From supernovae to neutron stars

Yudai Suwa

Yukawa Institute for Theoretical Physics, Kyoto University

Contents

* Supernova
* Neutrino transfer
* Equation of state for supernova simulations
* From supernovae to neutron stars

A supernova

ASASSN-17cm 2017-02-16 Confirmation Image

Supernovae are made by neutron star formation

Remarks on Super-Novae and Cosmic Rays

5. The super-nova process

We have tentatively suggested that the super-nova process represents the transition of an ordinary star into a neutron star. If neutrons are produced on the surface of an ordinary star they will "rain" down towards the center if we assume that the light pressure on neutrons is practically zero. This view explains the speed of the star's transformation into a neutron star. We are fully aware that our suggestion carries with it grave implications regarding the ordinary views about the constitution of stars and therefore will require further careful studies.
W. Batide
F. Zwicky

Mt. Wilson Observatory and
California Institute of Technology, Pasadena.
May 28, 1934.
Baade \& Zwicky 1934

Standard scenario of core-collapse supernovae

Final phase of stellar evolution

Neutrinosphere formation (neutrino trapping)

Neutron star formation
(core bounce)

Current paradigm: neutrino-heating mechanism

* A CCSN emits $O\left(10^{58}\right)$ of neutrinos with $O(10) \mathrm{MeV}$.
* Neutrinos transfer energy
- Most of them are just escaping from the system (cooling)
- Part of them are absorbed in outer layer (heating)
* Heating overwhelms cooling in heating (gain) region

What do simulations solve?

Numerical Simulations

Hydrodynamics equations

$$
\frac{d \rho}{d t}+\rho \nabla \cdot \mathbf{v}=0
$$

$$
\rho \frac{d \mathbf{v}}{d t}=-\nabla P-\rho \nabla \Phi
$$

$$
\frac{d e^{*}}{d t}+\nabla \cdot\left[\left(e^{*}+P\right) \mathbf{v}\right]=-\rho \mathbf{v} \cdot \nabla \Phi+Q_{E}
$$

$$
\frac{d Y_{e}}{d t}=Q_{N}
$$

$$
\triangle \Phi=4 \pi G \rho
$$

ρ : density, v : velocity, P : pressure, Φ : grav. potential, e^{*} : total energy, Y_{e} : elect. frac., Q : neutrino terms
$f:$ neut. dist. func, $\mu: \cos \theta, E:$ neut. energy, j : emissivity, χ : absorptivity, R : scatt. kernel

Neutrino-driven explosion in multi-D simulation

Exploding models driven by neutrino heating with 2D/3D simulations

Contents

* Supernova
* Neutrino transfer
* Equation of state for supernova simulations
* From supernovae to neutron stars

Why is neutrino transfer so important?

Numerical Simulations

Hydrodynamics equations

$$
\begin{gathered}
\frac{d \rho}{d t}+\rho \nabla \cdot \mathbf{v}=0, \\
\rho \frac{d \mathbf{v}}{d t}=-\nabla P-\rho \nabla \Phi, \\
\frac{d e^{*}}{d t}+\nabla \cdot\left[\left(e^{*}+P\right) \mathbf{v}\right]=-\rho \mathbf{v} \cdot \nabla \Phi+Q_{E},
\end{gathered}
$$

