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SN1987A
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What can we extract from neutrino observations?
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Properties of neutron stars 
Binding energy 

important for energetics, done with SN1987A  

 

Mass 

important for discriminating final object (NS or BH) 

Radius 
important for discriminating nuclear equation of state 

Eb ≈ GM2
NS

RNS
= "(1053)erg ( MNS

1.4M⊙ )
2

( RNS
10km )
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Supernova neutrinos: basics
Si burning 
final phase of stellar evolution 

Accretion/Pre-explosion 
neutrino trapping 
neutronization burst 

Cooling 
early phase 

hydrodynamical instabilities, explosion 
mechanism, shock revival, PNS contraction… 

late phase 
neutrino diffusion 

volume cooling phase 
transparent for neutrinos
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lent.) We focus on the detectors with the largest numbers
of identifiable events at late times; for others, see Ref. [3].

Because core collapses are so rare (a few per century
in the Milky Way and its satellites [18–22], the maxi-
mum range for detectable neutrino bursts), it is essential
that we make complete measurements. We may have
only one chance to detect a core collapse with high pre-
cision in all neutrino flavors. The present and planned
huge neutrino detectors are designed primarily to mea-
sure mixing using terrestrial sources, and are not fully op-
timized to detect core collapses. Theory work is needed
now to define expectations, assess readiness, and suggest
improvements. Further, once the neutrino-mixing mis-
sions of these detectors are achieved, it is not clear if all
of them (or any successors) will run long enough to detect
a Milky Way core collapse. Without the full flavor cover-
age of this complement of detectors, our ability to probe
core-collapse physics would be significantly degraded.

It is important to detect neutrinos to the latest pos-
sible times. This will probe PNS physics in detail and
accurately measure the total radiated energy and lepton
number. In nominal models, the physics beyond a few
seconds is dominated by PNS cooling, with increasingly
similar emission in all flavors. By “late-time” emission,
we mean the late PNS-cooling phase, which may begin
well before 10 s, as discussed in Sec. II. After a few tens of
seconds, the PNS becomes neutrino-transparent, leading
to a rapid drop in the fluxes, marking the formation of a
NS. But there are other possible outcomes, including BH
formation, which would sharply truncate the flux, and
which could occur early or late [23–31]. For SN 1987A,
the low statistics beyond 2 s—only 6 of the 19 events, and
all ⌫̄e—make it hard to measure the physics of NS forma-
tion or to test for more exotic outcomes. The fate of the
SN 1987A’s collapsed core is unknown [32–38], showing
the importance of better neutrino measurements.

In this paper, we present the first comprehensive study
of PNS-cooling neutrino signal detection from core col-
lapse, highlighting late-time detection. We improve upon
earlier work [6, 39–46] by providing a complete concep-
tual framework and by calculating results for all fla-
vors, emphasizing spectra, and employing detailed de-
tection physics. Many considerations make this timely:
Super-K is adding dissolved gadolinium, the design of
DUNE is being finalized, and JUNO’s construction is
nearly done. Our goals are to frame and highlight the
physics opportunities of PNS-cooling neutrino detection,
to motivate improvements to experiments, and to en-
courage further simulation and phenomenological work.
Overall, our results—which include new quantitative as-
sessments of flavor coverage, time profiles, spectra, and
uncertainties—show that the late-time frontier is very
promising.

In the following, we begin by reviewing the physics
behind neutrino emission and detection (Sec. II) as well
as the details of the PNS simulation we use (Sec. III).
We then calculate detection signals for all flavors in the
PNS case (Sec. IV), interpret the physics prospects for
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FIG. 1. Schematic illustration of the ⌫̄e emission profile from a
successful core-collapse supernova. The time axis is linear be-
fore 0 s, linear from 0 to 10�1 s with a di↵erent scale, and log-
arithmic after 10�1 s. The di↵erent physical phases—pre-SN
(red), accretion/pre-explosion (blue), and cooling (green)—
are shaded, with key periods noted. The labels on the top axis
show common—but not physically motivated—descriptions.

