

中性子星の最小質量

諏訪雄大

(京都産業大学)

共同研究者:

吉田敬 (東大), 柴田大 (基研/AEI), 梅田秀之 (東大), 高橋亘 (Bonn)

Kyoto Sangyo University(京都產業大学)

Pulsar number is increasing

compiled data from ATNF pulsar catalog and P. Freire's table

Mass measurements of NSs

Özel & Freie 201

- * >2600 pulsars have been found in the Galaxy
- * 10% in the binary system
 - → mass measurement possible
 - 15 double NSs so far [Tauris+ 2017]

Massive NSs tell us nuclear physics

←1.97±0.04M_☉

NB) mass estimation was updated by Arzoumanian+ 2018 as 1.908±0.016M_☉

Another massive NS was reported by Antoniadis+ (2013), J0348+0432, 2.01±0.04M_☉

So, what does a small NS tell?

Double NSs

Özel & Freie 2016

First asymmetric DNS system

A low-mass NS

* $M_{NS}=1.174M_{\odot}!$ (NB, it's gravitational mass, baryonic mass is ~1.28 M_{\odot})

* Is it a white dwarf? Maybe no

a large eccentricity (e=0.112) is difficult to explain by slow evolution into a WD

* How to make it?

- a small iron core of massive star? (typically M_{Fe}~1.4–1.8M_☉)
- getting rid of mass from a NS?

A path toward a low mass NS?: SN in close binary

[Suwa+, MNRAS, 454, 3073 (2015); Yoshida+, MNRAS, 471, 4275 (2017)]

When does a core collapse?

Time till collapse

Modified Chandrasekhar mass

* Chandrasekhar mass without temperature correction

$$M_{\text{Ch0}}(Y_e) = 1.46 M_{\odot} \left(\frac{Y_e}{0.5}\right)^2$$

* Chandrasekhar mass with temperature correction

$$M_{\text{Ch}}(T) = M_{\text{Ch0}}(Y_e) \left[1 + \left(\frac{s_e}{\pi Y_2} \right)^2 \right]$$

$$s_e = 0.5 \rho_{10}^{-1/3} (Y_e/0.42)^{2/3} T_{\text{MeV}}$$

Baron+ 1990; Timmes+ 1996

* To make a small core, low Ye and low entropy are necessary

Mch VS. Mcore

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 481, 3305 (2018)]

What do simulations solve?

stellar evolution input: $\rho(r)$, T(r), $Z_i(r)$, $v_r(r)$

Numerical table based on nuclear physics e.g.) 10^3 g cm⁻³ < ρ < 10^{15} g cm⁻³ 0.1 MeV < T < 100 MeV $0.03 < Y_e < 0.56$

general relativity **Gravity** strong interaction Nuclear equation of state

electro-magnetic interaction (Magneto-)hydrodynamics

weak interaction

Neutrino transfer

Number of interactions;

 $pe^- <-> nv_e, ne^+ <-> p\overline{v}_e$

 $ve^{\pm} <-> ve^{\pm}$, vA <-> vA, vN <-> vN

 $v\overline{v} <-> e^-e^+$, $NN <-> v\overline{v}NN$, $v\overline{v} <-> v\overline{v}$

Entropy 1 = 0100 msFakiwaki, Kotake, Suwa (2014) 1000 km

as first-principles as possible.

parameter free simulation!

Explosion simulations and NS masses

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 481, 3305 (2018)]

Model	$M_{CO}(M_{\odot})$	M _{ZAMS} (M _☉)	$M_{Fe}\left(M_{\odot}\right)$	M _{NS,b} (M _☉)	M _{NS,g} (M _☉)
CO137	1.37	9.35	1.280	1.289	1.174
CO138	1.38	9.4	1.274	1.296	1.179
CO139	1.39	9.45	1.258	1.302	1.184
CO140	1.4	9.5	1.296	1.298	1.181
CO142	1.42	9.6	1.265	1.287	1.172
CO144	1.44	9.7	1.234	1.319	1.198
CO145	1.45	9.75	1.277	1.376	1.245

 $M_{NS,b}$ - $M_{NS,g}$ =0.084 M_{\odot} ($M_{NS,g}/M_{\odot}$)²
(Lattimer & Prakash 2001)

Discussion

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 481, 3305 (2018)]

Summary

* A low-mass NS of M_{NS,g}=1.174M_☉ was found

* Q: Is it possible to make such a low-mass NS with standard modeling of SN?

- * A: Yes, it is.
 - **■** The minimum mass is $\sim 1.17 M_{\odot}$.
 - If a new observation finds even lower mass NS, we cannot make it. Something wrong.