summary SM Discovery / BSM Exclusion / Anomalies
 Run II Early Data

LHC Status

2015/11/9-13 YITP-QFT

Large Hadron Collider (LHC)

26.7 km proton (heavy ion) Accelerator

Detector

Multi-purpose : ATLAS / CMS B physics : LHCb Heavy Ion : ALICE

2015/11/9-13 YITP-QFT

Multi-layer structure

Collider Observable

of Events $N = \sigma_{(cross section)} \times L_{(luminosity)}$

QFT (+ Your model) + Energy

Distributions $dN/dM, dN/d\Theta, \cdots$

2015/11/9-13 YITP-QFT

Collider

of Events $N = \sigma$ (cross section)

Too Many Data

Signal is 10 orders of magnitude smaller than BG Need to Reduce Data \rightarrow Trigger, Selection Cut

Experimental Challenge

Phenomenologist Idea

Function of Energy

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

1

Koji TSUMURA (Kyoto U.)

6

Electron Cloud

Synchrotron Rad. → Photo-elec. @ Beam Screen Wall
→ Accelerate Electron by Bunch
→ Hit Wall & Emit Secondary Electron
→ Electron Cloud

→ Emittance growth, Unstable Beam, Heat Cryogenic System

2015/11/9-13 YITP-QFT

Electron Cloud

2015/11/9-13 YITP-QFT

A nice picture of some dust

UFOs (dust?) dropping from upper beam shield

→ Hit the Beam (Collision outside Detector)

→ Beam Loss ?

→ Beam Bump (Need 8hrs for reboot)

Next 20 years

Year

2015/11/9-13 YITP-QFT

Physics Results

2015/11/9-13 YITP-QFT

Run II Prospects

2015/11/9-13 YITP-QFT

Run I (7/8 TeV)

2015/11/9-13 YITP-QFT

Dictionary

Discovery / Observation

 5σ [99.99994%]

 Evidence

 3σ [99.7%]

 Anomaly (Excess / Deficit / …)

 2σ [95.5%]

• Exclusion BG only > 2σ [95.5%]

Discovery / Observation

> 5σ

1/1744278 : Every 4776 years (Once in recorded history) 99.99994%

2015/11/9-13 YITP-QFT

Re-Discovery of the SM

 $M_{\mu\mu} = \sqrt{(p_{1\mu} + p_{2\mu})^2}$: Di-Muon Invariant Mass

2015/11/9-13 YITP-QFT

Re-Discovery of W, top

lepton + Missing $E_T(v)$ [w/ p_T conservation]

Higgs

2015/11/9-13 YITP-QFT

Higgs Discovery

2015,

PDG 2015 update

New, Oct 2015 (cutoff 15th Jan)

Higgs Production

Higgs Production

2015/11/9-13 YITP-QFT

	σ (pb) @7TeV	σ (pb) @14TeV	14TeV /7TeV
Gluon Fusion (ggF)	15.3	50.0	3.3
Vector Boson Fusion (VBF)	1.2	4.2	3.5
Higgs-strahlung (WH, ZH)	0.6, 0.3	1.5, 0.9	2.5, 3.0
ttH	0.1	0.6	6.0
ttbar [BG]	170	830	4.9

Koji TSUMURA (Kyoto U.)

15'

Higgs Decay

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

16

Official Combination

Individual Results μ = Observed / Expected

Observation of gg, ZZ, WW

Evidence of $\tau \tau$, (tt)

Need more data for bb (Run II) for μμ, Ζγ (HL-LHC)

2015/11/9-13 YITP-QFT

Official Combination

Individual Results

Combined Results

2015/11/9-13 YITP-QFT

Testing Higgs Production

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

18

Testing Higgs Coupling

Indirect Test of BSM w/o New Particles

2015/11/9-13 YITP-QFT

Exclusion / Non-discovery

BG Only Hypothesis > 2σ

1/22 : Every 3 weeks 95.5%

2015/11/9-13 YITP-QFT

Z' search (resonance search)

 $M_{\ell\ell} = \sqrt{(p_{1\ell} + p_{2\ell})^2}$: di-lepton Invariant Mass

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

20

Event Topology
Z' search (resonance search)