Phase Physics Opportunities

Pre-SN early warning, progenitor physics

Neutronization flavor mixing, SN distance, new physics

Accretion flavor mixing, SN direction, multi-D e↵ects

Early cooling equation of state, energy loss rates,
PNS radius, di↵usion time, new physics

Late cooling NS vs. BH formation, transparency time,
integrated losses, new physics

TABLE I. Key physics opportunities from detecting super-
nova neutrinos in di↵erent phases.

the PNS and BH cases (Sec. V), and conclude (Sec. VI).

II. OVERVIEW OF CORE COLLAPSE AND
NEUTRINO EMISSION

In this section, we provide a conceptual framework for
the results and discussions that follow. We cover the case
of a successful core-collapse supernova, focusing on its un-
derlying physics and consequent neutrino emission—from
the explosion phase to the PNS cooling phase and then to
other possible late-time emission mechanisms—followed
by discussions of the e↵ects of neutrino mixing and the

Li et al. (2021)
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FIG. 1: Luminosity of the ⌫e, ⌫̄e and ⌫x species for our 27M�
simulation as measured by a distant observer with angular
coordinates close to the plane of the spiral mode in the first
SASI period.

occurs after a period clearly dominated by convective
overturn. On the other hand, the 11.2M� model does
not exhibit any clear evidence of SASI motions but devel-
ops the typical signatures of postshock convective over-
turn in the neutrino-heating layer.

We will usually show neutrino flux characteristics as
they would be seen by a distant observer located at cho-
sen angular coordinates in the coordinate system of the
SN simulation. For any angular position, the neutrino
luminosity reaching the observer is given by the super-
position of the projected fluxes emitted under di↵erent
angles, as described in Appendix A. Therefore, the ob-
servable neutrino fluxes are weighted hemispheric aver-
ages performed such as to include flux projection e↵ects
in the observer direction. The hemispheric averages, as
expected, show smaller time variations than specific an-
gular rays.

As a benchmark example, we show in Fig. 1 the lumi-
nosity for ⌫e, ⌫̄e and ⌫x = ⌫µ, ⌫⌧ , ⌫̄µ or ⌫̄⌧ as a function of
time, as seen by a distant observer with angular coordi-
nates close to the plane of the SASI spiral mode. Large-
amplitude, near-sinusoidal modulations of the neutrino
signal occur in the interval 120–260 ms as imprinted by
SASI. For 260–410 ms this is followed by a convective
phase, followed by another SASI episode on a di↵erent
plane with respect to the previous one. SASI modula-
tions have a similar amplitude for ⌫e and ⌫̄e, while they
are somewhat smaller for ⌫x.

Figure 2 shows the properties of our 27M� simula-
tion, averaged over all directions, to mimic an equivalent
spherically symmetric case. Of course, this average does
not depend on observer-related projection e↵ects. For
the species ⌫e, ⌫̄e and ⌫x, we show the luminosity, average
energy, and shape parameter ↵ of the assumed spectral
Gamma distribution (Appendix B). The fast time varia-
tions here have very small amplitude, i.e., convection and
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FIG. 2: Neutrino flux properties of our 27M� case after in-
tegrating over all directions. For ⌫e, ⌫̄e and ⌫̄x we show the
luminosity, average energy and shape parameter ↵ from 3D
(in black, blue and red respectively) and 2D (in grey) sim-
ulations for comparison. The single-OM IceCube rate r in
the bottom panel is without dead time for a SN distance of
10 kpc. Blue line: based on ⌫̄e flux without flavor oscillations.
Red line: based on ⌫̄x, i.e., assuming full flavor swap ⌫̄e $ ⌫̄e.

SASI activity do not strongly modulate the overall neu-
trino emission parameters—the modulations in various
directions essentially cancel out.
The hierarchy of fluxes and average energies as well as

A&A 517, A80 (2010)
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Fig. 14. Neutrino luminosities and mean energies with respect to time after bounce for the 8.8 M⊙ O-Ne-Mg-core from Nomoto (1983, 1984,
1987) (left panel) and the 10.8 M⊙ (middle panels) and 18 M⊙ (right panel) Fe-core progenitor models from Woosley et al. (2002), measured in
the co-moving reference frame at a distance of 500 km.

in correlation with the more massive PNSs and the hence larger
number of neutrinos emitted. However, the difference between
electron-neutrino and electron-antineutrino luminosities found
in the present investigation is significantly lower than the differ-
ence in Woosley et al. (1994). During the initial explosion phase
until about 300 ms after the onset of the explosion, the electron
antineutrino luminosity is slightly higher than the electron neu-
trino luminosity by about 1 × 1050 erg/s which in our models
explains the electron fraction of Ye > 0.5 of the early explosion
ejecta. After about 900 ms post-bounce, the luminosities can
hardly be distinguished where during the initial neutrino-driven
wind phase after about 1 s after bounce the electron neutrino lu-
minosity becomes higher than the electron antineutrino luminos-
ity by about 1 × 1050 erg/s. This difference reduces again at later
times at about 6 s post-bounce and the electron flavor neutrino
luminosities become more and more similar (see Fig. 14).

