Reverse construction of initial conditions: from supernovae to progenitors

Yudai Suwa

Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University

Key observables characterizing supernovae

- * Explosion energy: ~10⁵¹ erg
- ***** Ni mass: ~0.1*M*_☉
- * Ejecta mass: $\sim M_{\odot}$

related

* NS mass: ~1 - 2 M_☉

measured by fitting SN light curves

> measured by binary systems

final goal of first-principle (ab initio) simulations

27/6/2016

Supernova simulation is an initial value problem

stellar evolutionary calculations $\rho(r), T(r), Y_e(r), v_r(r)$

27/6/2016

Uncertainties in stellar evolutionary calculations

Suwa+, ApJ (2016)

Asteroseismology

Constantino+ 2015

core helium burning (CHeB) stars

27/6/2016

A possibility

Problem reduction

27/6/2016

Parametric initial conditions

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

 M_1 : the edge of the final convection in the radiative core M_2 : the inner edge of the convection zone in the iron core

8/15

*M*₃: the NSE core

*M*₄: the iron core mass

*M*₅: the base of the silicon/oxygen shell

27/6/2016

Parametric initial conditions

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

27/6/2016

Parametric initial conditions

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

27/6/2016

Yudai Suwa @ Many Riddles About Core-Collapse Supernovae

Hydrodynamics simulations

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)] Agile-IDSA: 1D/GR/neutrino-radiation hydro code, publicly available

27/6/2016

Yudai Suwa @ Many Riddles About Core-Collapse Supernovae

Parameter regime beyond evolution models

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

Model	S_c	S_1	S_2	S_5	Y_{ec}	Y_{e3}	$ ho_c$
		$[k_B/ba$	aryon]				$[10^{10}\mathrm{gcm^{-3}}]$
BC01	0.5	0.63	1.6	4.0	0.415	0.46	2.0
BC02	0.4	0.63	1.6	4.0	0.415	0.46	2.0
BC03	0.6	0.63	1.6	4.0	0.415	0.46	2.0
BC04	0.5	0.53	1.6	4.0	0.415	0.46	2.0
BC05	0.5	0.73	1.6	4.0	0.415	0.46	2.0
BC06	0.5	0.63	1.5	4.0	0.415	0.46	2.0
BC07	0.5	0.63	1.7	4.0	0.415	0.46	2.0
BC08	0.5	0.63	1.6	3.0	0.415	0.46	2.0
BC09	0.5	0.63	1.6	6.0	0.415	0.46	2.0
BC10	0.5	0.63	1.6	4.0	0.411	0.46	2.0
BC11	0.5	0.63	1.6	4.0	0.425	0.46	2.0
BC12	0.5	0.63	1.6	4.0	0.415	0.452	2.0
BC13	0.5	0.63	1.6	4.0	0.415	0.47	2.0
BC14	0.5	0.63	1.6	4.0	0.415	0.46	1.0
BC15	0.5	0.63	1.6	4.0	0.415	0.46	3.0
BC16	0.4	0.73	1.6	4.0	0.415	0.46	2.0
BC17	0.4	0.63	1.7	4.0	0.415	0.46	2.0
BC18	0.4	0.63	1.6	6.0	0.415	0.46	2.0
BC19	0.4	0.63	1.6	4.0	0.425	0.46	2.0
BC20	0.4	0.63	1.6	4.0	0.415	0.47	2.0
BC21	0.4	0.63	1.6	4.0	0.415	0.46	1.0
BC22	0.4	0.63	1.6	4.0	0.415	0.46	3.0

27/6/2016

Explosions in 1D

27/6/2016

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

Yudai Suwa @ Many Riddles About Core-Collapse Supernovae

Question:

How can we produce strong ($E_{exp} \sim 10^{51}$ erg) explosion?

Possible Answer:

Change initial conditions. By starting from specific initial conditions, strong explosions are obtained *without* any change of simulation codes.

Next Question:

Which kind of stellar evolutionary calculations can produce these *perforable* presupernova structure?