 $M_{\ell\ell} = \sqrt{(p_{1\ell} + p_{2\ell})^2}$: di-lepton Invariant Mass

W' search (edge search)

lepton + Missing $E_T(v)$ [w/ p_T conservation]

$$M_T = \sqrt{2p_T^\ell p_T^\nu \left(1 - \cos(\phi^\ell - \phi^\nu)\right)}$$

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

21

W' search (edge search)

$$M_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos(\phi^\ell - \phi^\nu))}$$

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

21'

DM search (invisible search)

Mono-X : Large Missing E_T(~p_T)

testing p_T non-conservation by recoil energy

ā

χ

DM search (invisible search)

Mono-X : Large Missing E_T(~p_T)

2015/11/9-13 YITP-QFT

Exotics (non-SUSY)

ATLAS Exotics Searches* - 95% CL Exclusion

Status: July 2015

ATLAS Preliminary $\int \mathcal{L} dt = (4.7 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	<i>ℓ</i> , γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[ft	-1] Limit ■	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \\ \text{ADD BH high } N_{trk} \\ \text{ADD BH high multijet} \\ \text{RS1 } G_{KK} \to \ell \ell \\ \text{RS1 } G_{KK} \to \ell \ell \\ \text{RS1 } G_{KK} \to 2Z \to qq\ell \ell \\ \text{Bulk } \text{RS } G_{KK} \to ZZ \to qq\ell \ell \\ \text{Bulk } \text{RS } G_{KK} \to HH \to b\bar{b}b\bar{b} \\ \text{Bulk } \text{RS } K_{KK} \to t\bar{t} \\ \text{2UED / RPP} \end{array}$		$ \begin{array}{c} \geq 1 \\ \\ - \\ 1 \\ 2 \\ 2 \\ \\ \\ 2 \\ 2 \\ 2 \\ \\ \\ 2 \\ 1 \\ \\ \\ 1 \\ \\ \\ \\$	Yes - - - - - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mo 5.25 TeV n = 2 Ms 4.7 TeV n = 3 HLZ Ma 5.2 TeV n = 6 Ma 5.2 TeV n = 6 Ma 5.8 TeV n = 6 Ma 5.8 TeV n = 6, M _D = 3 TeV, non-rot B Ma 5.8 TeV n = 6, M _D = 3 TeV, non-rot B Ma 5.8 TeV n = 6, M _D = 3 TeV, non-rot B Ma 5.8 TeV n = 6, M _D = 3 TeV, non-rot B Grac mass 740 GeV 2.66 TeV n = 6, M _D = 3 TeV, non-rot B Grac mass 760 GeV 2.66 TeV k/M _{PI} = 0.1 K/M _{PI} = 1.0 k/M _{PI} = 1.0 k/M _{PI} = 1.0 Kr. mass 500-720 GeV 2.2 TeV BR = 0.925	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.09988 1405.4123 1504.05511 1409.6190 1503.04677 1506.00285 1505.07018 1504.04605
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell\\ \mathrm{SSM}\ Z' \to \tau\tau\\ \mathrm{SSM}\ W' \to \ell\nu\\ \mathrm{EGM}\ W' \to WZ \to \ell\nu\ \ell'\ell'\\ \mathrm{EGM}\ W' \to WZ \to qq\ell q\\ \mathrm{EGM}\ W' \to WZ \to qqqq\\ \mathrm{HVT}\ W' \to WH \to \ell\nu bb\\ \mathrm{LRSM}\ W'_R \to t\bar{b}\\ \mathrm{LRSM}\ W'_R \to t\bar{b}\\ \end{array}$	2 e, µ 2 τ 1 e, μ 3 e, μ 2 e, μ - 1 e, μ 1 e, μ 0 e, μ	- - 2 j/1 J 2 J 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes Yes	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.52 TeV W' mass 1.55 TeV W' mass 1.34 TeV W' mass 1.92 TeV W' mass 1.92 TeV W' mass 1.92 TeV	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 1506.00962 1503.08089 1410.4103 1408.0886
C	Cl qqqq Cl qqll Cl uutt	2 e, μ 2 e, μ (SS)	2 j _ ≥ 1 b, ≥ 1	j Yes	20.3 20.3	A Contact int. 210 rev 7/(L = -1 4.3 TeV //L = -1 //L = -1	1407.2410 1504.04605
MD	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ	≥1j 1J, ≤1j	Yes Yes	20.3 20.3	M. at 90% CL for $m(\chi) < 100$ GeV M. 2.4 TeV at 90% CL for $m(\chi) < 100$ GeV	1502.01518 1309.4017
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3	– – Yes	20.3 20.3 20.3	LQ mass 1.05 TeV $\beta = 1$ LQ mass 1.0 TeV $\beta = 1$ LQ mass 640 GeV $\beta = 0$	Preliminary Preliminary Preliminary
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array} $	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2 / \geq 1 \ b \\ \geq 1 \ b, \geq 5 \end{array}$	j Yes j Yes j Yes _ j Yes	20.3 20.3 20.3 20.3 20.3	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV B mass 755 GeV B mass 755 GeV B mass 840 GeV	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$	1 γ 1 or 2 e, μ 2 e, μ, 1 γ 3 e, μ, τ	1 j 2 j 1 b, 2 j or 1 – –	_ j Yes _ _	20.3 20.3 4.7 13.0 20.3	a' mass 3.5 TeV only u' and d', h = m(q') a' mass a' mass a' mass a' mass b' mass a' mass a' mass a' mass '' mass a' mass a' mass a' mass '' mass '' f.6 TeV A = 1.6 TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles $\sqrt{s} = 7 \text{ TeV}$	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e, \mu (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	- 2 j - - 1 b - -	Yes Yes 	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	ar mass 960 GeV N ^g mass 2.0 TeV H ^{±±} mass 551 GeV H ^{±±} mass 657 GeV spin-1 invisible particle mass 657 GeV monopole mass 785 GeV 10 ⁻¹ 10	1407.8150 1506.06020 1412.0237 1411.2921 1411.2921 1410.5404 1504.04188 Preliminary
						Mass scale [10	v j