Even more different are the values and the behavior of
the mean neutrino energies, see Fig. 14 and compare with
Fig. 2 of Woosley et al. (1994). They found (µ/τ)-neutrino en-
ergies of about 35 MeV which remained constant with respect
to time. Their electron-antineutrino energies increased slightly
from about 20 MeV to 22 MeV where the electron-neutrino en-
ergies decrease from 14 MeV to 12 MeV. This increasing dif-
ference between the electron neutrino and antineutrino spectra
favored neutron-rich material, which was consistent with their
findings of Ye < 0.5 for the material ejected in the neutrino-
driven wind in Woosley et al. (1994). We cannot confirm these
results for the mean neutrino energies nor the evolution of
the spectra. In contrast, all mean neutrino energies decrease
with respect to time for all our models. This is a consequence
of lepton number and energy loss of the central PNS where
the neutrinos diffuse out. The electron (anti)neutrino energies

Page 18 of 25
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highly uncertain  
(Expl. mechanism, accretion, 
muti-D effects, ν-osc., etc.)

less uncertain
(NS mass, temperature)

Late cooling phase is simpler and more understandable than early phase

5

Strategy: 
• Extracting NS parameters from late cooling phase with small uncertainties  

 (→ 0-th approx. of early phase neutrinos) 
• Exploring explosion mechanism etc. from variation component of early phase 

(diff. from 0-th approx.) 
Understanding late cooling phase is essential !

Tamborra+ 2014

Fischer+ 2010
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nuLC collaboration
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Kyoto U.: M. Mori, R. Wendell, Y. Ashida (Experiment)

NIT, Numazu: K. Sumiyoshi (Theory)

Kyushu U.: K. Nakazato (Theory)

Okayama U.: Y. Koshio, M. Harada, F. Nakanishi (Experiment)

Riken: A. Harada (Theory) 
U. Tokyo: Y. Suwa (Theory)

“nuLC” 
=neutrino Light Curve

Papers: 
1. Suwa, Sumiyoshi, Nakazato, Takahira, Koshio, Mori, Wendell, ApJ, 881, 139 (2019) 
2. Suwa, Harada, Nakazato, Sumiyoshi, PTEP, 2021, 013E01 (2021) 
3. Mori, Suwa, Nakazato, Sumiyoshi, Harada, Harada, Koshio, Wendell, PTEP, 2021, 023E01 (2021) 
4. Nakazato, Nakanishi, Harada, Koshio, YS, Sumiyoshi, Harada, Mori, Wendell, arXiv:2108.03009
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Event rate evolution

Event rate evolution is calculated up to 20 s 
with neutrino luminosity and spectrum  
with full volume of SK’s inner tank (32.5 kton) 
from an SN at 10 kpc 

only with inverse beta decay ( )  

Event rate is not related to progenitor mass, but PNS mass

ν̄e + p → e+ + n

7

Observing SN Neutrinos 7

Table 1. Event numbers for a supernova at 10kpc.

Model MZAMS trevive MNS,g Ntot N(0  t  0.3) N(0.3  t  1) N(1  t  10) N(10  t  20) N(20  t)

(M�) (ms) (M�)

N13t100 13 100 1.39 3067.2 1210.5 (39.5%) 475.9 (15.5%) 1087.2 (35.4%) 293.6 ( 9.6%) — ( — )

N13t200 13 200 1.46 3676.6 1672.8 (45.5%) 507.6 (13.8%) 1165.2 (31.7%) 331.1 ( 9.0%) — ( — )

N13t300 13 300 1.50 4246.4 1807.2 (42.6%) 895.2 (21.1%) 1192.4 (28.1%) 351.7 ( 8.3%) — ( — )