$$
\frac{d Y_{e}}{d t}=Q_{N}
$$

$$
\triangle \Phi=4 \pi G \rho,
$$

Neutrino Boltzmann

 equation

Boltzmann equation

Sumiyoshi \& Yamada (2012); in inertial frame

$$
\begin{aligned}
& \frac{1}{c} \frac{\partial f^{\text {in }}}{\partial t}+\frac{\mu_{\nu}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} f^{\text {in }}\right)+\frac{\sqrt{1-\mu_{v}^{2}} \cos \phi_{\nu}}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta f^{\text {in }}\right) \\
& +\frac{\sqrt{1-\mu_{\nu}^{2}} \sin \phi_{v}}{r \sin \theta} \frac{\partial f^{\mathrm{in}}}{\partial \phi}+\frac{1}{r} \frac{\partial}{\partial \mu_{v}}\left[\left(1-\mu_{\nu}^{2}\right) f^{\mathrm{in}}\right] \\
& -\frac{\sqrt{1-\mu_{v}^{2}}}{r} \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \phi_{v}}\left(\sin \phi_{v} f^{\text {in }}\right)=\underbrace{\left[\frac{1}{c} \frac{\delta f^{\mathrm{in}}}{\delta t}\right]_{\text {collision }}} \\
& f^{\text {in }} \frac{(r, \theta, \phi}{3 \mathrm{D}}, t ; \frac{\left.\mu_{\nu}, \phi_{\nu}, \varepsilon^{\mathrm{in}}\right)}{3 \mathrm{D}} \\
& \text { in real space in momentum space } \\
& \begin{aligned}
\longrightarrow\left[\frac{1}{c} \frac{\delta f}{\delta t}\right]_{\mathrm{emis}-\mathrm{abs}}= & -R_{\mathrm{abs}}(\varepsilon, \Omega) f(\varepsilon, \Omega) \\
& +R_{\mathrm{emis}}(\varepsilon, \Omega)[1-f(\varepsilon, \Omega)]
\end{aligned} \\
& \rightarrow\left[\frac{1}{c} \frac{\delta f}{\delta t}\right]_{\text {scat }}=-\int \frac{d \varepsilon^{\prime} \varepsilon^{\prime 2}}{(2 \pi)^{3}} \int d \Omega^{\prime} R_{\text {scat }}\left(\varepsilon, \Omega ; \varepsilon^{\prime}, \Omega^{\prime}\right) f(\varepsilon, \Omega) \\
& \times\left[1-f\left(\varepsilon^{\prime}, \Omega^{\prime}\right)\right]+\int \frac{d \varepsilon^{\prime} \varepsilon^{\prime 2}}{(2 \pi)^{3}} \int d \Omega^{\prime} R_{\text {scat }}\left(\varepsilon^{\prime}, \Omega^{\prime} ; \varepsilon, \Omega\right) \\
& \times f\left(\varepsilon^{\prime}, \Omega^{\prime}\right)[1-f(\varepsilon, \Omega)], \\
& \longrightarrow\left[\frac{1}{c} \frac{\delta f}{\delta t}\right]_{\text {pair }}=-\int \frac{d \varepsilon^{\prime} \varepsilon^{\prime 2}}{(2 \pi)^{3}} \int d \Omega^{\prime} R_{\text {pair-anni }}\left(\varepsilon, \Omega ; \varepsilon^{\prime}, \Omega^{\prime}\right) \\
& \text { 7D integro-diffrential eq. } \\
& \text { so complex... }
\end{aligned}
$$

Methods to solve Boltzmann eq.

Direct integration of Boltzmann eq. with discrete-ordinate method => S_{N} method
It's too costly, though.
By taking angular moments of radiation fields

$$
\left\{E, F^{i}, P^{i j}\right\} \propto \int d \Omega f\left\{1, \ell^{i}, \ell^{i} \ell^{j}\right\}
$$

Moment equations;

$$
\begin{aligned}
\partial_{t} E+\partial_{i} F^{i} & =S_{0} \\
\partial_{t} F^{i}+\partial_{j} P^{i j} & =S_{1}
\end{aligned}
$$

To close the system, we need additional equation (the same as equation of state in hydrodynamics equation)

Methods to solve Boltzmann eq. (cont.)

The simplest way; only cooling terms are taken into account $\Rightarrow>$ leakage scheme (no transport; $\partial_{t} e_{\text {matter }}=-\partial_{t} E$)

Next is diffusion assumption, $F \propto \nabla E$, but is wrong in optically thin regime. To take into account both optically thick and thin regime, modification is needed
$=>$ Flux limited diffusion (FLD) F is given by E and ∇E
Isotropic diffusion source approximation (IDSA) F is given by the distance from last-scattering surface

Higher moment (P) is helpful to obtain more precise solution.
$\Rightarrow \mathbf{M}_{1}$ closure \mathbf{P} is given by E and \boldsymbol{F}
Variable Eddington factor (VE) \mathbf{P} is given by solving simpler Boltzmann eq.

$$
S_{N}>V E>M_{1}>F L D, \text { IDSA }>\text { leakage }
$$

higher cost
$\overrightarrow{\text { approximate }}$ lower cost

Comparison of methods

Comparison of IDSA and S_{N} is given in Liebendörfer+ (2009) and Berninger+ (2013)

Methods to solve Boltzmann eq. (cont.)

Methods used in supernova community
S_{N}
Ott+ (2008) ; Sumiyoshi \& Yamada (2012) • ; Nagakura+ (2017) • VE

Buras+ (2006) \equiv; Müller+ (2010) \equiv; Hanke+ (2013) \equiv
M_{1}
Obergaulinger+ (2014) ; O'Connor \& Couch (2015) 플 ; Skinner+ (2016) FLD

Burrows+ (2006) ; Bruenn+ (2013)
IDSA
Suwa+ (2010) • ; Takiwaki+ (2012) • ; Pan+ (2016)
and many others

Questions

* How is nuclear physics related to supernova explosion?
* How can we investigate nuclear physics via supernova observations?

