Negative anomalous dimensions in $\mathcal{N}=4$ SYM

Yusuke Kimura (OIQP)

1503.0621 [hep-th] with Ryo Suzuki

1. Introduction - brief review of N=4 SYM

Anomalous dimensions of $\mathrm{N}=4$ SYM (Conformal Field Theory)

Two-point functions

$$
\lambda=g_{Y M}^{2} N
$$

$$
\begin{gathered}
\left\langle O_{\alpha}(x) O_{\beta}(y)\right\rangle=\frac{c_{\alpha} \delta_{\alpha \beta}}{(x-y)^{2 \Delta_{\alpha}}} \quad \Delta=\Delta_{(0)}+\lambda \Delta_{(1)}+\lambda^{2} \Delta_{(2)}+\cdots \\
\text { Scaling dimension }
\end{gathered}
$$

Dilatation generator \subset Conformal symmetry, so(4,2)

$$
\widehat{D} O_{\alpha}(0)=\Delta_{\alpha} O_{\alpha}(0) \quad \widehat{D}=\widehat{D}_{(0)}+\lambda \widehat{D}_{(1)}+\lambda^{2} \widehat{D}_{(2)}+\cdots
$$

Via the radial quantisation, $R^{4} \rightarrow S^{3} \times R$

$$
\widehat{H}|\psi\rangle=E|\psi\rangle
$$

AdS/CFT correspondence

$4 \mathrm{D} N=4 \mathrm{SU}(N) \mathrm{SYM}(\mathrm{CFT}) \Leftrightarrow$ string theory on $A d S_{5} \times S^{5}$

$$
\Delta(\lambda, N)=E\left(g_{s}, R_{A d S} / l_{s}\right)
$$

$$
\begin{gathered}
\lambda=\left(\frac{R_{A d S}}{l_{s}}\right)^{4} \quad \frac{\lambda}{4 \pi N}=g_{s} \\
\left(\lambda=g_{Y M}^{2} N\right)
\end{gathered}
$$

Several ways of looking at the equation
\checkmark Check the duality
\checkmark Use to understand something new

- String theory at small curvature $R_{A d S} \ll l_{S}$ is difficult
- Gauge theory description is easier at $\lambda \ll 1$

Operator mixing problem

$$
A_{\mu}, \Phi_{a}(a=1, \cdots, 6), \psi_{\alpha}
$$

For the $\mathrm{SO}(6)$ sector, the 1-loop dilatation operator is given by

$$
\begin{aligned}
& D_{1-\text { loop }}=\frac{1}{N} H \\
& H=-\frac{1}{2}: \operatorname{tr}\left[\Phi_{m}, \Phi_{n}\right]\left[\partial_{m}, \partial_{n}\right]:-\frac{1}{4}: \operatorname{tr}\left[\Phi_{m}, \partial_{n}\right]\left[\Phi_{m}, \partial_{n}\right]: \\
& \quad\left(\partial_{m}\right)_{i j}\left(\Phi_{n}\right)_{k l}=\delta_{m n} \delta_{i l} \delta_{j k} \quad \Phi_{m} \text { are just matrices }
\end{aligned}
$$

1) $\widehat{D} \chi_{\alpha}=M_{\alpha \beta} \chi_{\beta}$ for a general basis
2) Diagonalise $M_{\alpha \beta}$ to obtain $\widehat{D} O_{\alpha}=\Delta_{\alpha} O_{\alpha}$

Will study the spectrum of anomalous dimensions, focusing on the sign of them

$$
\Delta=\Delta_{(0)}+\lambda \Delta_{(1)}(1 / N)+O\left(\lambda^{2}\right)+\cdots
$$

1. In the planar limit, anomalous dimensions are all positive
2. But it is not the case when you include non-planar corrections

To understand physics of negative anomalous dimensions is to understand nonplanar corrections

Outline

\checkmark Brief review of $\mathrm{N}=4 \mathrm{SYM}$ (CFT)
\checkmark Anomalous dimensions
\checkmark Dilatation operator
\checkmark Operator mixing problem
\checkmark Planar vs Non-planar
\checkmark Negative anomalous dimensions [1503.0621, Yk-R.Suzuki]
2. Operator mixing problem - planar vs non-planar