N20t100 20 100 1.36 2890.6 1089.7 (37.7%) 468.7 (16.2%) 1052.7 (36.4%) 279.4 ( 9.7%) — ( — )

N20t200 20 200 1.42 3342.3 1437.8 (43.0%) 481.5 (14.4%) 1113.4 (33.3%) 309.6 ( 9.3%) — ( — )

N20t300 20 300 1.45 3669.8 1525.7 (41.6%) 695.1 (18.9%) 1126.7 (30.7%) 322.4 ( 8.8%) — ( — )

N30t100 30 100 1.49 3807.4 1649.9 (43.3%) 550.1 (14.4%) 1252.6 (32.9%) 354.8 ( 9.3%) — ( — )

N30t200 30 200 1.66 5551.4 2952.4 (53.2%) 691.9 (12.5%) 1453.5 (26.2%) 453.6 ( 8.2%) — ( — )

N30t300 30 300 1.78 7332.8 3363.4 (45.9%) 1919.6 (26.2%) 1533.4 (20.9%) 516.4 ( 7.0%) — ( — )

N50t100 50 100 1.52 3788.9 1542.3 (40.7%) 553.2 (14.6%) 1314.8 (34.7%) 378.5 (10.0%) — ( — )

N50t200 50 200 1.63 4883.1 2399.6 (49.1%) 616.1 (12.6%) 1428.4 (29.3%) 439.0 ( 9.0%) — ( — )

N50t300 50 300 1.69 5952.3 2657.4 (44.6%) 1352.7 (22.7%) 1466.4 (24.6%) 475.9 ( 8.0%) — ( — )

147S — — 1.35 2205.4 — ( — ) 434.3 (19.7%) 1278.5 (58.0%) 345.1 (15.6%) 147.5 ( 6.7%)

M2H — — 2.05 8032.8 — ( — ) 1554.6 (19.4%) 2998.7 (37.3%) 1268.3 (15.8%) 2211.2 (27.5%)

M1H — — 1.20 2390.7 — ( — ) 825.5 (34.5%) 1173.9 (49.1%) 288.0 (12.0%) 103.3 ( 4.3%)

M2L — — 2.05 4734.9 — ( — ) 674.5 (14.2%) 2008.3 (42.4%) 867.1 (18.3%) 1185.0 (25.0%)

M1L — — 1.20 1382.8 — ( — ) 376.5 (27.2%) 824.7 (59.6%) 148.4 (10.7%) 33.2 ( 2.4%)

Note— MZAMS is the zero-age main sequence mass of the progenitor model. trevive is the shock revival time. MNS,g is the
gravitational mass of PNS. These three numbers are taken from Nakazato et al. (2013). Ntot is the total number of neutrinos.
N(tmin  t  tmax) gives event numbers between tmin and tmax, which are in seconds. The number in brackets are percentage
by the total number. For models N??t???, since the data for t < 20s is only available, the event number afterward is not given.

For models M??, since the only PNS cooling phase is calculated, the event number before 0.3 s is not given.
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Figure 4. Expected number of IBD events as a function of
time after bounce in the early phase for the supernova at 10
kpc in the 13, 20, 30, 50M� models with red, blue, green
and purple lines, respectively (Z = 0.02, trevive = 300 ms).
The error bar is given by the square root of the event rate
(Poisson distribution).

When the event rate of the neutrinos drops depends
on the shock revival time, which is shown in Fig. 5. If
the shock wave stalls until trevive = 300 ms, the event
rates stay at a certain level with continuing accretion.
In the case of trevive = 100 ms or 200 ms, the event rates
rapidly decrease because the accretion ends due to the

shock revival in our model. By the transition from the
accretion phase to the di↵usion phase, we see the drop
of event rates at the timing of transition.
We expect to detect such a transition of luminosity

(event number) from observation when the shock wave
revives and the accretion halts from the light curve of
neutrinos. Although the current set of database is based
on the 1D core-collapse dynamics and PNS cooling mod-
els, we envisage occurrence of the transition even under
more complicated situations as seen in modern 2D/3D
simulations. We remark that one expects more varia-
tions such as oscillating event numbers in the 2D/3D
simulations through hydrodynamical instabilities and
non-uniform accretion with deformed shock geometry
(e.g., Tamborra et al. 2013; Takiwaki & Kotake 2018).
Our analysis here is the basis to extract such hydro-
dynamical complications by setting the standard curve
obtained from spherical dynamics.
In the late phase of the time evolution for 20 sec, the

neutrino signals reflect the properties of cooling PNSs.
Gradual decrease of the neutrino luminosity originates
from the di↵usion of neutrinos from the central part.
The luminosity depends mainly on the mass of PNS
born in the collapse of the progenitor. In Fig. 6, the
time profile of expected number of events is shown for
the progenitor models of 13–50M� with trevive = 300 ms.

