超新星爆発と連星系

諏訪雄大

（京都産業大学 \＆京都大学基礎物理学研究所）

Kyoto Sangyo University（京都産業大学）

Fraction of interacting binary is high

GW170817：Death of neutron star＇s

Normalized amplitude

LIGO－Virgo，PRL 119， 161101 （2017）

DNS

＊In the Galaxy，six systems are expected to merge within

＊Merger time $=>1.2 \times 10^{8} \mathrm{yr}\left(\mathrm{a}_{0} / 10^{11} \mathrm{~cm}\right)^{4}\left(\mathrm{~m} / 2.8 \mathrm{M}_{\odot}\right)^{-3}$
$->\mathrm{a}_{0}<3 \times 10^{11} \mathrm{~cm}$ is needed
NB）The distance of Sun－Earth is $1 \mathrm{AU}=1.5 \times 10^{13} \mathrm{~cm}, \mathrm{R}_{\odot}=7 \times 10^{10} \mathrm{~cm}$
＊Massive stars forming close binary systems must have experienced close binary interactions！
＊Do they make canonical supernovae？Probably，not．

1．SNe from binary systems

How to make close DNSs？：binary evolutions

De et al．（2018）

Ultra－stripped supernovae？

Ultra－stripped supernovae：progenitors and fate
Thomas M．Tauris，${ }^{1,2 \star}$ Norbert Langer ${ }^{1}$ and Philipp Podsiadlowski ${ }^{3}$
＊＂We therefore suggest to define ultra－stripped SNe as exploding stars whose progenitors are stripped more than what is possible with a non－degenerate companion．In other words，ultra－stripped SNe are exploding stars which contain envelope masses $\lesssim 0.2 M_{\odot}$ and having a compact star companion．＂

Ultra－stripped supernovae？

Small ejecta mass

Tauris et al．（2013）

Neutrino－driven explosions of ultra－stripped SN

［Suwa，Yoshida，Shibata，Umeda，Takahashi，MNRAS，454， 3073 （2015）］

Model	$\begin{gathered} t_{\mathrm{final}}{ }^{a} \\ {[\mathrm{~ms}]} \end{gathered}$	$\begin{aligned} & R_{\mathrm{sh}}{ }^{b} \\ & {[\mathrm{~km}]} \end{aligned}$	$E_{\text {oxp }}{ }^{c}$ ［B］	$\begin{gathered} M_{\mathrm{NS}, \text { baryon }}{ }^{d} \\ {\left[M_{\odot}\right]} \end{gathered}$	$\begin{gathered} M_{\mathrm{NS}, \text { grav }}{ }^{e} \\ {\left[M_{\odot}\right]} \end{gathered}$	$\begin{gathered} M_{\mathrm{ej}} f \\ {\left[10^{-1} M_{\odot}\right]} \end{gathered}$	$\begin{gathered} M_{\mathrm{Ni}} g \\ {\left[10^{-2} M_{\odot}\right]} \end{gathered}$	$\begin{gathered} v_{\text {kick }}^{h} \\ {\left[\mathrm{~km} \mathrm{~s}^{-1}\right]} \end{gathered}$
CO145	491	4220	0.177	1.35	1.24	0.973	3.54	3.20
CO 15	584	4640	0.153	1.36	1.24	1.36	3.39	75.1
CO16	578	3430	0.124	1.42	1.29	1.76	2.90	47.6
CO 18	784	2230	0.120	1.49	1.35	3.07	2.56	36.7
$\mathrm{CO} 20^{i}$	959	1050	0.0524	1.60	1.44	3.95	0.782	10.5

Ejecta mass $\sim O(0.1) M_{\odot}$ ，NS mass $\sim 1.4 M_{\odot}$ ，explosion energy $\sim O\left(10^{50}\right)$ erg， Ni mass $\sim \boldsymbol{O}\left(10^{-2}\right) M_{\odot}$ ；everything compatible w／Tauris＋ 2013
see also Moriya et al．（2017），B．Müller et al．（2018）

Nucleosynthesis yields and light curves

［Yoshida，Suwa，Umeda，Shibata，Takahashi，MNRAS，471， 4275 （2017）］

NB）This is one－zone model based on Arnett（1982）． Detailed radiation transfer calculations will be done．