Operator mixing

$$
\begin{aligned}
& \operatorname{tr}\left[\Phi_{m}, \Phi_{n}\right]\left[\partial_{m}, \partial_{n}\right]=2 \operatorname{tr}\left(\Phi_{m} \Phi_{n} \partial_{m} \partial_{n}\right)-2 \operatorname{tr}\left(\Phi_{m} \Phi_{n} \partial_{n} \partial_{m}\right) \\
& \operatorname{tr}\left[\Phi_{m}, \partial_{n}\right]\left[\Phi_{m}, \partial_{n}\right]=2 \operatorname{tr}\left(\Phi_{m} \partial_{n} \Phi_{m} \partial_{n}\right)-2 \operatorname{tr}\left(\Phi_{m} \Phi_{m} \partial_{n} \partial_{n}\right) \\
& \operatorname{tr}\left(\Phi_{m} \Phi_{n} \partial_{m} \partial_{n}\right) \operatorname{tr}\left(A \Phi_{a}\right) \operatorname{tr}\left(B \Phi_{b}\right)=\operatorname{tr}\left(B A \Phi_{b} \Phi_{a}+A B \Phi_{a} \Phi_{b}\right) \\
& \operatorname{tr}\left(\Phi_{m} \Phi_{n} \partial_{m} \partial_{n}\right) \operatorname{tr}\left(A \Phi_{a} B \Phi_{b}\right)=\operatorname{tr}(A) \operatorname{tr}\left(B \Phi_{b} \Phi_{a}\right)+\operatorname{tr}(B) \operatorname{tr}\left(A \Phi_{a} \Phi_{b}\right)
\end{aligned}
$$

Dilatation operator changes the number of traces by one - Joining and splitting

When the two derivatives act on nearest neighbor matrices, we get a term whose trace structure is not changed

$$
\operatorname{tr}\left(\Phi_{m} \Phi_{n} \partial_{m} \partial_{n}\right) \operatorname{tr}\left(A \Phi_{a} \Phi_{b}\right)=\operatorname{tr}(A) \operatorname{tr}\left(\Phi_{b} \Phi_{a}\right)+N \operatorname{tr}\left(A \Phi_{a} \Phi_{b}\right)
$$

The two derivatives acting on non-nearest neighbor matrices, the trace structure changes

$$
\begin{gathered}
\operatorname{Htr}\left(A \Phi_{a} \Phi_{b}\right)=N\left(\operatorname{tr}\left(A \Phi_{a} \Phi_{b}\right)-\operatorname{tr}\left(A \Phi_{b} \Phi_{a}\right)+\frac{1}{2} \delta_{a b} \operatorname{tr}\left(A \Phi_{m} \Phi_{m}\right)\right) \\
+ \text { double traces }
\end{gathered}
$$

Nearest neighbour transpositions P and contractions C on flavor indices

$$
\begin{array}{cc}
P \cdot \Phi_{a} \Phi_{b}=\Phi_{b} \Phi_{a} & C \cdot \Phi_{a} \Phi_{b}=\delta_{a b} \Phi_{m} \Phi_{m} \\
H=N H_{P}+H_{N P} & H_{P}=1-P+\frac{1}{2} C
\end{array}
$$

H_{P} : not changing the trace structure, but changing the flavour structure $H_{N P}$: changing the trace structure and the flavour structure

Planar limit

\checkmark Dilatation operator is $H_{P}=1-P+\frac{C}{2}$

- Mapped to the Hamiltonian of an integrable spin chain [02

Minahan-Zarembo]
\checkmark the mixing is only among operators with the same trace structure (i.e. trace structure has a meaning)

Block-diagonal mixing matrix ~

Non-planar - we do not have the above properties
(We can find a nice mixing pattern in non-planar situations in terms of Young diagrams)

