
Progenitors, Supernovae, 
and Neutron Stars

Yudai Suwa1, 2

1Yukawa Institute for Theoretical Physics, Kyoto U. 
2Max Planck Institute for Astrophysics, Garching

Collaboration with: S. Yamada (Waseda), T. Takiwaki (Riken), K. Kotake (Fukuoka), E. Müller (MPA)



Yudai Suwa, FOE 2015@NCSU /116/1/2015

Progenitor structures-1

2

See also talk by Sukhbold and poster by Thomas

274 S.E. Woosley, A. Heger / Physics Reports 442 (2007) 269–283

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

Interior Mass (solar masses)

E
n
tr

o
p
y 

(k
/b

a
ry

o
n
)

D
e
n
si

ty
 (

g
/c

c)

1

109

108

107

106

105

Fig. 2. Entropy and density distributions inside a 20 solar mass presupernova star. The iron core mass here is 1.54 M⊙; the base of the oxygen shell is
at 1.82 M⊙. The sudden decrease in density at the base of the oxygen shell causes an abrupt decline in ram pressure which often results in explosions
happening with this mass cut.

of SN 1987A (Bethe, 1990; Arnett et al., 1989) which was a Type II supernova of typical mass (about 18–20 M⊙). It
is also constrained by the observed light curves of Type II supernovae (Section 3.2).

3.1. Remnant masses

Observations by Thorsett and Chakrabarty (1999) of a large number of pulsars in binary systems give a narrow spread
in masses, 1.35 ± 0.04 M⊙. There must be room for some diversity, however. Ransom et al. (2005) present compelling
evidence for a pulsar in the Terzian 5 globular cluster with a gravitational mass of 1.68 M⊙. The remnant gravitational
masses for our survey using the Kepler stellar evolution code, with KE = 1.2 B and pistons located the edge of the iron
core, are plotted in Fig. 3. A more careful analysis of fall back in these models using an Eulerian hydrodynamics code
and a better treatment of the inner boundary conditions has been carried out by Zhang et al. (2007), but gives similar
numbers for solar metallicity stars. Using the Zhang et al. (2007) values, adopting a Salpeter initial mass function with
! = 1.35 to describe the birth frequency of these stars, and assuming a maximum neutron star mass of 2.0 M⊙, one
obtains an average gravitational mass for the neutron star of 1.47 ± 0.21 if the piston is at the S/NAk = 4.0 point
and 1.40 ± 0.22 if it is at the edge of the iron core. If the maximum neutron star mass is 1.7M⊙, the numbers are
changed to 1.41 ± 0.15 M⊙ and 1.34 ± 0.14, respectively. In this paper, we carried out simulations with the piston at
both points—the iron core edge, and the base of the oxygen shell. Larger masses than typical are also possible for the
rare exceptionally massive star, usually those over 25 M⊙. For those cases where a black hole was made, its average
mass was around 3 M⊙. We note that these numbers are for single stars and they could be altered significantly in mass
exchanging binaries.

The figure also shows that neutron stars are made by both the lightest main sequence stars and the heaviest. This is a
consequence of mass loss. The helium core mass of the presupernova star increases monotonically with main sequence
mass up to about 45 M⊙, where it reaches a maximum of 13 M⊙. Beyond that the helium core shrinks due to efficient
Wolf–Rayet mass loss and the iron core mass shrinks with it. A 100 M⊙ model had a total mass of only 6.04 M⊙ when
it died—all helium and heavy elements—and an iron core mass of 1.54 M⊙.

The results are quite different for stars with low metallicity and, hence, reduced mass loss (Heger and Woosley,
2007; Zhang et al., 2007). Fig. 4 shows that the remnant mass increases rapidly for main sequence masses above
about 35 M⊙ and continues to increase at higher masses. These large masses are due to fall back. A 1.2 B explosion is
inadequate to unbind the entire star, especially given the large helium core (Woosley et al., 2002) and effect of the reverse

Woosley & Heger (2007)
20 M⦿

silicon/oxygen shell

silicon shell
iron core
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(a) Density as function of radius
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(b) Density as function of enclosed mass
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Figure 1. Stellar structures for investigated models. Top two
panels display the densities as a function of radius (a) and enclosed
mass (b), respectively. Bottom panel (c) give the radii correspond-
ing to the mass and radius relations. Dashed lines show the free-fall
times of 0.01, 0.1, and 1 s from bottom to top. See the text for
detail.