Contents

* Supernova
* Neutrino transfer
* Equation of state for supernova simulations
* From supernovae to neutron stars

List of SNEOS

Oertel et al. (2016)

Model	Nuclear Interaction	Degrees of Freedom	$\begin{array}{r} M_{\max } \\ \left(\mathrm{M}_{\odot}\right) \\ \hline \end{array}$	$\begin{gathered} R_{1.4 \mathrm{M}_{\odot}} \\ (\mathrm{km}) \\ \hline \end{gathered}$		publ. avail.	References
H\&W	SKa	$n, p, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	$2.21{ }^{a}$	$13.9{ }^{\text {a }}$		n	El Eid and Hillebrandt (1980); Hillebrandt et al. (1984)
LS180	LS180	$n, p, \alpha,(A, Z)$	1.84	12.2	0.27	y	Lattimer and Swesty (1991)
LS220	LS220	$n, p, \alpha,(A, Z)$	2.06	12.7	0.28	y	Lattimer and Swesty (1991)
LS375	LS375	$n, p, \alpha,(A, Z)$	2.72	14.5	0.32	y	Lattimer and Swesty (1991)
STOS	TM1	$n, p, \alpha,(A, Z)$	2.23	14.5	0.26	y	Shen et al. (1998); Shen et al. $(1998,2011)$
FYSS	TM1	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.21	14.5	0.26	y	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.02	13.9	0.25	y	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	1.74	12.6	0.23	y	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.79	14.8	0.31	y	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.42	13.2	0.30	y	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	1.95	12.7	0.25	y	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	SFHo	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.06	11.9	0.30	y	Steiner et al. (2013a)
SFHx	SFHx	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.13	12.0	0.29	y	Steiner et al. (2013a)
SHT(NL3)	NL3	$n, p, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.78	14.9	0.31	y	Shen et al. (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	1.75	12.8	0.23	y	Shen et al. (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}$	2.12	13.6	0.26	y	Shen et al. (2011a)

List of SN EOS (cont.)

Oertel et al. (2016)

LS220^	LS220	$n, p, \alpha,(A, Z), \Lambda$	1.91	12.4	0.29	y	Oertel et al. (2012); Gulminelli et al. (2013)
LS220 π	LS220	$n, p, \alpha,(A, Z), \pi$	1.95	12.2	0.29	n	Oertel et al. (2012); Peres et al. (2013)
BHB Λ	DD2	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}, \Lambda$	1.96	13.2	0.25	y	Banik et al. (2014)
ВНВ Λ ¢	DD2	$n, p, d, t, h, \alpha,\left\{\left(A_{i}, Z_{i}\right)\right\}, \Lambda$	2.11	13.2	0.27	y	Banik et al. (2014)
STOS Λ	TM1	$n, p, \alpha,(A, Z), \Lambda$	1.90	14.4	0.23	y	Shen et al. (2011)
STOSYA30	TM1	$n, p, \alpha,(A, Z), Y$	1.59	14.6	0.17	y	Ishizuka et al. (2008)
STOSYA30 π	TM1	$n, p, \alpha,(A, Z), Y, \pi$	1.62	13.7	0.19	y	Ishizuka et al. (2008)
STOSY0	TM1	$n, p, \alpha,(A, Z), Y$	1.64	14.6	0.18	y	Ishizuka et al. (2008)
STOSY0 π	TM1	$n, p, \alpha,(A, Z), Y, \pi$	1.67	13.7	0.19	y	Ishizuka et al. (2008)
STOSY30	TM1	$n, p, \alpha,(A, Z), Y$	1.65	14.6	0.18	y	Ishizuka et al. (2008)
STOSY30 π	TM1	$n, p, \alpha,(A, Z), Y, \pi$	1.67	13.7	0.19	y	Ishizuka et al. (2008)
STOSY90	TM1	$n, p, \alpha,(A, Z), Y$	1.65	14.6	0.18	y	Ishizuka et al. (2008)
STOSY90 π	TM1	$n, p, \alpha,(A, Z), Y, \pi$	1.67	13.7	0.19	y	Ishizuka et al. (2008)
STOS π	TM1	$n, p, \alpha,(A, Z), \pi$	2.06	13.6	0.26	n	Nakazato et al. (2008)
STOSQ209n π	TM1	$n, p, \alpha,(A, Z), \pi, q$	1.85	13.6	0.21	n	Nakazato et al. (2008)
STOSQ162n	TM1	$n, p, \alpha,(A, Z), q$	1.54			n	Nakazato et al. (2013)
STOSQ184n	TM1	$n, p, \alpha,(A, Z), q$	1.36	${ }^{\text {b }}$		n	Nakazato et al. (2013)
STOSQ209n	TM1	$n, p, \alpha,(A, Z), q$	1.81	14.4	0.20	n	Nakazato et al. (2008, 2013)
STOSQ139s	TM1	$n, p, \alpha,(A, Z), q$	2.08	12.6	0.26	y	Sagert et al. (2012a); Fischer et al. (2014b)
STOSQ145s	TM1	$n, p, \alpha,(A, Z), q$	2.01	13.0	0.25	y	Sagert et al. (2012a)
STOSQ155s	TM1	$n, p, \alpha,(A, Z), q$	1.70	9.93	0.25	y	Fischer et al. (2011)
STOSQ162s	TM1	$n, p, \alpha,(A, Z), q$	1.57	8.94	0.26	y	Sagert et al. (2009)
STOSQ165s	TM1	$n, p, \alpha,(A, Z), q$	1.51	8.86	0.25	y	Sagert et al. (2009)

