

超新星の第一原理シミュレーション で十分な量のニッケルは生成可能か

諏訪雄大

(京都産業大学)

共同研究者: 冨永望(甲南大学)、前田啓一(京都大学)

First principle simulations

Key observables characterizing supernovae

- * Explosion energy: ~10⁵¹ erg
- ***** Ni mass: ~*0*.1*M*_☉
- * Ejecta mass: $\sim M_{\odot}$

related

* NS mass: ~1 - 2 M_☉

measured by fitting SN light curves

> measured by binary systems

final goal of first-principle (ab initio) simulations

brightness

20/9/2018

Explosion energy and Ni amount

Light curves and parameter dependences

One-zone model based on Arnett (1982)

⁵⁶Ni production

* M(⁵⁶Ni)=O(0.01)M_☉

* T>5x10⁹ K is necessary for ⁵⁶Ni production

Woosley+ 02

- $E=(4\pi/3)r^3 aT^4 \Rightarrow T(r_{sh})=1.33x10^{10}(E/10^{51}erg)^{1/4}(r_{sh}/1000km)^{-3/4} K$
- With E=10⁵¹erg, r_{sh}<3700km for T>5x10⁹K (Woosley+ 2002)
- * ⁵⁶Ni amount is more difficult to explain than explosion energy
 - Explosion energy can be topped up late after the onset of explosion (~O(1)s)
 - ⁵⁶Ni should be synthesized just after the onset of the explosion (before shock passes O(1000)km, i.e. O(0.1) s)

* It would be a benchmark test for explosion simulations

Numerical simulation

1D Lagrangian simulation w/ heating and cooling terms by v

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}, \qquad \qquad \mathcal{H} = 1.544 \times 10^{20} \left(\frac{L_{\nu_e}}{10^{52} \text{erg s}^{-1}}\right) \left(\frac{r}{100 \text{km}}\right)^{-2} \left(\frac{T_{\nu_e}}{4 \text{MeV}}\right)^2, \\
\frac{Dv}{Dt} = -\frac{Gm}{r^2} - 4\pi r^2 \frac{\partial P}{\partial m}, \qquad \qquad \mathcal{C} = 1.399 \times 10^{20} \left(\frac{T}{2 \text{MeV}}\right)^6. \quad \text{Light-bulb approx.}$$

EOS: Helmholtz EOS (Timmes & Arnett 1999) Progenitor: $M_{ZAMS}=12M_{\odot}$, $15M_{\odot}$, $20M_{\odot}$, $25M_{\odot}$ by Woosley & Heger (2007) $R_{in}=50$ km (fixed) $M_{cut}=1.3$ (12), 1.6 (15, 20), 1.7 (25) M_{\odot} (determined by inner edge of Si/O layer, which has density jump) $L_{ve}=[1,4]x10^{52}$ erg/s T = 4MeV (fixed)

T_{ve}=4MeV (fixed)

Numerical results

$20M_{\odot}$, L_{ve}= $4x10^{52}$ erg/s

20/9/2018

Maximum temperature

Analytic model

shock velocity (Matzner & McKee 1999)

$$v_s = 0.794 \left(\frac{E_{\rm exp}}{M_{\rm ej}}\right)^{1/2} \left(\frac{M_{\rm ej}}{\rho(r_s)r_s^3}\right)^{0.19}$$

$$M_{\rm ej}(t, r_s) = \dot{M}t + \int_{r_{\rm mc}}^{r_s} 4\pi r^2 \rho(r) dr \qquad E_{\rm exp}$$

Density structure in pre-shock regime (Shu 1977, Suto & Silk 1988)

$$\rho(r) = \rho_R \left(\frac{r}{R}\right)^{-3/2}$$

 ρ_{R} and R are determined by progenitor structure

= Lt

Temperature evolution

 $\frac{4\pi}{3}r_s^3 aT^4 = E_{int} + Lt$ E_{int} is initial internal energy, which is given by pressure balance at shock launch

14

Comparison

Model	$\begin{array}{c} M_{s=4} \\ (M_{\odot}) \end{array}$	$\begin{array}{c} R_{M_{s=4}} \\ (1000 \text{ km}) \end{array}$	$ \begin{array}{c} \rho_{M_{s=4}} \\ (10^7 \text{ g cm}^{-3}) \end{array} $	$\begin{array}{c} M_{s=4} + 0.1 M_{\odot} \\ (M_{\odot}) \end{array}$	$R_{M_{s=4}+0.1M_{\odot}}$ (1000 km)	$ ho_{M_{s=4}+0.1M_{\odot}} ight(10^7 \mathrm{~g~cm}^{-3})$
s12	1.530	2.813	0.168	1.630	4.655	0.035
s15	1.818	3.770	0.129	1.918	4.924	0.051
s20	1.824	2.654	0.268	1.924	3.646	0.133
s25	1.901	2.803	0.317	2.001	3.771	0.131

20/9/2018

Ni amount and growth rate

⁵⁶Ni amount cannot be explained...

13/14

20/9/2018

- * ⁵⁶Ni is primary observable of SNe
- To synthesize enough amount of ⁵⁶Ni (~0.07M_☉), rapid growth of explosion energy is necessary
- * Based on light-bulb approx., we develop
 - Numerical simulation
 - Analytic model
- * The Ni amount is unexplainable with the current standard simulations. What are we missing?