⁵⁶Ni as probes for supernova interior

Yudai Suwa (U. of Tokyo & YITP, Kyoto U.)

YS, Tominaga, MNRAS, 451, 282 (2015) YS, Tominaga, Maeda, MNRAS, 483, 3607 (2019) Sawada, YS, ApJ, 908, 6 (2021) Sawada, Kashiyama, YS, to appear soon

* Observational findings

* Theoretical understandings

Observational findings

Types of supernovae

9/12/2021

Yudai Suwa (UT & YITP)

4/30

brightness

56**CO** 56Ni

UV, optical, IR

time

56 N

* Z=28, N=28, A=56 \rightarrow Y_e=0.5

- * ⁵⁶Ni is mainly produced in supernova (SN) ejecta
- T>5x10⁹ K

* ⁵⁶Ni is produced if Nuclear Statistical Equilibrium (NSE) is achieved, typically

* Enough amount of ⁵⁶Ni needs to be produced to explain SN LC brightness

Nuclear Statistical Equilibrium (NSE)

NSE: chemical equilibrium of mixture of nucleons (n, p) and nuclei Seitenzahl+ 08 (ρ =10⁷ g cm⁻³、 T=3.5x10⁹K) $\rho = 10^7 \text{ g cm}^{-3}, Y_e = 0.5$

9/12/2021

⁵⁶Ni is major element in SN ejecta for $Y_{\rm e} \gtrsim 0.5$

-	
0.58 0.6	(

Yudai Suwa (UT & YITP)

8/30

Yudai Suwa (UT & YITP)

9/12/2021

⁵⁶Ni distribution

9/12/2021

Maximum brightness of SE-SN

Yudai Suwa (UT & YITP)

Sollerman+ (2021)

Summary of observational findings

- * ⁵⁶Ni is energy source of SN light curves
- * Two different methods become consistent
 - peak luminosity
 - tail emission
- * M_{56Ni} for SE-SN is larger than type-II SN
 - fallback induced by massive envelope?
 - different explosion properties?
- * Typical $M_{56\rm Ni} \gtrsim 0.04 M_{\odot}$
 - depending on SN types
 - |c-BL > |c > |b/||b > ||

Theoretical understandings

Current paradigm: neutrino-heating mechanism

- * Neutrinos transfer energy
 - Most of them are just escaping from the system (cooling)
 - Part of them are absorbed in outer layer (heating)

* Heating overwhelms cooling in heating (gain) region

9/12/2021

Exploding numbers of exploding models

- * Many papers reported successful explosions by neutrino heating in the past ~15 years
- * Breakthroughs;
 - Buras+ 2006: 1st neutrino driven explosion in 2D
 - Marek & Janka (2009): long-term (700ms) 2D sim.
 - Takiwaki+ (2012): 1st neutrino driven explosion in 3D
- * So far, ~10 independent codes that solve multienergy neutrino-radiation hydrodynamics in multi-D, are present
 - 4 codes are compared in O'Connor+ 2018 as well as 2 1D codes

9/12/2021

At ADS, search with "core-collapse supernova hydrodynamics simulations"

Lentz+ (2015)

Recent simulations with explosion energy ~10⁵¹ erg

Burrows & Vartanyan (2021) [2D, systematic]

Bollig+ (2021) [3D, 1 model]

19/30

 $\dot{E} = \mathcal{O}(10^{50}) \text{ erg s}^{-1}$

Where is 56Ni produced?

Explosion and nucleosynthesis **Explosive nucleosynthesis** outflow from PNS

Janka (2012)

Condition of ⁵⁶Ni production in explosive nucleosynthesis

* In radiation dominant gas,

=>
$$T(r) = 1.33 \times 10^{10} \,\mathrm{K} \left(\frac{E}{10^{51} \,\mathrm{erg}}\right)^{1/4} \left(\frac{r_s}{10^8 \,\mathrm{cm}}\right)^{-3/4}$$

* For NSE (T>5x10⁹K),

 $E = \frac{4\pi}{3} r_s^3 a T^4$

$$r_s < 3700 \,\mathrm{km} \left(\frac{E}{10^{51} \,\mathrm{erg}}\right)^{1/3}$$

Large energy deep inside is necessary $=>\dot{E}$ needs to be large! *

[Suwa, Tominaga, Maeda, MNRAS, 483, 3607 (2019)]

- * 1D Lagrangian hydro. sim.
- * heating/cooling by v taken into account with light bulb
- ***** 12, 15, 20, 25 M_☉
- * Analytic model is provided

* M_{56Ni} is correlated to \dot{E}

* Compact stars produce larger M_{56Ni}

* $\dot{E} \gtrsim 10^{51} \,\mathrm{erg \, s^{-1}}$ is necessary for $M_{56\rm Ni} \approx 0.07 M_{\odot}$ (see also Sawada & Maeda 2019)

⁵⁶Ni production in neutrino-driven wind

[Sawada, Suwa, ApJ, 908, 6 (2021)]