Nuclear matter properties and NS properties

Oertel et al. (2016)

Nuclear Interaction	$n_{\text {sat }}$ $\left(\mathrm{fm}^{-3}\right)$	$B_{\text {sat }}$ (MeV)	K (MeV)	Q (MeV)	J (MeV)	L (MeV)
SKa	0.155	16.0	263	-300	32.9	74.6
LS180	0.155	16.0	180	-451	28.6^{a}	73.8
LS220	0.155	16.0	220	-411	28.6^{a}	73.8
LS375	0.155	16.0	375	176	28.6^{a}	73.8
TM1	0.145	16.3	281	-285	36.9	110.8
TMA	0.147	16.0	318	-572	30.7	90.1
NL3	0.148	16.2	272	203	37.3	118.2
FSUgold	0.148	16.3	230	-524	32.6	60.5
FSUgold2.1	0.148	16.3	230	-524	32.6	60.5
IUFSU	0.155	16.4	231	-290	31.3	47.2
DD2	0.149	16.0	243	169	31.7	55.0
SFHo	0.158	16.2	245	-468	31.6	47.1
SFHx	0.160	16.2	239	-457	28.7	23.2

[Fischer, Hempel, Sagert, Suwa, Schaffner-Bielich, EPJA, 50, 46 (2014)]

Shock radius evolution depending on EOS

[Suwa, Takiwaki, Kotake, Fischer, Liebendörfer, Sato, ApJ, 764, 99 (2013)]; 15M ${ }_{\odot}$

LS180 and LS375 succeed the explosion HShen (TM1) EOS fails

Other works

Janka (2012); Mzams $^{\text {=11.2M }}$ ©

Nagakura et al. (2017); MzAMs=11.2M ${ }_{\odot}$

Softer EOS (i.e. smaller $M_{\max }$) is better for the explosion

Contents

* Supernova
* Neutrino transfer
* Equation of state for supernova simulations
* From supernovae to neutron stars

From SN to NS

[Suwa, Takiwaki, Kotake, Fischer, Liebendörfer, Sato, ApJ, 764, 99 (2013); Suwa, PASJ, 66, L1 (2014)]

* Progenitor: 11.2 M_{\odot} (Woosley+ 2002)
* Successful explosion! (but still weak with $E_{\text {exp }} \sim 10^{50}$ erg)
* The mass of NS is $\sim 1.3 M_{\odot}$
* The simulation was continued in 1D to follow the PNS cooling phase up to ~70 s p.b.

From SN to NS

[Suwa, PASJ, 66, L1 (2014)]

From SN to NS: Implications

* Crust formation time should depend on EOS (especially symmetry energy?)
* We may observe crust formation via neutrino luminosity evolution of a SN in our galaxy
* Cross section of neutrino scattering by heavier nuclei or nuclear pasta is much larger than that of neutrons and protons
» Neutrino luminosity may be significantly changed when a NS has heavier nuclei!
* Magnetar (large B-field NS) formation
* competitive process between crust formation and magnetic field escape from NS

Neutrino probe of nuclear physics

Robertz+ (2012); symmetry energy and convection

Horowitz+ (2016); pasta formation

Summary

Take away message

1. Supernova simulations are exploding!
2. Nuclear equation of state is an important ingredient which can change explodability. Softer seems better.
3. Neutrino transfer is essential, but still needs lot of works to obtain solution. 7D solutions are reachable in the next decade.
4. Consistent modeling from iron cores to (cold) neutron stars is doable now. Neutrino observations by Super-K and Hyper-K will tell us nuclear physics aspects as well as astrophysics.