Implications

＊small kick velocity due to small ejecta mass
＊small eccentricity（e～0．1），compatible with binary pulsars J0737－3039（ $e=0.088$ now and ~ 0.11 at birth of second NS）

Piran \＆Shaviv 05
＊event rate（ $\mathbf{0 . 1 - 1 \%}$ of core－collapse SN）Tauris $+13,15$ ，Drout $+13,14$
＊SN surveys（e．g．，HSC，PTF／ZTF，Pan－STARRS，and LSST）will give constraint on rate

Summary of Part1

＊Ultra－stripped SN might be second explosion in close binary forming double NSs
＊To test this conjecture，we performed
－stellar evolution calculations of bare C／O cores
＊hydrodynamics simulations for neutrino－driven explosions
＊Compatible with parameters explaining observations
～$E_{\text {exp }}=O\left(10^{50}\right)$ erg
Drout＋13，Tauris＋13
${ }^{2} M_{\mathrm{ej}} \sim O(0.1) M_{\odot}$
» $M_{\mathrm{Ni}} \sim O\left(10^{-2}\right) M_{\odot}$
» $M_{N S} \sim 1.2-1.4 M_{\odot}$（gravitational）

iPTF 14gqr／SN2014ft

Fig．5．Comparison of iPTF 14 gqr to theoretical models of ultra－stripped SNe．（A）Bolometric light curve of iPTF 14gqr shown with a composite light curve consisting of ultra－stripped type Ic SN models（28）and early shock－cooling emission（25）．The blue dashed line corresponds to the ${ }^{56} \mathrm{Ni}$ powered peak in the ultra－stripped SN models for $M_{\mathrm{ej}}=0.2 M_{\odot}, M_{\mathrm{Ni}}=0.05 M_{\odot}$ ，and $E_{\mathrm{K}}=2 \times 10^{50}$ ergs；the magenta line corresponds to the early shock－cooling emission；and the

orange line represents the total luminosity from the sum of the two components．Blackbody（BB）luminosities represent the early emission， whereas pseudo－bolometric（ pB ）luminosities are used for the second peak（12）．（B）Comparison of the peak photospheric spectra of iPTF 14 gqr ［the epoch is indicated by the cyan dashed line in（A）］to that of the model in（A）．The overall continuum shape，as well as absorption features of O ।，Ca ॥，Fe ॥，and $\mathrm{Mg} ॥$ ，are reproduced（12）．

De et al．（2018）

Gamma－ray binaries in SNRs

SS433 \＆SNR W50A Dubner et al．（1998）

1FGL J1018．6－5856 \＆SNR G284．3－1．8 Williams et al．（2015）

（c）Image courtesy of NRAO／AUI

2．Minimum NS mass from binary systems

Pulsar number is increasing

Discovery year
compiled data from ATNF pulsar catalog and P．Freire＇s table

NS mass measurements

＊＞2600 pulsars have been found in the Galaxy
＊ 10% in the binary system
\rightarrow mass measurement possible
＊ 15 double NSs so far［Tauris＋2017］

Massive NSs tell us nuclear physics

How about low－mass one？

Double NSs

First asymmetric DNS system

A low－mass NS

＊ $\mathbf{M}_{\text {NS }}=1.174 \mathrm{M}_{\odot}$ ！（ NB, it＇s gravitational mass，baryonic mass is $\sim 1.28 \mathrm{M}_{\odot}$ ）
＊Is it a white dwarf？Maybe no
＊a large eccentricity $(\mathrm{e}=0.112)$ is difficult to explain by slow evolution into a WD
＊How to make it？
» a small iron core of massive star？ （typically $\mathrm{M}_{\mathrm{Fe}} \sim 1.4-1.8 \mathrm{M}_{\odot}$ ）

A path toward a low mass NS？：Ultra－stripped SN

［Suwa＋，MNRAS，454， 3073 （2015）；Yoshida＋，MNRAS，471， 4275 （2017）］

When does a core collapse？

Time till collapse

Modified Chandrasekhar mass

＊Chandrasekhar mass without temperature correction

$$
M_{\mathrm{Ch} 0}\left(Y_{e}\right)=1.46 M_{\odot}\left(\frac{Y_{e}}{0.5}\right)^{2}
$$

