On ${ }^{56} \mathrm{Ni}$ synthesis

 by the magnetar model for long gamma-ray bursts and hypernovaeYudai Suwa (YITP, Kyoto Univ. \& MPA, Garching)
with
Nozomu Tominaga (Konan Úniv. \& Kavli IPMU)

Late activity of GRBs

GRBs and HNe

GRB $\Leftrightarrow \mathbf{S N}$ association
GRB 980425 / SN 1998bw ($\mathrm{z}=0.0085$)
GRB 030329 / SN 2003dh (0.1687)
GRB 031203 / SN 2003lw (0.1055)
XRF 060218 / SN 2006aj (0.0335)
GRB 100316D/ SN 2010bh (0.0591)
GRB 130427A / SN 2013cq (0.3399) ...

OObservations of GRB suggest that some GRBs are connected with some kind of SNe .

OSNe which associate with GRB are "Hypernovae" (HNe) with explosion energy, Eexp $\sim 10^{52}$ ergs. ($\sim 10^{51}$ erg for canonical SNe)

OThe central engine of GRBs is required to supply such an enormous explosion energy of GRBs/HNe.

${ }^{56} \mathrm{Ni}$

Central engine models

\& Collapsar scenario;

- consists of black hole (BH) and massive accretion disk as a end product of massive stars' death - relativistic jets are generated in the vicinity of BH (vdriven? magnetic fields driven?)
\& Magnetar scenario;
- rapidly rotating neutron star with super strong magnetic fields
- jets are driven by magnetic pressure or magnetocentrifugal force

Can magneters generate ${ }^{56} \mathrm{Ni}$?

\& to construct a self-consistent model for GRB/HN, ${ }^{56} \mathrm{Ni}$ should be considered seriously

Picture

expanding shell

Equations solved

3. Magnetar evolution

$$
L_{w}=6.18 \times 10^{51} \mathrm{erg} \mathrm{~s}^{-1}\left(\frac{B_{p}}{10^{16} \mathrm{G}}\right)^{2}\left(\frac{R}{10 \mathrm{~km}}\right)^{6}\left(\frac{\Omega}{10^{4} \mathrm{rad} \mathrm{~s}^{-1}}\right)^{4}
$$

$\Omega(t)=\Omega_{i}\left(1+\frac{t}{T_{d}}\right)^{-1 / 2}$
\& shock evolution w/ thin shell approximation

$$
\frac{d}{d t}\left(M_{s} \dot{R}_{s}\right)=4 \pi R_{s}^{2} p-F_{g}
$$

$$
\frac{d}{d t}\left(\frac{4 \pi}{3} R_{s}^{3} \frac{p}{\gamma-1}\right)=L_{w}-p \frac{d}{d t}\left(\frac{4 \pi}{3} R_{s}^{3}\right)
$$

$$
\begin{aligned}
& (3 \gamma-4) G M_{s}\left(2 M_{c}+M_{s}\right) \dot{R}_{s}+24 \pi \gamma \rho_{0} R_{s}^{4} \dot{R}_{s}^{3} \\
& +8 \pi R_{s}^{5} \dot{R}_{s}\left(\rho_{0}^{\prime} \dot{R}_{s}^{2}+3 \rho_{0} \ddot{R}_{s}\right) \\
& -2 R_{s}^{2}\left[3(\gamma-1) L_{w}-(3 \gamma-2) M_{s} \dot{R}_{s} \ddot{R}_{s}\right] \\
& +2 R_{s}^{3}\left[4 \pi G\left(M_{c}+M_{s}\right) \rho_{0} \dot{R}_{s}+M_{s} \ddot{R}_{s}\right]=0,
\end{aligned}
$$

$$
2
$$

$T_{d}=8.08 \mathrm{~s}\left(\frac{B_{p}}{10^{16} \mathrm{G}}\right)^{-2}\left(\frac{R}{10 \mathrm{~km}}\right)^{-6}\left(\frac{\Omega_{i}}{10^{4} \mathrm{rad} \mathrm{s}^{-1}}\right)^{-2}\left(\frac{I}{10^{45} \mathrm{~g} \mathrm{~cm}^{2}}\right)$

$$
E_{\mathrm{NS}}=\frac{1}{2} I \Omega_{i}^{2}=5 \times 10^{52} \operatorname{erg}\left(\frac{I}{10^{45} \mathrm{~g} \mathrm{~cm}^{2}}\right)\left(\frac{\Omega_{i}}{10^{4} \mathrm{rad} \mathrm{~s}^{-1}}\right)^{2}
$$

Verification of model

Suwa \& Tominaga, MNRAS, 451, 4801 (2015)

Shock evolution

Temperature evolution

$W\left[W^{\circ}\right]$

Suwa \& Tominaga, MNRAS, 451, 4801 (2015)

$\mathrm{B}^{\mathrm{b}}\left[\mathrm{T} 0_{\mathrm{Te}} \mathrm{C}\right]$
Suwa \& Tominaga, MNRAS, 451, 4801 (2015)

Magnetars for ${ }^{56} \mathrm{Ni}$

\& necessary condition for $\mathrm{M}^{56}{ }_{\mathrm{Ni}}>0.2 \mathrm{M}_{\circ}$

$$
\left(\frac{B_{p}}{10^{16} \mathrm{G}}\right)^{1 / 2}\left(\frac{\Omega_{i}}{10^{4} \mathrm{rad} \mathrm{~s}^{-1}}\right) \gtrsim 0.68-P=0.628 \mathrm{~ms}
$$

\& extremely strong magnetic fields and (almost) breakup rotation are required to explain HNe
\& doesn't match model parameters fitting GRB afterglows and SLSNe (B~1014G \& $\Omega \sim \mathrm{O}\left(10^{3}\right) \mathrm{rad} \mathrm{s}^{-1}$)
\& we might need other mechanism (not dipole rad.) or other engine (BH wind?) to synthesize enough ${ }^{56} \mathrm{Ni}$

Summary

8
Can magnetar's dipole radiation produce enough amount of ${ }^{56} \mathrm{Ni}$ explaining hypernovae?

3
Seems difficult. We may need other mechanism to consistently explain hypernovae and GRBs with magnetar scenario