sity (blue line). One can find that there are two density
jumps at 1.66 M⊙ and 2.17 M⊙ in mass coordinate. The
bottom panel of this figure displays as gray lines the tra-
jectories of mass shells at the mass coordinates of 1 M⊙

to 1.85M⊙ with an interval of 0.01M⊙. Three thin black
lines show the representative mass coordinates of 1.66,
1.7, and 1.75 M⊙. Note that 1.66 M⊙ corresponds to
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Figure 2. The compactness parameters ξM defined in Eq. (1)
as a function of mass coordinate M . A lager ξM means a more
compact structure: s12 is the least compact progenitor, while s40
is the most compact.
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(b) Mass accretion rate evolution

Figure 3. The time evolutions of shock radius (a) and mass ac-
cretion rate (b). There are bumps in panel (a), which correspond
to the rapid decreases of mass accretion rate (see panel (b)).

the interface of the oxygen burning shell (see also panel
(a)). It is interesting to see what happens when this
mass shell accretes onto the shock (thick black line). It
is evident that several oscillations ensue and the stand-
ing shock is finally converted to the expanding shock at
∼ 400 ms after the bounce. This is a clear demonstration
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Figure 2. The compactness parameters ξM defined in Eq. (1)
as a function of mass coordinate M . A lager ξM means a more
compact structure: s12 is the least compact progenitor, while s40
is the most compact.
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Figure 3. The time evolutions of shock radius (a) and mass ac-
cretion rate (b). There are bumps in panel (a), which correspond
to the rapid decreases of mass accretion rate (see panel (b)).

the interface of the oxygen burning shell (see also panel
(a)). It is interesting to see what happens when this
mass shell accretes onto the shock (thick black line). It
is evident that several oscillations ensue and the stand-
ing shock is finally converted to the expanding shock at
∼ 400 ms after the bounce. This is a clear demonstration
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Figure 2. The compactness parameters ξM defined in Eq. (1)
as a function of mass coordinate M . A lager ξM means a more
compact structure: s12 is the least compact progenitor, while s40
is the most compact.
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Figure 3. The time evolutions of shock radius (a) and mass ac-
cretion rate (b). There are bumps in panel (a), which correspond
to the rapid decreases of mass accretion rate (see panel (b)).

the interface of the oxygen burning shell (see also panel
(a)). It is interesting to see what happens when this
mass shell accretes onto the shock (thick black line). It
is evident that several oscillations ensue and the stand-
ing shock is finally converted to the expanding shock at
∼ 400 ms after the bounce. This is a clear demonstration
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Progenitor: 12-100 M⦿ (Woosley & Heger 07)

2D (axial symmetry) (ZEUS-2D; Stone & Norman 92)

MPI+OpenMP hybrid parallelized

Hydrodynamics+neutrino transfer (neutrino-radiation hydrodynamics)

Isotropic diffusion source approximation (IDSA) for neutrino transfer 
(Liebendörfer+ 09)

Ray-by-ray plus approximation for multi-D transfer (Buras+ 06)

EOS: Lattimer-Swesty (K=180,220,375MeV) / H. Shen

Explosion simulations-1: setups

4

See
  Suwa et al., PASJ, 62, L49 (2010)
  Suwa et al., ApJ, 738, 165 (2011)
  Suwa et al., ApJ, 764, 99 (2013)
  Suwa, PASJ, 66, L1 (2014)
  Suwa et al., arXiv:1406.6414
for more details
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Explosion simulations-2: results

5

Several progenitors lead to shock expansion

No monotonic trend with ZAMS mass is found

What makes difference?

6

Figure 6. Time-space diagrams of specific entropy at poles for two-dimensional simulations. Upper (lower) panels represent the values
at the north (south) pole. Models s12, s40, s55, and s80 eventually produce explosion at different times, depending on the initial density
structures. The other progenitors, i.e., s15, s20, s30, s50, and s100, failed to produce explosion at least by the end of simulations.
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Figure 7. Time evolutions of the angle averaged shock wave ra-
dius. Four of the investigated models, i.e. s12, s40, s55 and s80,
clearly show shock expansions.

