中性子星の最小質量

諏訪雄大

（京都産業大学）

共同研究者：
吉田敬（東大），柴田大（基研／AEI），梅田秀之（東大），高橋亘（Bonn）

Kyoto Sangyo University（京都産業大学）

Pulsar number is increasing

compiled data from ATNF pulsar catalog and P．Freire＇s table

Mass measurements of NSs

* >2600 pulsars have been found in the Galaxy
* 10\% in the binary system
\rightarrow mass measurement possible
15 double NSs so far [Tauris+ 2017]
http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html

Massive NSs tell us nuclear physics

Demorest＋ 2010

So，what does a small NS tell？

Double NSs

First asymmetric DNS system

A low－mass NS

＊ $\mathbf{M}_{\text {NS }}=1.174 \mathrm{M}_{\odot}$ ！（ NB, it＇s gravitational mass，baryonic mass is $\sim 1.28 \mathrm{M}_{\odot}$ ）
＊Is it a white dwarf？Maybe no
＊a large eccentricity $(\mathrm{e}=0.112)$ is difficult to explain by slow evolution into a WD
＊How to make it？
』 a small iron core of massive star？ （typically $\mathrm{M}_{\mathrm{Fe}} \sim 1.4-1.8 \mathrm{M}_{\odot}$ ）
» getting rid of mass from a NS？

A path toward a low mass NS？：SN in close binary

［Suwa＋，MNRAS，454， 3073 （2015）；Yoshida＋，MNRAS，471， 4275 （2017）］

When does a core collapse？

Time till collapse

Modified Chandrasekhar mass

＊Chandrasekhar mass without temperature correction

$$
M_{\mathrm{Ch} 0}\left(Y_{e}\right)=1.46 M_{\odot}\left(\frac{Y_{e}}{0.5}\right)^{2}
$$

＊Chandrasekhar mass with temperature correction

$$
\begin{aligned}
M_{\mathrm{Ch}}(T)=M_{\mathrm{Ch} 0}\left(Y_{e}\right)\left[1+\left(\frac{s_{e}}{\pi Y_{2}}\right)^{2}\right] \begin{array}{l}
\\
s_{e}=0.5 \rho_{10}^{-1 / 3}\left(Y_{e} / 0.42\right)^{2 / 3} T_{\mathrm{MeV}} \\
\text { Baron+ 1990; Timmes+ } 1996
\end{array}
\end{aligned}
$$

＊To make a small core，low Y_{e} and low entropy are necessary

$M_{c h}$ Vs．$M_{\text {core }}$

［Suwa，Yoshida，Shibata，Umeda，Takahashi，MNRAS，481， 3305 （2018）］

What do simulations solve？

general relativity
Gravity
electro－magnetic interaction
（Magneto－）hydrodynamics

weak interaction

Neutrino transfer

Number of interactions；
pe ${ }^{-}<->n v_{e}, n e^{+}$＜－＞ p_{v}
$v^{ \pm}<->v e^{ \pm}, v A<->v A, v N<->v N$
$v \bar{v}$＜－＞e－e＋，NN＜－＞v $\bar{v} N N, v \bar{v}<->v \bar{v}$
as first－principles as possible． parameter free simulation！

Explosion simulations and NS masses

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 481, 3305 (2018)]

Model	$M_{\mathrm{Co}}\left(\mathrm{M}_{\odot}\right)$	$M_{\text {zAMs }}\left(\mathrm{M}_{\odot}\right)$	$M_{\mathrm{Fe}}\left(\mathrm{M}_{\odot}\right)$	$M_{N S, \mathrm{~b}}\left(\mathrm{M}_{\odot}\right)$	$M_{\mathrm{NS}, \mathrm{g}}\left(\mathrm{M}_{\odot}\right)$
CO137	1.37	9.35	1.280	1.289	$\mathbf{1 . 1 7 4}$
CO138	1.38	9.4	1.274	1.296	$\mathbf{1 . 1 7 9}$
CO139	1.39	9.45	1.258	1.302	1.184
CO140	1.4	9.5	1.296	1.298	1.181
CO142	1.42	9.6	1.265	1.287	$\mathbf{1 . 1 7 2}$
CO144	1.44	9.7	1.234	1.319	1.198
CO145	1.45	9.75	1.277	1.376	1.245

Discussion

［Suwa，Yoshida，Shibata，Umeda，Takahashi，MNRAS，481， 3305 （2018）］ $\mathbf{M}_{\mathrm{Ns}, \mathrm{b}} \mathbf{M}_{\mathrm{NS}, \mathrm{g}}$

～1．32～1．20
～1．28～1．17

$$
\sim 1.37 \quad \sim 1.42 \quad \mathbf{M c o}^{\left(\mathbf{M}_{\odot}\right)}
$$

Summary

＊A low－mass NS of $\mathbf{M N S}, \mathrm{g}^{\mathrm{g}}=\mathbf{1 . 1 7 4 \mathrm { M } _ { \odot } \text { was found }}$
＊Q：Is it possible to make such a low－mass NS with standard modeling of SN？
＊A：Yes，it is．
» The minimum mass is $\sim 1.17 \mathrm{M}_{\odot}$ ．
＊If a new observation finds even lower mass NS，we cannot make it．Something wrong．

