From supernovae to neutron stars

Yudai Suwa^{1,2}

¹Yukawa Institute for Theoretical Physics, Kyoto University ²Max Planck Institute for Astrophysics, Garching

Max Planck Institute for Astrophysics

Supernovae make neutron stars

Remarks on Super-Novae and Cosmic Rays

5. The super-nova process

We have tentatively suggested that the super-nova process represents the transition of an ordinary star into a neutron star. If neutrons are produced on the surface of an ordinary star they will "rain" down towards the center if we assume that the light pressure on neutrons is practically zero. This view explains the speed of the star's transformation into a neutron star. We are fully aware that our suggestion carries with it grave implications regarding the ordinary views about the constitution of stars and therefore will require further careful studies.

> W. BAADE F. Zwicky

Mt. Wilson Observatory and

California Institute of Technology, Pasadena. May 28, 1934.

Baade & Zwicky 1934

Key observables characterizing supernovae

- * Explosion energy: ~10⁵¹ erg
- * Ejecta mass: ~ M_{\odot}
- ***** Ni mass: ~0.1*M*_☉

* NS mass: ~1 - 2 M_☉

measured by fitting SN light curves

> measured by binary systems

final goal of first-principle (ab initio) simulations

Current paradigm: neutrino-heating mechanism

- * Energy is transferred by neutrinos
- Most of them are just escaping from the system, but are partially absorbed
- * In gain region, neutrino heating overwhelms neutrino cooling

Physical ingredients

In these violent explosions, all known <u>interactions</u> are involving and playing important roles;

What do simulations solve?

 ρ : density, *v*: velocity, *P*: pressure, Φ : grav. potential, *e*^{*}: total energy, *Y*_e: elect. frac.,

Q: neutrino terms

f: neut. dist. func, μ : cos θ , *E*: neut. energy, *j*: emissivity, χ : absorptivity, *R*: scatt. kernel

22/10/2015

1D simulations fail to explode

0.1

time (s)

0.2

0.0

0.8

0.6

time [s]

1.0

22/10/2015

Neutrino-driven explosion in multi-D simulation

We have exploding models driven by neutrino heating with 2D/3D simulations

<u>22/10/2015</u>

Dimensionality and numerical simulations

***grid-based codes only, not completed**

Only the simulations in this region can judge the neutrino-driven explosion

3D simulation with spectral neutrino transfer

[Takiwaki, Kotake, & Suwa, ApJ, **749**, 98 (2012); ApJ, **786**, 83 (2014)]

*M_{ZAMS}=11.2 M*_☉ 384(r)x128(θ)x256(φ)x20(E_ν)

XT4

T2K-Tsukuba

K computer

2/30

22/10/2015

Dimensionality and initial perturbation

[Takiwaki, Kotake, & Suwa, ApJ, 786, 83 (2014)]

22/10/2015

Yudai Suwa, Theorie-Seminar@TU Darmstadt

13/30

Note: there are problems

- * Explosion energy of simulations (*O(10⁴⁹⁻⁵⁰)* erg) is much smaller than observational values (*O(10⁵¹)* erg)
- * Results from different groups are contradictory
- We need still more effort to understand supernova mechanism

Anyway

- In the following, I focus on neutron star (NS) formation with supernova (SN) simulations
 - Once we obtain shock launch and mass accretion onto a protoneutron star (PNS) ceases, PNS evolution is (probably) not affected by explosion details

NS formation

22/10/2015

From SN to NS

[Suwa, Takiwaki, Kotake, Fischer, Liebendörfer, Sato, ApJ, 764, 99 (2013); Suwa, PASJ, 66, L1 (2014)]

- * **Progenitor:** 11.2 M_{\odot} (Woosley+ 2002)
- * Successful explosion! (but still weak with $E_{exp} \sim 10^{50}$ erg)
- * The mass of NS is $\sim 1.3 M_{\odot}$

* The simulation was continued in 1D to follow the PNS cooling phase up to ~70 s p.b.