Remark

$$
H=N H_{P}+H_{N P}
$$

Acting on a small operator

Acting on a very large operator

$$
E=O(N)+O(1)
$$

$$
E=O(N L)+O\left(L^{2}\right)
$$

The planar limit is $N \gg L$

$$
g_{e f f}=L / N
$$

D-branes are considered to be described by large operators $L \sim O(N), N \gg 1$

- One can not use the planar limit

3. Negative anomalous dimensions

[1503.0621, YK-R.Suzuki]

Spectral problem in the so(6) singlet sector

\checkmark SO(6) singlet operators

$$
\operatorname{tr}\left(\Phi_{a} \Phi_{b}\right) \operatorname{tr}\left(\Phi_{a} \Phi_{b}\right), \operatorname{tr}\left(\Phi_{a} \Phi_{b} \Phi_{a} \Phi_{a}\right)
$$

Singlets are mapped to singlets under dilatation

- Consider planar zero modes at one-loop - $H_{P} \psi_{0}=0$
- Giving an interesting class of operators
- Thanks to integrability, there is a large degeneracy in the planar spectrum.
- Turning on $1 / N$ corrections, the planar zero modes will get anomalous dimensions of the form: $\gamma=0+\frac{1}{N} \gamma_{1}+\frac{1}{N^{2}} \gamma_{2}+\cdots$
\checkmark Sign of γ_{1}, γ_{2}
\checkmark Operator mixing among the planar zero modes

$$
L=4
$$

There are 4 singlet operators

$$
\begin{aligned}
& t_{1}=\operatorname{tr}\left(\Phi_{a} \Phi_{b}\right) \operatorname{tr}\left(\Phi_{a} \Phi_{b}\right), t_{2}=\operatorname{tr}\left(\Phi_{a} \Phi_{a}\right) \operatorname{tr}\left(\Phi_{b} \Phi_{b}\right) \\
& t_{3}=\operatorname{tr}\left(\Phi_{a} \Phi_{b} \Phi_{a} \Phi_{a}\right), t_{4}=\operatorname{tr}\left(\Phi_{a} \Phi_{a} \Phi_{b} \Phi_{b}\right)
\end{aligned}
$$

$$
\begin{gathered}
H t_{a}=N \gamma_{a b} t_{b} \\
\gamma=\left(\begin{array}{cccc}
0 & 2 & -10 / N & 10 / N \\
0 & 2 & -12 / N & 12 / N \\
-12 / N & 2 / N & 4 & -2 \\
-2 / N & 7 / N & -2 & 9
\end{array}\right)
\end{gathered}
$$

block-diagonal if $N \gg 1$, where the single-traces are orthogonal to the double-traces.

Use Mathematica to compute eigenvalues
$L=4 \quad \gamma$ (one-loop anomalous dimension) vs N

Negative mode
$L=4$

$$
\begin{aligned}
& t_{1}=\operatorname{tr}\left(\Phi_{a} \Phi_{b}\right) \operatorname{tr}\left(\Phi_{a} \Phi_{b}\right), t_{2}=\operatorname{tr}\left(\Phi_{a} \Phi_{a}\right) \operatorname{tr}\left(\Phi_{b} \Phi_{b}\right) \\
& t_{3}=\operatorname{tr}\left(\Phi_{a} \Phi_{b} \Phi_{a} \Phi_{a}\right), t_{4}=\operatorname{tr}\left(\Phi_{a} \Phi_{a} \Phi_{b} \Phi_{b}\right)
\end{aligned}
$$

The negative mode looks like

$$
\psi=6 T_{a b} T_{a b}+\frac{3}{4 N}\left(14 t_{3}-4 t_{4}\right)+\frac{5}{168 N^{2}}\left(978 t_{1}-107 t_{2}\right)+\cdots
$$

The leading term is given by the energy-momentum tensor, which is traceless and symmetric

$$
\begin{aligned}
& T_{a b}=\operatorname{tr}\left(\Phi_{a} \Phi_{b}\right)-\frac{1}{6} \delta_{a b} \operatorname{tr}\left(\Phi_{m} \Phi_{m}\right) \\
& P T_{a b}=T_{a b}, C T_{a b}=0
\end{aligned}
$$