＊Chandrasekhar mass with temperature correction

$$
M_{\mathrm{Ch}}(T)=M_{\mathrm{Ch} 0}\left(Y_{e}\right)\left[1+\left(\frac{s_{e}}{\pi Y_{e}}\right)^{2}\right] \begin{aligned}
& s_{e}=0.5 \rho_{10}^{-1 / 3}\left(Y_{e} / 0.42\right)^{2 / 3} T_{\mathrm{MeV}} \\
& \text { Baron+ 1990; Timmes+ } 1996
\end{aligned}
$$

＊To make a small core，low Y_{e} and low entropy are necessary

$M_{c h}$ Vs．$M_{\text {core }}$

［Suwa，Yoshida，Shibata，Umeda，Takahashi，MNRAS，481， 3305 （2018）］

What do simulations solve？

general relativity
Gravity
electro－magnetic interaction
（Magneto－）hydrodynamics
weak interaction
as first－principles as possible． parameter free simulation！

Number of interactions；
pe ${ }^{-}<->n v_{e}, n e^{+}$＜－＞ p_{e}
$v^{ \pm}<->v e^{ \pm}, v A<->v A, v N<->v N$
$v \bar{v}<->$ e－e ${ }^{+}, N N$＜－＞$v \bar{v} N N, v \bar{v}<->v \bar{v}$

Neutrino transfer

Numerical table based on nuclear physics

$$
\begin{array}{r}
\text { e.g.) } 10^{3} \mathrm{~g} \mathrm{~cm}^{-3}<\rho<10^{15} \mathrm{~g} \mathrm{~cm}^{-3} \\
0.1 \mathrm{MeV}<T<100 \mathrm{MeV} \\
0.03<Y_{e}<0.56
\end{array}
$$

strong interaction

Nuclear equation of state

Explosion simulations and NS masses

［Suwa，Yoshida，Shibata，Umeda，Takahashi，MNRAS，481， 3305 （2018）］

Model	Mco（M）	Mzams（M）	$\mathrm{M}_{\mathrm{NS}, \mathrm{b}}\left(\mathrm{M}_{\odot}\right)$	M ${ }_{\text {s }, \mathrm{g}}$（ M_{\circ} ）
CO137	1.37	9.35	1.289	1.174
CO138	1.38	9.4	1.296	1.179
CO139	1.39	9.45	1.302	1.184
CO140	1.4	9.5	1.298	1.181
CO142	1.42	9.6	1.287	1.172
CO144	1.44	9.7	1.319	1.198
CO145	1.45	9.75	1.376	1.245

$M_{\mathrm{NS}, \mathrm{b}}-\mathrm{M}_{\mathrm{NS}, \mathrm{g}}=0.084 \mathrm{M}_{\odot}\left(\mathrm{M}_{\mathrm{Ns}, \mathrm{g}} / \mathrm{M}_{\odot}\right)^{2}$ （Lattimer \＆Prakash 2001）

Discussion

［Suwa，Yoshida，Shibata，Umeda，Takahashi，MNRAS，481， 3305 （2018）］ $\mathbf{M}_{\mathrm{NS}, \mathrm{b}} \mathbf{M}_{\mathrm{NS}, \mathrm{g}}$

$\sim 1.32 \sim 1.20$
～1．28～1．17

$$
\sim 1.37 \quad \sim 1.42 \quad \mathbf{M}_{\text {co }}\left(\mathbf{M}_{\odot}\right)
$$

Summary

＊A low－mass NS of $\mathbf{M N S}, \mathrm{g}^{\mathrm{g}}=\mathbf{1 . 1 7 4 \mathrm { M } _ { \odot } \text { was found }}$
＊Q：Is it possible to make such a low－mass NS with standard modeling of SN？
＊A：Yes，it is．
» The minimum mass is $\sim 1.17 \mathrm{M}_{\odot}$ ．
＊If a new observation finds even lower mass NS，we cannot make it．Something wrong．

