超新星爆発の新しい初期条件の作り方と 爆発シミュレーションの初期条件依存性

諏訪雄大

(京都大学基礎物理学研究所)

共同研究者: E. Müller (マックスプランク宇宙物理研究所)

Key observables characterizing supernovae

- ★ Explosion energy: ~10⁵¹ erg
- ***** Ni mass: ~0.1*M*_☉
- * Ejecta mass: $\sim M_{\odot}$

related

* NS mass: ~1 - 2 M_☉

measured by fitting SN light curves

> measured by binary systems

final goal of first-principle (ab initio) simulations

諏訪 雄大 @ 物理学会(宮崎大学)

Supernova simulation is an initial value problem

stellar evolutionary calculations $\rho(r), T(r), Y_e(r), v_r(r)$

Initial condition dependences of SN simulations

2D-hydro+v transfer

1D-hydro+approx.v treatment

22/9/2016

諏訪 雄大 @ 物理学会(宮崎大学)

Uncertainties in stellar evolutionary calculations

Suwa+, ApJ (2016)

A possibility

Problem reduction

new approach supernova explosion Q1. what is the better initial condition for explosion? stellar structure Q2. is it possible to produce such structure? stellar evolution

22/9/2016

諏訪 雄大 @ 物理学会 (宮崎大学)

Parametric initial conditions

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

 M_1 : the edge of the final convection in the radiative core

 M_2 : the inner edge of the convection zone in the iron core

*M*₃: the NSE core

*M*₄: the iron core mass

*M*₅: the base of the silicon/oxygen shell

22/9/2016

諏訪 雄大 @ 物理学会(宮崎大学)

Parametric initial conditions

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

Hydrodynamics simulations

[Suwa & E. Müller, MNRAS, **460**, 2664 (2016)] Agile-IDSA: 1D/GR/neutrino-radiation hydro code, publicly available

諏訪 雄大 @ 物理学会(宮崎大学)

0/15

Parameter regime beyond evolution models

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

Model	S_c	S_1	S_2	S_5	Y_{ec}	Y_{e3}	$ ho_c$
		$[k_B/ba$	aryon]				$[10^{10}\mathrm{gcm^{-3}}]$
BC01	0.5	0.63	1.6	4.0	0.415	0.46	2.0
BC02	0.4	0.63	1.6	4.0	0.415	0.46	2.0
BC03	0.6	0.63	1.6	4.0	0.415	0.46	2.0
BC04	0.5	0.53	1.6	4.0	0.415	0.46	2.0
BC05	0.5	0.73	1.6	4.0	0.415	0.46	2.0
BC06	0.5	0.63	1.5	4.0	0.415	0.46	2.0
BC07	0.5	0.63	1.7	4.0	0.415	0.46	2.0
BC08	0.5	0.63	1.6	3.0	0.415	0.46	2.0
BC09	0.5	0.63	1.6	6.0	0.415	0.46	2.0
BC10	0.5	0.63	1.6	4.0	0.411	0.46	2.0
BC11	0.5	0.63	1.6	4.0	0.425	0.46	2.0
BC12	0.5	0.63	1.6	4.0	0.415	0.452	2.0
BC13	0.5	0.63	1.6	4.0	0.415	0.47	2.0
BC14	0.5	0.63	1.6	4.0	0.415	0.46	1.0
BC15	0.5	0.63	1.6	4.0	0.415	0.46	3.0
BC16	0.4	0.73	1.6	4.0	0.415	0.46	2.0
BC17	0.4	0.63	1.7	4.0	0.415	0.46	2.0
BC18	0.4	0.63	1.6	6.0	0.415	0.46	2.0
BC19	0.4	0.63	1.6	4.0	0.425	0.46	2.0
BC20	0.4	0.63	1.6	4.0	0.415	0.47	2.0
BC21	0.4	0.63	1.6	4.0	0.415	0.46	1.0
BC22	0.4	0.63	1.6	4.0	0.415	0.46	3.0

Density structures

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

諏訪 雄大 @ 物理学会 (宮崎大学)

2/15

Explosions in 1D

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]

諏訪 雄大 @ 物理学会 (宮崎大学)

Question:

How can we produce strong (E_{exp}~10⁵¹ erg) explosion?

Possible Answer:

Change initial conditions. By starting from specific initial conditions, strong explosions are obtained *without* any change of simulation codes.

Next Question:

Which kind of stellar evolutionary calculations can produce these *preferable* presupernova structure?