*Only a selection of the available mass limits on new states or phenomena is shown.

SUSY search

EW production

QCD production + Cascade decay

Large Missing $E_T(\sim p_T)$

Large p_T object + Large Missing $E_T(~p_T)$

Good : Large σ + Multi-jet -> Stronger Limit Bad : Bounds depend on Mass Spectrum

SUSY search

Any excess is observed in M_{eff} dist. \rightarrow bound

2015/11/9-13 YITP-QFT

SUSY search

2015/11/9-13 YITP-QFT

SUSY Summary

ATLAS SUSY Searches* - 95% CL Lower Limits Status: July 2015

ATLAS Preliminary $\sqrt{s} = 7, 8$ TeV

 e, μ, τ, γ Jets $E_{T}^{\text{miss}} \int \mathcal{L} dt [\text{fb}^{-1}]$ Model Reference Mass limit $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ MSUGRA/CMSSM 0-3 e, µ/1-2 τ 2-10 jets/3 b Yes TeV $m(\tilde{q})=m(\tilde{g})$ 20.3 1507 05525 0 2-6 jets Yes 20.3 850 GeV 1405.7875 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}$ $m(\tilde{\chi}_1^0)=0$ GeV, $m(1^{st} \text{ gen. } \tilde{q})=m(2^{nd} \text{ gen. } \tilde{q})$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ (compressed) mono-jet 1-3 jets Yes 20.3 100-440 GeV $m(\tilde{q})-m(\tilde{\chi}_{1}^{0})<10 \text{ GeV}$ 1507.05525 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$ 2 e, μ (off-Z) 2 jets Yes 20.3 780 GeV $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ 1503.03290 Search $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 2-6 jets Yes 20.3 .33 TeV 0 $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ 1405.7875 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 2-6 jets Yes 20 1 26 TeV $m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ 1507.05525 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_1^0$ GMSB ($\tilde{\ell}$ NLSP) $2e, \mu$ 0-3 jets 20 32 TeV $m(\tilde{\chi}_{1}^{0})=0$ GeV 1501.03555 Inclusive 0-2 jets 20.3 $\tan\beta > 20$ 1407.0603 $1-2\tau + 0-1\ell$ Yes 1.6 TeV 1.29 TeV cτ(NLSP)<0.1 mm GGM (bino NLSP) 2γ Yes 20.3 1507.05493 .3 TeV GGM (higgsino-bino NLSP) 1b20.3 $m(\tilde{\chi}_1^0) < 900 \text{ GeV}, c\tau(NLSP) < 0.1 \text{ mm}, \mu < 0$ γ Yes 1507.05493 GGM (higgsino-bino NLSP) 2 jets Yes 20.3 1 TeV $m(\tilde{\chi}_{1}^{0}) < 850 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu > 0$ 1507.05493 GGM (higgsino NLSP) $2 e, \mu (Z)$ 2 jets 20.3 850 GeV m(NLSP)>430 GeV Yes 1503.03290 Gravitino LSP mono-jet $E^{1/2}$ scale $m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$ 0 Yes 20.3 865 GeV 1502.01518 1.25 TeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ 0 3bYes 20.1 $m(\tilde{\chi}_{1}^{0}) < 400 \, GeV$ 1407.0600 ger 7-10 jets $m(\tilde{\chi}_1^0) < 350 \, \text{GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0 Yes 20.3 1308.1841 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 3bYes 20.1 **.**34 TeV $m(\tilde{\chi}_1^0) < 400 \, \text{GeV}$ 1407.0600 õ a $m(\tilde{\chi}_1^0) < 300 \, \text{GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\tilde{t}\tilde{\chi}_{1}^{\dagger}$ 0-1 e, µ 3bYes 20.1 1.3 TeV 1407.0600 100-620 GeV 0 2bYes 20.1 $m(\tilde{\chi}_1^0) < 90 \text{ GeV}$ 1308.2631 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 2 e, µ (SS) 275-440 GeV 1404.2500 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\sharp}$ 0-3 b Yes 20.3 $m(\tilde{\chi}_1^{\pm})=2 m(\tilde{\chi}_1^0)$ *t*₁ 110-167 GeV 230-460 GeV 1209.2102, 1407.0583 $1-2 e, \mu$ 1-2 b Yes 4.7/20.3 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ $m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0})=55 \text{ GeV}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b Yes 20.3 90-191 GeV 210-700 GeV 1506.08616 $m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ 0 mono-jet/c-tag Yes 20.3 90-240 GeV $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})<85\,GeV$ 1407.0608 $\tilde{t}_1\tilde{t}_1$ (natural GMSB) 2 e, µ (Z) 1bYes 20.3 ĩ 150-580 GeV $m(\tilde{\chi}_1^0) > 