(Couch 2013b) and is found to be minor compared to the
dimensionality.10 Although the critical curve has been
well studied by several groups, we emphasize that we
should study the trajectory as well. In so doing, however,
neutrino-radiation hydrodynamic simulations, or ab ini-
tio computations with detailed neutrino physics and ra-
diative transfer being incorporated are indispensable to
obtain reliable model trajectories. It is also noted that
the model trajectory is useful to discuss to what extent
particular ingredients included in simulations (e.g., the
nuclear equation of state, neutrino interactions, scheme
to solve the neutrino transfer equation) affect the shock
dynamics. The dependence of the location of the turning
point on them is especially crucial.
In the following, based on results of the neutrino-

10 There are a few attempts to derive the critical curve analyti-
cally (Pejcha & Thompson 2012; Keshet & Balberg 2012).

YS, Yamada, Takiwaki, Kotake, arXiv:1406.6414
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What makes difference?: Ṁ-Lν

Low Ṁ and high Lν are achieved for exploding progenitors

Accretion of multiple shells makes different dependence of Lν on Ṁ
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Fig. 4.— Model trajectories in the Ṁ -Lν plane. REMAKE!
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Fig. 5.— Time evolution of the angle averaged shock wave radius.
Three of investigated models clearly show the shock expansion, i.e.,
s12, s55 and s80.

In this subsection, we show the results of 2D simula-
tions for progenitors explored in the previous subsection.
Figure 5 represents the time evolution of the shock ra-

dius averaged over the angle. One can find that there are
several progenitors, which succeed to produce expanding
shock wave. This is the necessary condition of the su-
pernova explosion.4 Models with 12, 55, and 80 M⊙
exhibit the shock expansion within ! 300–600 ms after
the bounce. There are several oscillations in the shock
radius for these models, which might be consequences of
standing accretion shock instability (SASI). These mod-
els correspond to models that realize the condition of the
low mass accretion rate with the high neutrino luminos-
ity, which is seen in Figure 4. This condition reflects the
stellar structure at the pre-collapse phase.
In Figure 6, the diagnostic energy, which is determined

by the integral of the energy over all zones that have a
positive sum of the specific internal, kinetic, and gravita-
tional energies, of investigated models is plotted. Three
exploding models (s12, s55 and s80) represent the in-
creasing energy. There seem some oscillations, which

4 Note that this is just the consequence of the post shock pressure
overwhelming the ram pressure of pre-shocked region. Therefore,
the shock expansion does not directly indicate the successful ex-
plosion. There might be still ongoing accretion flow to PNS and
the mass of PNS increases. In order to produce the successful ex-
plosion, the mass accretion onto PNS should end and the envelope
should be outgoing. Please see Suwa et al. (2013) for more details.
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Fig. 7.— Mass accretion rate. Colors are the same as

come from the shock oscillations. Though the energy is
gradually increasing, the final value is still much smaller
than the typical value of explosion energy obtained by
the observation, ∼ 1051 erg. Even nonexploding mod-
els exhibit the positive diagnostic energy due to neutrino
heating, but inefficient to revive the stalled shock wave.

5. PHENOMENOLOGICAL MODEL

In this section, we construct a phenomenological model
for neutrino luminosity as a function of mass accretion
rate, which is determined by the progenitor density struc-
ture. The mass accretion rate is evaluated by

Ṁ =
dM

dtff
. (2)

In Figure 7, we show the mass accretion rate of progen-
itors investigated in this work. At first, the mass accre-
tion rate is high and decreasing. When the iron core fully
collapses, the mass accretion rate becomes smaller signif-
icantly because of the density jump between the iron core
and silicon layer. After that almost constant accretion
rate is achieved.
We can naively write down the neutrino luminosity as

Lν =
3
5
GM2

r
Rν

tff + tdiff
, (3)

where Mr is the mass coordinate, Rν is the radius of a
PNS, tff is the free-fall time, and tdiff is the diffusion time

Time

YS, Yamada, Takiwaki, Kotake, arXiv:1406.6414
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Critical curve and model trajectory
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Figure 12. Model trajectories in the Ṁ − Lν plane for the 1D
simulations of 15 M⊙ progenitors. This is the same as Figure 5
but for different progenitor models. The mass accretion rate is
evaluated at 300 km from the center.
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Figure 13. Time evolutions of the angle-averaged shock radius
for 15 M⊙ progenitors. NH88 and WW95 produce explosion owing
to small densities of the envelopes.