8 nuLC collab.
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Figure 5. Same as Fig. 4, but for the expected number of
IBD events as a function of time after bounce in the early
phase for the supernova at 10 kpc in the 50M� model (Z =
0.02) for trevive = 100, 200, 300 ms with dotted, dashed and
solid line, respectively.

The slope of time profiles are similar among 4 models
and its amplitude depends on the PNS mass. The num-
ber of events is largest for 30M� model having the grav-
itational mass of 1.78M� for the remnant neutron star
and smallest for 20M� model with 1.45M�.
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Figure 6. Expected number of IBD events as a function
of time after bounce in the late phase for the supernova at
10 kpc in the 13, 20, 30, 50M� models with dashed, dotted,
dash-dotted and solid line, respectively (Z = 0.02, trevive =
300 ms).

The number of events depends on the shock revival
time, which determines the remnant mass through the
cease of accretion, for the same progenitor model. In
Fig. 7, we see that the expected number of events de-
pends on the shock revival time for the 50M� model.
The di↵erence among three cases comes from di↵er-
ent PNS masses of 1.52M�, 1.63M� and 1.69M� for
trevive =100, 200, 300 ms, respectively. The case of

largest PNS mass leads to the largest number of events
because of the largest energy release of gravitational en-
ergy. Therefore, the late phase of light curve of neutrinos
is important to extract the properties of compact object.
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Figure 7. Expected number of IBD events as a function
of time after bounce in the late phase for the supernova at
10 kpc in the 50M� model (Z = 0.02) for trevive =100, 200,
300 ms with dotted, dashed and solid line, respectively.

Note that the profiles of the remnant is in princi-
ple determined by the complicated explosion mechanism
through the collapse and bounce of progenitors. The
shock revival time is in this sense a simplified guide to
construct a series of PNSs in the 1D explosion mod-
els. In order to extract the remnant properties from the
observations, one needs to carefully explore unknown
parameters of remnant in the time profile of event num-
ber. To distinguish various di↵erences, we explore fur-
ther longer time in the late phase in later sections.
In Fig. 8, we show the expected total number of IBD

events as a function of the distance to the source of
supernova neutrino burst. The total number is obtained
by the time integral of the event rates up to 20 s at
the end time in database. Each line corresponds to the
total number for a model (progenitor mass, metallicity,
shock revival time) in the supernova neutrino data base.
The total number typically amounts to ⇠ 4⇥103 events
for the distance of 10 kpc. Its magnitude ranges by
a factor of 5 depending on the remnant mass coming
from the progenitor. Among the models, the largest
case is the 30M� model with trevive = 300 ms. The
smallest case is the 20M� model with trevive = 100 ms.
The corresponding PNS masses range from 1.36M� to
1.78M� in the database.

4.2. Results for new PNS cooling models

We further investigate the event rates of neutrino
bursts using the PNS models in §2.2 to determine the

MPNS= 
1.78M⊙ 
1.69M⊙ 
1.50M⊙ 
1.45M⊙

[Suwa, Sumiyoshi, Nakazato, Takahira, Koshio, Mori, Wendell, ApJ, 881, 139 (2019)]
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PNS is assumed as Lane-Emden solution with n=1 

 

Neutrino transport with diffusion approximation 
,    

Neutrino luminosity with given entropy 

 

Time evolution  

kBT(r) = 30 MeV ( MPNS
1.4M⊙ )

2/3

( RPNS
10km )

−2

( s
1kB baryon−1 ) ( sin(r/α)

r/α )
2/3

∂ε
∂t

+ 1
r2

∂
∂r (r2F) = 0 F = − c

3
1

⟨κt⟩
∂ε
∂r

L = 4πR2
ν F = 1.2 × 1050 erg s−1 ( MPNS

1.4M⊙ )
4/5

( RPNS
10 km )