150 \, \text{GeV}$ 1403.5222 ij. $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 3 e, µ (Z) Yes 20.3 \tilde{t}_2 $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1403 5222 1b290-600 GeV $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 2e.u20.3 90-325 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 0 Yes 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ {\rightarrow} \tilde{\ell} \nu(\ell \tilde{\nu})$ $2e,\mu$ 0 Yes 20.3 140-465 GeV $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} v(\tau \tilde{\nu})$ 2τ Yes 20.3 100-350 GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1407.0350 EW $\begin{aligned} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} &\rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \, \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} &\rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \end{aligned}$ 3 e, µ 0 Yes 20.3 700 GeV $m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1402.7029 2-3 e, µ 0-2 jets 20.3 420 GeV 1403.5294. 1402.7029 Yes $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled $\begin{array}{c} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, \, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{array}$ e, μ, γ 20.3 250 GeV 1501.07110 0-2hYes $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled 4 e, µ 20.3 1405.5086 0 Yes 620 GeV $m(\tilde{\ell}, = 0.5(m(\tilde{\chi}_2^0) + m(\tilde{\chi}_1^0)))$ GGM (wino NLSP) weak prod. $1 e, \mu + \gamma$ Yes 20.3 124-361 GeV 1507.05493 Ŵ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Disapp. trk 1 jet Yes 20.3 270 GeV MeV, $\tau(\tilde{\chi}_{\perp}^{\pm})=0.2$ ns 1310.3675 1506.05332 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ dE/dx trk Yes 18.4 482 GeV $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim$ 160 MeV, $\tau(\tilde{\chi}_{1}^{\pm})<$ 15 ns Stable, stopped g R-hadron 832 GeV 0 1-5 jets Yes 27.9 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s}$ 1310.6584 Long-liv Stable g R-hadron trk 19.1 1411.6795 GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ 1-2 µ 19.1 537 GeV 10<tan8<50 1411.6795 GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 20.3 435 GeV $2 < \tau(\tilde{\chi}_1^0) < 3$ ns, SPS8 model 1409 5542 displ. ee/eµ/µµ 20.3 1.0 Te $7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm}, m(\tilde{g}) = 1.3 \text{ TeV}$ 1504.05162 $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow Z\tilde{G}$ displ. vtx + jets 20.3 1.0 TeV 6 <cτ(X10) < 480 mm, m(g)=1.1 TeV 1504.05162 εμ,ετ,μτ 1.7 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ 20.3 1503.04430 Bilinear RPV CMSSM 2 e, µ (SS) $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1 mm$ 0-3 b Yes 20.3 35 TeV 1404.2500 $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e}$ 4 e. u Yes 20.3 750 GeV $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{121} \neq 0$ 1405.5086 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau$ $3e, \mu + \tau$ Yes 20.3 450 GeV $m(\tilde{\chi}_1^0) > 0.2 \times m(\tilde{\chi}_1^{\pm}), \lambda_{133} \neq 0$ 1405.5086 RPV 6-7 jets BR(t)=BR(b)=BR(c)=0%1502.05686 ĝĝ, ĝ→qqq 0 -20.3 917 GeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 6-7 jets 0 20.3 870 GeV $m(\tilde{\chi}_{1}^{0})=600 \text{ GeV}$ 1502.05686 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 2 e, µ (SS) Yes 0-3 b 20.3 850 GeV 1404.250 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 0 2 jets + 2 b 20.3 100-308 GeV ATLAS-CONF-2015-026 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$ $2 e, \mu$ 0.4-1.0 Te $BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$ ATLAS-CONF-2015-015 2h20.3 ĩ. Other Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$ 0 2cYes 20.3 490 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1501.01325 10^{-1} 1 Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