•

critical curve

model trajectory

turning point

Figure 14. Schematic picture of the critical curve and turning
point. If the turning point is located above the critical curve and
the luminosity and mass accretion rate stay in the vicinity of the
tuning point for a long time, such a model will produce explosion.
The critical curve is expected to be shifted by macrophysics such
as dimensionality and the turning point may be shifted by micro-
physics as well as the progenitor structure. The critical curve and
turning point are also useful to asses the influence of a particular
physics incorporated.

reached and the order is changed thereafter. Then it is
obvious that the trajectory can cross the critical curve if
and only if the turning point is located above the criti-
cal curve. It should be also clear that shock revival will
be fizzled if the system evolves rapidly after the turning
point, rolling down the second half of the trajectory and
quickly passing the critical point again. It is hence also
important that the system stays long around the turning
point.
Since the critical curve is a convex and monotonically

increasing function of the mass accretion rate, it is ob-
vious that the more to the upper left the turning point
is located, the more likely shock revival is to obtain. Al-
though the critical curve has been well studied by several
groups,11 we emphasize here the importance of the tra-
jectory as well. In principle, multi-dimensional neutrino-
radiation hydrodynamic simulations, or ab initio com-
putations, with detailed neutrino physics and radiative
transfer being incorporated are required to obtain reli-
able model trajectories. It has been demonstrated, how-
ever, that the main effect of multi-dimensionality in su-
pernova dynamics is to lower the critical curve (Mur-
phy & Burrows 2008; Nordhaus et al. 2010; Hanke et al.
2012), although the trajectory is also somewhat modi-
fied. It is hence expected that 1D simulations will be
sufficient to find approximate locations of turning points
and to infer which models are more likely to explode
than others. 1D model trajectory will be also useful to
discuss to what extent particular ingredients included in
simulations (e.g., the nuclear equation of state, neutrino
interactions, scheme to solve the neutrino transfer) affect
the location of the turning point.
In the following, based on the results of our simula-

tions presented so far, we develop a phenomenological
model that connects the density structure of progenitor
just prior to collapse and the model trajectory in the
Ṁ -Lν plane.

4. PHENOMENOLOGICAL MODEL

In this section, we construct a phenomenological
model. The purpose is twofold: the first is to understand
qualitatively why and where the turning point appears;
the second is to expedite the judgment of which progeni-
tors are likely to produce shock revival. As mentioned in
the previous sections, the location of the turning point,
if any, on the trajectory in the Ṁ -Lν plane may serve
as a sufficient condition for shock revival if it is located
more to the upper left corner. Although the trajectory
evaluated in 1D simulations will be sufficient for this pur-
pose, the procedure may be simplified even further by the
employment of the phenomenological model. It is not
necessary for the phenomenological models to perfectly
reproduce the trajectories obtained numerically. What is
important instead is that the turning points are placed
at approximately right positions and that the relative
locations of the turning points for different progenitors
are correctly reproduced. The latter point is particularly
important, since the numerical results contain systematic
errors one way or another.

11 There are a few attempts to derive the critical curve analyt-
ically (Pejcha & Thompson 2012; Keshet & Balberg 2012; Janka
2012). The impact of properties of the nuclear equation of state
on the critical curve is also studied (Couch 2013b) and is found to
be minor compared to the dimensionality.

Semi-analytic expressions of trajectories available in Suwa et al. (2014)

e.g.,
Burrows & Goshy (1993)
Murphy & Burros (2008)
Nordhaus+ (2010)
Hanke+ (2012)
Couch (2013)
Handy+ (2014)
Pejcha & Thompson (2012)
Keshet & Balberg (2012)
Janka (2012)
Müller & Janka (2015)

Dolence+ (2015)
Suwa+ (2014)
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Code comparison

8

Suwa+ 2014 (Kyoto-
Tokyo-Fukuoka)

Dolence+ 2015 (Princeton)

Melson+ 2015 (Garching)

Bruenn+ 2014 (Oak Rigde)
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Code comparison

8

Suwa+ 2014 (Kyoto-
Tokyo-Fukuoka)

Dolence+ 2015 (Princeton)

Melson+ 2015 (Garching)

Bruenn+ 2014 (Oak Rigde)
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PROMETHEUS-VERTEX
GR correction

variable Eddington factor
ray-by-ray plus

Lattimer-Swesty EOS
explode in 2D

CHIMERA
GR correction

flux limited diffusion
ray-by-ray plus

Lattimer-Swesty EOS
explode in 2D

CASTRO
Newton

flux limited diffusion
multi-D transfer

H. Shen EOS
NOT explode in 2D

ZEUS
Newton

isotropic diffusion source app.
ray-by-ray plus

Lattimer-Swesty EOS
NOT explode in 2D
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How much do initial conditions matter?