−6/5

( gβ
3 )

−4/5

( s
1kB baryon−1 )

12/5

dEth
dt

= − 6L

Simplified analytic model
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[Suwa, Harada, Nakazato, Sumiyoshi, PTEP, 2021, 0130E01 (2021)]

MPNS: PNS mass 
RPNS: PNS radius 
s: entropy 
α=RPNS/π

ε: energy density of neutrinos 
F: flux of neutrinos 
κt: opacity

g: surface density correction (~0.1) 
β: opacity boost by coherent scattering 
Eth: total thermal energy of PNS
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the total energy emitted by all flavors of neutrinos Etot. Note that the boosting factor

β is time-dependent because the heavy nuclei in the crust are absent for the early phase

and appear later once the temperature decreases below the Coulomb energy of the lattice

structure [11]. Therefore, we propose a two-component model to reproduce numerical models

of neutrino-light curves. The first component represents the early time without coherent

scattering (β = 3) and the second component represents the late time with the opacity boost

by the coherent scattering (β ≫ 1). The neutrino luminosity is given by the total luminosity

of two components, L1 + L2, and the average energy is estimated by the harmonic mean,
L1 + L2

L1/ ⟨E1⟩+ L2/ ⟨E2⟩
, where Li and ⟨Ei⟩ give the luminosity and average energy of i-th

components.
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Fig. 1 Luminosity (red) and average energy (blue) evolution for a flavor of neutrinos. The

first component is a model with β = 3 and Etot = 4× 1052 erg and the second component

is a model with β = 40 and Etot = 1× 1053 erg. For both components, MPNS = 1.5M⊙,

RPNS = 12 km, and g = 0.04. Grey lines are luminosity and average energy of ν̄e of the

model 147S in Ref. [12].

Figure 1 shows a comparison of the analytic model given here (colored lines) and the

numerical model 147S presented in Ref. [12] (grey lines), which is a numerical solution of

PNS cooling calculation that solves neutrino transfer equation with a nuclear-physics based

equation of state as well as the general relativistic hydrostatic equation. For the analytic

model, we employ the early-time solution (dashed lines) and the late-time solution (dotted

lines). The early-time solution indicates the cooling curve without the solid crust composed

of heavy nuclei (i.e., low β), while the late-time solution includes it (i.e., high β). The solid

red line is the total luminosity of the early-time and the late-time solutions, and the solid blue

line is the harmonic mean of the two average energies. The general profiles of the detailed

numerical solutions are reproduced well by the simple analytic solutions presented in this

paper. In the very early phase (t ! 1 s), the PNS contracts so that the gravitational energy

8/12

numerical 
(Suwa+ 2019)

analytic 
w/ 2 components 
• early: free nucleons 
• late: heavy nuclei

Solve neutrino transport eq. analytically  
Neutrino luminosity  
  

Neutrino average energy   
  

two-component model  
early cooling phase (β=3) 
late cooling phase (β=O(10))

L = 3.3 × 1051 erg s−1 ( MPNS
1.4M⊙ )

6

( RPNS
10 km )

−6

( gβ
3 )

4

( t + t0
100 s )

−6

⟨Eν⟩ = 16 MeV ( MPNS
1.4M⊙ )

3/2

( RPNS
10 km )

−2

( gβ
3 ) ( t + t0

100 s )
−3/2

Analytic solutions
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[Suwa, Harada, Nakazato, Sumiyoshi, PTEP, 2021, 0130E01 (2021)]
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Observables with analytic solutions

Event rate w/ SK from SN @10kpc 
 

Positron average energy 
 

PNS radius  
 

Consistency relation of analytic model 

ℛ ≈ 720 s−1 ( Mdet
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15/2
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RPNS = 10 km ( ℛ
720 s−1 )

1/2

( Ee+
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( D
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ℛ ··ℛ
·ℛ2

= 17
15
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Summary

Neutrinos from the next Galactic SN are studied 

Take home messages 
O(103) ν will be detected 
Observable time scale is O(10)s, even > 100s 
Simple analytic expressions of neutrino signals are available 

Next step 
Spectral information in analytic solutions 
Complete data analysis pipeline 

11