- * Construct model of neutrino-driven wind powered by mass accretion onto **PNS**
 - Steady-state solution of neutrino-driven wind (e.g., Otsuki+ 2000, Wanajo+ 2001, Fujibayashi+ 2015)
 - M with progenitor models from Sukhbold+ (2018)
 - L_{ν} and R_{gain} are estimated based on hydrodynamics simulations

⁵⁶Ni production in neutrino-driven wind

[Sawada, Suwa, ApJ, 908, 6 (2021)]

- * $M_{56\mathrm{Ni}} \lesssim 0.067 M_{\odot}$
 - initial PNS mass: $1.4M_{\odot}$
 - total accretion mass: $< 0.7 M_{\odot}$
- * Mass is converged in 2 s
 - consistent with neutrino-rad. hydro. simulation (Wanajo+ 2018)
- Difficult to provide enough ⁵⁶Ni with neutrino-driven wind

24/30

⁵⁶Ni problem is ubiquitous

* The ⁵⁶Ni problem exists besides canonical supernova

- * Hypernova a.k.a. SN Ic-BL
- * Ultrastripped-envelope SN

[Suwa, Tominaga, MNRAS, 451, 282 (2015)]

Nomoto+ (2006)

It is compatible with prompt emission of GRBs, but is incompatible with late activity like X-ray flares during afterglow...

⁵⁶Ni problem in ultra-stripped supernova

First Type Ib/c SN

MS star - neutron star (NS)

Double NS system

 $M_{\rm ej} = 0.2 M_{\odot}, E_{\rm K} = 2 \times 10^{50} {\rm erg},$ $M_{56{\rm Ni}} = 0.05 M_{\odot}$

Neutrino-driven explosion and nucleosynthesis in USSN

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 454, 3073 (2015)] [Yoshida, Suwa, Umeda, Shibata, Takahashi, MNRAS, 471, 4275 (2017)]

9/12/2021

Entropy [k _B /baryon]	v _r [10 ⁴ km/s]	Entropy [k _B /baryon]	$v_{r} [10^{4} \text{ km/s}]$									
6 8 10 12 14 16	-1.5 -1 -0.5 0 0.5 1 1.5	6 8 10 12 14 16	-1.5 -1 -0.5 0 0.5 1 1.5	Model	t_{final}^{a} (ms)	$R_{\rm sh}{}^b$ (km)	E_{\exp}^{c} (B)	$M_{\rm NS, \ baryon}^{d}$ (M $_{\odot}$)	$M_{\rm NS, grav}^{e}$ (M $_{\odot}$)	$M_{\rm ej}^{f}$ (10 ⁻¹ M _O)	$M_{\rm Ni}{}^g$ (10 ⁻² M _O)	$v_{\rm kick}{}^h$ (km s ⁻¹)
	T= 100 ms		T= 200 ms	00145	401	4000	0.177	1.25		× 0/		
				CO145	491 594	4220	0.177	1.35	1.24	0.973	3.54	3.20
				CO15 CO16	578	4040	0.135	1.30	1.24	1.30	3.39 2.00	/ 5.1
5			2218	CO18	784	2230	0.124	1.42	1.29	3.07	2.90	47.0
				$CO20^i$	959	1050	0.0524	1.60	1.44	3.95	0.782	10.5
500 400 300 200 100 0	100 200 300 400 500	500 400 300 200 100 0	100 200 300 400 500									
r [km]	r [km]	r [km]	r [km]			10	UKS C	JK				
Entropy [k _B /baryon]	v _r [10 ⁴ km/s]	Entropy [k _B /baryon]	v _r [10 ⁴ km/s]									
	-1.5 -1 -0.5 0 0.5 1 1.5		-1.5 -1 -0.5 0 0.5 1 1.5	Si W W M Co	ince ince ince pe hich Ni<0	this a rforr Ye is .01N ined	amou ned c also lo w/ co	int is ba letailed taken i	ised or I nucle nto ac	n tempe osynth count, a ol. ener	erature esis stu and fou ., Ni pro	alon Jdy ir Jnd t
1000 800 600 400 200 0 r [km]	200 400 600 800 1000 r [km]	2000 1500 1000 500 0 r [km]	500 1000 1500 2000 r [km]	U	SSIN	IS MO	ore pl	meido	atic			

[Sawada, Kashiyama, Suwa, to appear soon]

deleted

- * ⁵⁶Ni is the most important element in SN
- * ⁵⁶Ni provides thermal condition deep inside SN engine
- * To produce enough amount of ⁵⁶Ni, we need rapid growth of the explosion energy as $\dot{E} \gtrsim 10^{51} \, {\rm erg \ s^{-1}}$, which is much larger than numerical results (Ni problem)
- * Neutrino-driven wind is difficult to solve Ni problem
- * Not only canonical SN, other types also have Ni problem
- We may need more efficient energy transfer mechanism, or additional energy source