Starting from hydrostatic NSE cores
1D, GR, neutrino-radiation hydro code; Agile-IDSA (public code!)

Neutrino-driven explosions are possible in 1D
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Long-term simulations from PNS to NS
NS consists of core and crust
When a PNS (w/o crust) becomes a 
NS (w/ crust)?
From core collapse up to NS 
formation was followed with neut.-
rad. hydro. simulation, for 67 s

10
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Fig. 1. Trajectories of selected mass coordinates from 1.01 M⊙ to
1.33 M⊙ by a step of 0.02 M⊙. The thick solid line indicates the position
of 1.3 M⊙, which indicates the mass of the PNS, and the thick dotted
line represents the shock radius at the northern pole. The left panel is
the result of 2D simulation and the right panel is that of continuous
1D simulation, with the connection done at ∼ 690 ms after the bounce.
The shrinkage of the PNS can be seen. There are several discontinu-
ities, for example ∼ 1.2 s post-bounce, which are due to the rezoning to
make the resolution finer and remove the outermost region where the
density becomes too small to use the tabular equation of state. These
discontinuities do not cause any serious problems in this simulation.

explosion occurs (see Suwa et al. 2013 for more details).
After that, all hydrodynamic quantities are averaged over
the angle1 and the spherically symmetric simulation is fol-
lowed up to ∼ 70 s when the crust formation condition is
satisfied. Note that the whole simulation is performed using
the “same” code so that there is no discontinuity between
these 2D and 1D simulations. If we use different codes to
connect the different times and physical scales, some breaks
of physical quantities could occur (e.g., total mass, total
momentum, or total energy). Therefore, a consistent simu-
lation with the same code has the advantage of removing
these breaks.

In figure 1, the time evolution of selected mass coordi-
nates is presented. The mass within ∼ 1.3 M⊙ contracts to
a PNS and the outer part expands as ejecta of the super-
nova. The shock (thick dotted line) propagates rapidly to
outside the iron core driven by neutrino heating aided
by the convective fluid motion. The estimated diagnostic
energy (Suwa et al. 2010, so-called the explosion energy)
determined by summing up the gravitationally unbound
fluid elements in this model is ∼ 1050 erg, so that a real-
istic explosion simulation is still not achieved. This is,
however, one of the successful explosion simulations. The
term “successful” means that the simulation successfully
reproduces the structure containing a remaining PNS and
escaping ejecta. Previous exploding models obtained by

1 This treatment does not produce any strange phenomena for the PNS because the
PNS is almost spherically symmetric for the case without rotation.

Marek and Janka (2009) and Suwa et al. (2010) certainly
acquired the expanding shock wave up to outside the iron
core, but most of the post-shock materials were in-falling
so that the mass accretion onto the PNS did not settle and
the mass of the PNS continued to increase. Thus these sim-
ulations were not fully successful explosions. On the other
hand, Suwa et al. (2013) and this work successfully repro-
duce the envelope ejection so that we can determine the
“mass cut,” which gives the final mass of the compact object
(i.e., NS or black hole). This is because the progenitor used
in this study has a steep density gradient between iron core
and silicon layer so that the ram pressure of in-falling mate-
rial rapidly decreases when the shock passes the iron core
surface. This is a similar situation to the explosion simula-
tion of the O-Ne-Mg core of an 8.8 M⊙ progenitor reported
by Kitaura, Janka, and Hillebrandt (2006), in which the
neutrino-driven explosion was obtained in a “1D” simula-
tion owing to the very steep density gradient of this specific
progenitor. Note that the progenitor in this study does not
explode with spherical symmetry even though it has a steep
density gradient. However, with the help of convection, this
progenitor explodes in 2D simulation and the shock earns
enough energy to blow away the outer layers.