2015, 17, 3-13 1111 - 41

NULL I SUMUNA (NULL O.)

Evidence / Anomaly (Excess / Deficit / ···)

Phenomenologists Start To CHASE

$> 3\sigma (2\sigma)$

1/370 : Yearly 99.7% 1/22 : Every 3 weeks 95.5%

 $2.5\sigma = 1/81$: Quarterly

2015/11/9-13 YITP-QFT

Rules of The Game

Criteria is dependent on the 'strangeness' of Anomaly

• Very Exotic Anomaly

- Stay tuned
- Interpretation by a minimal model → Make Predictions

Exotic Anomaly

- Interpretation by popular / favorite models (SUSY, ED, TC, ...)
- Interpretation by a model & relate to New Physics (Neutrino, DM, ...)
- Interpretation by a model & relate to other Anomaly (g-2, ...)

Evidence of Anomalies

h → τμ
W_R
SUSY
Diboson Excesses

 $h \rightarrow \tau \mu$

Lepton Flavor Violating Higgs Decay

2.6σ Excess in CMS

Not so small fraction $\mathcal{B}(h \to \tau \mu) = (0.84^{+0.39}_{-0.37})\%$

ATLAS $(0.77^{+0.62}_{-0.62})\%$ 1.3 σ

Koji TSUMURA (Kyoto U.)

2015/11/9-13 YITP-QFT

Lepton Flavor Violating Higgs Decay

Interpretations

- 2HDM [2nd Higgs doublet]
 - → Misaligned-Yukawa coupling

$$\mathcal{L} = +\overline{L_i} \frac{\sqrt{2(M_\ell)_{ij}}}{v} \ell_{jR} H_1 + \overline{L_i} (Y'_\ell)_{ij} \ell_{jR} H_2$$
SM-like doublet

Mixing

- → Prediction : Large LFV in 2nd doublet (very exotic)
- \rightarrow Relate to the g-2 anomaly (exotic)

2015/11/9-13 YITP-QFT

Lepton Flavor Violating Higgs Decay

Interpretations

● 2HDM [2nd Higgs doublet]
 → Misaligned-Yukawa coupling

$$\mathcal{L} = +\overline{L_i} \frac{\sqrt{2}(M_\ell)_{ij}}{v} \ell_{jR} H_1 + \overline{L_i} (Y'_\ell)_{ij} \ell_{jR} H_2$$

SUSY interpretation (slepton mixing)

2015/11/9-13 YITP-QFT

W_R decay via right-handed neutrinos

2015/11/9-13 YITP-QFT

RPV SUSY @ 2.5TeV

R-Parity Violating SUSY

Dangerous for the proton decay in general, but some couplings can be introduced.