Yudai Suwa, Theorie-Seminar@TU Darmstadt

19/30

From SN to NS

[Suwa, PASJ, 66, L1 (2014)]

22/10/2015

Yudai Suwa, Theorie-Seminar@TU Darmstadt

20/30

- * Crust formation time should depend on EOS (especially symmetry energy?)
- We may observe crust formation via neutrino luminosity evolution of a SN in our galaxy
- Cross section of neutrino scattering by heavier nuclei or nuclear pasta is much larger than that of neutrons and protons
- Neutrino luminosity may suddenly drop when we have heavier nuclei!
- * Magnetar (large B-field NS) formation
- competitive process between crust formation and magnetic field escape from NS

Ultra-stripped type-lc supernovae

* new class of SNe

22/10/2015

- rapidly evolving light curve
 -> very small ejecta mass
- possible generation sites of binary neutron stars (synergy w/ gravitational wave obs.!)

22/30

Ultra-stripped type-lc supernovae

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 454, 3073 (2015)]

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY MNRAS 454, 3073–3081 (2015)

doi:10.1093/mnras/stv2195

Neutrino-driven explosions of ultra-stripped Type Ic supernovae generating binary neutron stars

Yudai Suwa,^{1,2}* Takashi Yoshida,^{1,3} Masaru Shibata,¹ Hideyuki Umeda³ and Koh Takahashi³

ABSTRACT

We study explosion characteristics of ultra-stripped supernovae (SNe), which are candidates of SNe generating binary neutron stars (NSs). As a first step, we perform stellar evolutionary simulations of bare carbon–oxygen cores of mass from 1.45 to 2.0 M_{\odot} until the iron cores become unstable and start collapsing. We then perform axisymmetric hydrodynamics simulations with spectral neutrino transport using these stellar evolution outcomes as initial conditions. All models exhibit successful explosions driven by neutrino heating. The diagnostic explosion energy, ejecta mass, Ni mass, and NS mass are typically $\sim 10^{50}$ erg, $\sim 0.1 M_{\odot}$, $\sim 0.01 M_{\odot}$, and $\approx 1.3 M_{\odot}$, which are compatible with observations of rapidly evolving and luminous transient such as SN 2005ek. We also find that the ultra-stripped SN is a candidate for producing the secondary low-mass NS in the observed compact binary NSs like PSR J0737–3039.

Ultra-stripped type-lc supernovae

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 454, 3073 (2015)]

Ejecta mass~ $O(0.1)M_{\odot}$, NS mass~ $1.4 M_{\odot}$, explosion energy~ $O(10^{50})$ erg, Ni mass~ $O(10^{-2}) M_{\odot}$; everything consistent w/ Tauris+ 2013

22/10/2015

- * small kick velocity due to small ejecta mass
- small eccentricity (e~0.1), compatible with binary pulsars J0737-3039 (e=0.088 now and ~0.11 at birth of second NS)
- Piran & Shaviv 05
 * even rate (~1% of core-collapse SN)
 Tauris+13, 15, Drout+ 13, 14
 - SN surveys (e.g., HSC, PTF, Pan-STARRS, and LSST) will give constraint on NS merger rate

 radiation transfer simulations will be done based on our model

Magnetar formation and bright transients

22/10/2015

Yudai Suwa, Theorie-Seminar@TU Darmstadt

26/30

Magnetar formation and bright transients

[Suwa, Tominaga, MNRAS, **451**, 4801 (2015)]

- * To make consistent model for GRB & hypernovae, we need $O(0.1)M_{\odot}$ of ⁵⁶Ni to explain hypernova (optical) components
- We calculate postshock temperature of shock driven by magnetar dipole radiation
- * For $M_{\rm Ni} > 0.2 M_{\odot}$, $(B/10^{16} {\rm G})^{1/2} (P/1 {\rm ms})^{-1} > 1$ is necessary

- Supernova explosions by neutrino-heating mechanism have become possible
- Consistent modeling from iron cores to (cold) neutron stars is doable now
 - NS crust formation
 - related to neutrino observations, magnetar formation, NS pasta, nuclear EOS...
 - binary NS formation
 - related to gravitational wave observation, binary evolution...
 - magnetar formation
 - related to super-luminous supernovae, hypernovae, gamma-ray bursts...