In figure 2, we show the hydrodynamic quantities (ρ,
T, entropy s, and electron fraction Ye) at several selected
times, i.e., 10 ms, 1 s, 10 s, 30 s, and 67 s after the bounce.
One can find by the density plot that the PNS shrinks due
to neutrino cooling. Note that for the post-bounce time
tpb ! 10 s the central temperature increases because of the
equidistribution of the thermal energy that can be found
in the entropy plot, in which one finds that entropy at the
center increases due to entropy flow from the outer part. For
tpb " 10 s, the PNS evolves almost isentropically and both
the entropy and the temperature decrease due to neutrino
cooling. This can be called the PNS cooling phase. One can
find from the Ye plot that neutrinos take out the lepton
number as well.

Figure 3 represents the time evolution in the ρ–T plane.
The line colors and types are the same as figure 2. In this
plane, we show three black solid lines that indicate the cri-
teria for crust formation. The critical temperature for lat-
tice structure formation is given by Shapiro and Teukolsky
(1983) as

Tc ≈ Z2e2
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Fig. 2. Time evolution of the density (left top), the temperature (left bottom), the entropy (right top), and the electron fraction (right bottom). The
density and the temperature are given as functions of the radius and the entropy and the electron fraction are functions of the mass coordinate. The
corresponding times measured from the bounce are 10 ms (red solid line), 1 s (green dashed line), 10 s (blue dotted line), 30 s (brown dot-dashed
line), and 67 s (grey dot-dot-dashed line), respectively. (Color online)

Fig. 3. The time evolution in the ρ–T plane. The color and type of lines
are as in figure 2. Three thin solid black lines indicate the critical lines
for crust formation. See text for details. (Color online)

where Z is the typical proton number of the compo-
nent of the lattice, e is the elementary charge, " is
a dimensionless factor describing the ratio between the
thermal and Coulomb energies of the lattice at the melting
point, kB is the Boltzmann constant, xa is the mass fraction
of heavy nuclei, and mu is the atomic mass unit, respectively.
The critical lines are drawn using parameters of " = 175
(see, e.g., Chamel & Haensel 2008), Ye = 0.1, and xa = 0.3.
As for the proton number, we employ Z = 26, 50, and 70
from bottom to top. Although the output for the typical
proton number by the equation of state is between ∼ 30 and
35, there is an objection that the average proton number
varies if we use the NSE composition. Furusawa et al.
(2011) represented the mass fraction distribution in the
neutron number and proton number plane and implied that
even larger (higher proton number) nuclei can be formed

in the thermodynamic quantities considered here. There-
fore, we here parametrize the proton number and show the
different critical lines depending on the typical species of
nuclei. In addition, there are several improved studies con-
cerning " that suggest the larger value (e.g., Horowitz et al.
2007), which leads to a lower critical temperature corre-
sponding to later crust formation, although the value is still
under debate.

The critical lines imply that the lattice structure is formed
at the point with the density of ∼ 1013−14 g cm−3 and at the
post-bounce time of ∼ 70 s. Of course these values (espe-
cially the formation time) strongly depend on the parame-
ters employed, but the general trend would not change very
much even if we included more sophisticated parameters.

4 Summary and discussion
In this letter, we performed a very long-term simulation of
the supernova explosion for an 11.2 M⊙ star. This is the
first simulation of an iron core starting from core collapse
and finishing in the PNS cooling phase. We focused on the
PNS cooling phase by continuing the neutrino-radiation-
hydrodynamic simulation up to ∼ 70 s from the onset of
core collapse. By comparing the thermal energy and the
Coulomb energy of the lattice, we finally found that the
temperature decreases to ∼ 3 × 1010 K with the density
ρ ∼ 1014 g cm−3, which almost satisfies the critical condi-
tion for the formation of the lattice structure. Even though
there are still several uncertainties for this criterion, this
study could give us useful information about the crust for-
mation of a NS. We found that the crust formation would
start from the point with ρ ≈ 1013−14 g cm−3 and that it pre-
cedes from inside to outside, because the Coulomb energy
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Fig. 1. Trajectories of selected mass coordinates from 1.01 M⊙ to
1.33 M⊙ by a step of 0.02 M⊙. The thick solid line indicates the position
of 1.3 M⊙, which indicates the mass of the PNS, and the thick dotted
line represents the shock radius at the northern pole. The left panel is
the result of 2D simulation and the right panel is that of continuous
1D simulation, with the connection done at ∼ 690 ms after the bounce.
The shrinkage of the PNS can be seen. There are several discontinu-
ities, for example ∼ 1.2 s post-bounce, which are due to the rezoning to
make the resolution finer and remove the outermost region where the
density becomes too small to use the tabular equation of state. These
discontinuities do not cause any serious problems in this simulation.