 $W_{\rm RPV} = \lambda_{111}' LQd^c$

2015/11/9-13 YITP-QFT

(R-parity conserving)

Large p_T object + Large Missing E_T (+ dilepton)

SUSY

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

29

(R-parity conserving)

Large p_T object + Large Missing E_T (+ dilepton)

SUSY

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

29'

(R-parity conserving)

SUSY

Large p_T object + Large Missing E_T + dilepton

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

29"

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

29""

Diboson Excess @ 2TeV

Additional Selection Cut : Tag 2 Fat Jets (J) with $M_J \approx M_W$ or M_Z

2015/11/9-13 YITP-QFT

Diboson Excesses @ 2TeV

3 different channels have excesses
 ^[20% overlap]
 Excess @ 1.8TeV in CMS

Many Interpretations (W',Z',TC-ρ,H',···) > 40 Theory Papers

2015/11/9-13 YITP-QFT

2TeV in Other Channels?

Koji TSUMURA (Kyoto U.)

D

Hiet

2015/11/9-13 YITP-QFT

Evidence of Anomalies

• h \rightarrow $\tau\mu$ (2nd H)^{2.6} σ **Different SUSY** • W_R (RPV SUSY)^{2.8} σ $3\sigma = 1/370$: Yearly $2.5\sigma = 1/81$: Quarterly • SUSY ^{2.6} ³ ³ ³ ^(Edge, on-Z) $2\sigma = 1/22$: Every 3 weeks <u>3.60</u> 2.60 2.90 Diboson Excesses (wz, ww, zz) Dijet Excess^{2.5 σ} • WH search 2.2 o

We can't say No New Physics

Run II (13 TeV)

2015/11/9-13 YITP-QFT

<u>Re-Discovery of the SM</u>

Run II

 $M_{\ell\ell} = \sqrt{(p_{1\ell} + p_{2\ell})^2}$: di-lepton Invariant Mass

2015/11/9-13 YITP-QFT

Re-Discovery of W, top

Run II

lepton + Missing $E_T(v)$ [w/ p_T conservation]

Run II

Z' search

$M_{\ell\ell} = \sqrt{(p_{1\ell} + p_{2\ell})^2}$: di-lepton Invariant Mass

2015/11/9-13 YITP-QFT

<u>W' search</u>

lepton + Missing $E_T(v)$ [w/ p_T conservation]

$M_T = \sqrt{2p_T^\ell p_T^\nu \left(1 - \cos(\phi^\ell - \phi^\nu)\right)}$

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

~3fb⁻¹ @ Run II

Beyond Run I Sensitivity

Dijet (q*, Z', W') search

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

36

Run II

Dijet (q*, Z', W') search

~3fb⁻¹ @ Run II (Mar 2016???)

Run II

Koji TSUMURA (Kyoto U.)

2015/11/9-13 YITP-QFT

Ready for SUSY search

No bound is obtained so far

2015/11/9-13 YITP-QFT

SUSY Prospects

Koji TSUMURA (Kyoto U.)

2015/11/9-13 YITP-QFT

39

SUSY Prospects

Summary

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)

<u>Summary</u>

- LHC Status
- Energy Upgraded
- Some Troubles (EC, UFO)
- Next 20 years Plan

Run I Summary and Run II Early Data

- SM Re-Discovery incl. Higgs
- BSM Non-Discovery / Exclusion
- Evidence / Anomalies

- Analysis Ready
- Need More Data

Koji TSUMURA (Kyoto U.)

2015/11/9-13 YITP-QFT

Stay Tuned

2015/11/9-13 YITP-QFT

Koji TSUMURA (Kyoto U.)