It is annihilated by the planar dilatation operator, $H_{P}=1-P+C / 2$

$$
H_{P} T_{a b} T_{a b}=\left(H_{P} T_{a b}\right) T_{a b}+T_{a b}\left(H_{P} T_{a b}\right)=0
$$

Planar zero modes

Number of planar zero modes and singlet operators

L	2	4	6	8	10	12
\mathcal{Z}_{L}	0	1	2	5	11	34
$\operatorname{dim} \mathcal{H}_{L}$	1	4	15	71	469	4477

$$
\begin{aligned}
H_{P} \psi_{0} & =0 \quad H_{P}=1-P+C / 2 \\
C_{i_{1} i_{2} \cdots i_{l}} & =\operatorname{tr}\left(\Phi_{\left(i_{1}\right.} \Phi_{i_{2}} \cdots \Phi_{\left.i_{l}\right)}\right) \quad 1 / 2 \mathrm{BPS}: \text { symmetric and traceless } \\
L & =4: C_{i j} C_{i j} \\
L & =6: C_{i j k} C_{i j k}, C_{i j} C_{j k} C_{k i} \\
L & =8: C_{i j k l} C_{i j k l}, C_{i j k l} C_{i j} C_{k l} i_{2} \cdots i_{l}=0 \\
i j k & C_{i j l} C_{k l}, C_{i j} C_{j i} C_{k l} C_{l k}, C_{i j} C_{j k} C_{k l} C_{l i}
\end{aligned}
$$

\checkmark Can not construct single-trace planar zero modes

There are 2 planar zero modes. One stays on the zero, and the other gets a negative anomalous dimension.

On the planar zero modes

Mathematica computation at $L=4,6,8,10$ and analytic computation with some approximation

$$
\begin{aligned}
& H \psi=N \gamma \psi \quad H_{0} \psi_{0}=0 \\
& \psi=\psi_{0}+\frac{\psi_{1}}{N}+\frac{\psi_{2}}{N^{2}}+\cdots \quad \gamma=\gamma_{0}+\frac{\gamma_{1}}{N}+\frac{\gamma_{2}}{N^{2}}+\cdots
\end{aligned}
$$

- $\gamma_{0}=0, \gamma_{1}=0, \gamma_{2} \leq 0$
- Planar zero mode \rightarrow negative mode
- ψ_{0} is a linear combination of the planar zero modes with a fixed number of traces
- $\operatorname{tr}\left(\Phi^{4}\right) \operatorname{tr}\left(\Phi^{4}\right) \operatorname{tr}\left(\Phi^{2}\right)$ is orthogonal to $\operatorname{tr}\left(\Phi^{5}\right) \operatorname{tr}\left(\Phi^{3}\right) \operatorname{tr}\left(\Phi^{2}\right)$ in the planar limit, but they mix by the $1 / N$ effect.
- the number of traces might be a good quantity

A possible interpretation of negative modes

Based on the standard correspondence of AdS/CFT

$$
\Delta=\Delta_{0}+\lambda \frac{\gamma_{2}}{N^{2}}+\cdots \quad E=E_{0}+\gamma_{2} g_{s}^{2} \frac{1}{\sqrt{\alpha^{\prime}}}+\cdots \quad \gamma_{2}<0
$$

No interaction (planar zero mode)
Negative mode

The negative modes would describe multi-particle (multi-string) states with non-zero binding energy. [02 Arutuynov, Penati, Petkou, Santambrogio, Sokatchev]

The number of states might be related to the number of traces in ψ_{0}

Summary

\checkmark Studied the non-planar mixing
\checkmark so(6) singlet sector
\checkmark Spectrum explicitly up to $L=10$
\checkmark Planar zero modes \rightarrow negative modes
$\checkmark \gamma \sim \gamma_{2} / N^{2}$ is consistent with an analysis of 4-pt functions

- Anomalous dimensions are always positive in the planar limit
- Also positive in $s u(2)$ sector, so(6) non-singlet sector even with nonplanar corrections
- Another sector with negative anomalous dimensions: large spin operators like $\phi \partial^{S} \phi, s \gg 1$