explosion occurs (see Suwa et al. 2013 for more details).
After that, all hydrodynamic quantities are averaged over
the angle1 and the spherically symmetric simulation is fol-
lowed up to ∼ 70 s when the crust formation condition is
satisfied. Note that the whole simulation is performed using
the “same” code so that there is no discontinuity between
these 2D and 1D simulations. If we use different codes to
connect the different times and physical scales, some breaks
of physical quantities could occur (e.g., total mass, total
momentum, or total energy). Therefore, a consistent simu-
lation with the same code has the advantage of removing
these breaks.

In figure 1, the time evolution of selected mass coordi-
nates is presented. The mass within ∼ 1.3 M⊙ contracts to
a PNS and the outer part expands as ejecta of the super-
nova. The shock (thick dotted line) propagates rapidly to
outside the iron core driven by neutrino heating aided
by the convective fluid motion. The estimated diagnostic
energy (Suwa et al. 2010, so-called the explosion energy)
determined by summing up the gravitationally unbound
fluid elements in this model is ∼ 1050 erg, so that a real-
istic explosion simulation is still not achieved. This is,
however, one of the successful explosion simulations. The
term “successful” means that the simulation successfully
reproduces the structure containing a remaining PNS and
escaping ejecta. Previous exploding models obtained by

1 This treatment does not produce any strange phenomena for the PNS because the
PNS is almost spherically symmetric for the case without rotation.

Marek and Janka (2009) and Suwa et al. (2010) certainly
acquired the expanding shock wave up to outside the iron
core, but most of the post-shock materials were in-falling
so that the mass accretion onto the PNS did not settle and
the mass of the PNS continued to increase. Thus these sim-
ulations were not fully successful explosions. On the other
hand, Suwa et al. (2013) and this work successfully repro-
duce the envelope ejection so that we can determine the
“mass cut,” which gives the final mass of the compact object
(i.e., NS or black hole). This is because the progenitor used
in this study has a steep density gradient between iron core
and silicon layer so that the ram pressure of in-falling mate-
rial rapidly decreases when the shock passes the iron core
surface. This is a similar situation to the explosion simula-
tion of the O-Ne-Mg core of an 8.8 M⊙ progenitor reported
by Kitaura, Janka, and Hillebrandt (2006), in which the
neutrino-driven explosion was obtained in a “1D” simula-
tion owing to the very steep density gradient of this specific
progenitor. Note that the progenitor in this study does not
explode with spherical symmetry even though it has a steep
density gradient. However, with the help of convection, this
progenitor explodes in 2D simulation and the shock earns
enough energy to blow away the outer layers.

In figure 2, we show the hydrodynamic quantities (ρ,
T, entropy s, and electron fraction Ye) at several selected
times, i.e., 10 ms, 1 s, 10 s, 30 s, and 67 s after the bounce.
One can find by the density plot that the PNS shrinks due
to neutrino cooling. Note that for the post-bounce time
tpb ! 10 s the central temperature increases because of the
equidistribution of the thermal energy that can be found
in the entropy plot, in which one finds that entropy at the
center increases due to entropy flow from the outer part. For
tpb " 10 s, the PNS evolves almost isentropically and both
the entropy and the temperature decrease due to neutrino
cooling. This can be called the PNS cooling phase. One can
find from the Ye plot that neutrinos take out the lepton
number as well.

Figure 3 represents the time evolution in the ρ–T plane.
The line colors and types are the same as figure 2. In this
plane, we show three black solid lines that indicate the cri-
teria for crust formation. The critical temperature for lat-
tice structure formation is given by Shapiro and Teukolsky
(1983) as
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Summary

Progenitor structure is one of the most important 
ingredients for core-collapse supernova explosion

initial condition
mass accretion history

We performed simulations of multi-dimensional neutrino-
radiation hydrodynamics

4 of 9 models exploded

Low-Ṁ and high Lν are favorable for explosion

By performing further simulations, NS crust formation was 
reached from precollapse consistently (from supernovae to 
neutron stars)
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