中性子星の磁場はどう決まっているのか? を クラスト形成時間から考えてみる

諏訪雄大

(東大総合文化 & 京大基研)

Back to NS-workshop in 20173-25 November 2017): Overview · (Indico)

Timetable(with slide)

Registration

Participant List

第7回DTAシンポジウム: ~中性子星の観測と理論~ 研究活性化ワークショップ 2017

多くの皆様にご参加いただき、ありがとうございました!

Back to NS workshop in 2017

6/9/2023

	() Asia/Tokyo	- 🕜 English -	E Login
活性化ワークシ	ヨップ2	017	
e)			
25/11 All days			>
Print PDF	Full screen	Detailed view	Filter
		Session legend	
Session 3			×
			祖谷元
			13:00 - 13:10
			諏訪雄大 🥝
			13:10 - 13:50
ield in magnetars			藤澤 幸太郎 🥝
			13:50 - 14:15
gnetar magnetosphere			小嶌康史 🥝
			14:15 - 14:40
関する偏光予想			矢田部 彰宏 ❷
			14:40 - 15:05

Yudai Suwa (UT&YITP) @ NS Workshop 2023 (Kyoto)

Back to NS workshop in 2017

Agenda

Observable of NS:

- 1. mass
- 2. spin
- 3. magnetic fields

Can we calculate them w/ supernova simulations?

23/11/2017

諏訪雄大 @ ~中性子星の観測と理論~研究活性化ワークショップ

Back to NS workshop in 2017

Summary

Can we calculate them w/ supernova simulations?

1. mass

- yes w/ stellar evolution
- Si/Si-O interface at collapse is important

2. spin

- probably yes w/ stellar evolution
- post-explosion evolution is important

3. magnetic fields

- no, origin is highly uncertain
- crust formation might be important

23/11/2017

6/9/2023

諏訪雄大 @ ~中性子星の観測と理論~研究活性化ワークショップ

Yudai Suwa (UT&YITP) @ NS Workshop 2023 (Kyoto)

Magnetic fields of NSs

Yudai Suwa (UT&YITP) @ NS Workshop 2023 (Kyoto)

Origin of dichotomy between magnetars and radio pulsars

* Two different physical processes to sustain magnetic fields

- magnetic induction by electric current
- remanent (residual) magnetization left behind after magnetic-field decay

Magnetar *

- strong internal current ?
- dynamo ? fossil ?

Radio pulsar *

remanent fields in crust of NS?

Origins of magnetic fields of planets & satellites

	B (G)	origin
Mercury	2x10-3	?
Venus	<10-4	remanence
Earth	0.5	core dynamo
Moon	10 ⁻⁵ -10 ⁻³ (patchy)	remanence
Mars	10 ⁻⁵ -1 (patchy)	strong remanence
Jupiter	4.2	dynamo
Saturn	0.2	dynamo

Stevenson (2010)

	B (G)	origin
Uranus	0.2	dynamo
Neptune	0.2	dynamo
Ιο	<10-2	complex
Europa	10-3	Induction response
Ganymede	2x10-2	likely dynan
Callisto	4x10-5	Induction responce
Titan	<10-3	need more da

Lunar crust formation

6/9/2023

https://www.planetary.org/space-images/lunar-crust-formation

Neutron stars also have crust

A NEUTRON STAR: SURFACE and INTERIOR

Yudai Suwa (UT&YITP) @ NS Workshop 2023 (Kyoto)

6/9/2023

Obertelli and Sagawa (2021)

Crust formation

* NS crust forms as it cools down by neutrino emission. WHEN? * Is building up of magnetic fields faster than crust formation?

Crust formation = crystallization = phase transition

gas

cool down

https://laney.edu/huisunkim/wp-content/uploads/sites/407/2017/08/30A-Ch12-Liquids-Solids-Intermol-Forces.pdf

phase transition liquid

solid

cool down

Numerical simulation of (close-to) crust formation of NSs

Suwa (2014)

6/9/2023

Yudai Suwa (UT&YITP) @ NS Workshop 2023 (Kyoto)

Nakazato+ (2018)

What do we need?

- * Long-term simulations of PNS cooling (Nakazato+ 2013, Mori+ 2021, etc.)
 - but, need a better neutrino transfer than diffusion-based/truncated momentum methods approx. methods have considerable errors around decoupling

 - S_N? Monte-Carlo? variable Eddington method? any suggestion?
- * Multicomponent nuclear EOS (Hempel+ 2010, Furusawa+ 2011, etc.)
- phase transition btw. uniform and non-uniform matter? nuclear pasta? * Better understanding of crust formation
- (Sonoda+ 2007, etc.)
 - (Q)MD simulations? any other modern way?

Simulations crush due to emergence of heavy nuclei before crust formation

Finding a solution of neutrino transport fails \rightarrow change the mind

Yudai Suwa (UT&YITP) @ NS Workshop 2023 (Kyoto)

coherent scattering of neutrinos

Analytic solutions for neutrino emission

[Suwa, Harada, Nakazato, Sumiyoshi, PTEP, 2021, 0130E01 (2021)]

- * Solve neutrino transport eq. analytically
 - Neutrino luminosity

 $L = 3.3 \times 10^{51} \,\mathrm{erg}\,\mathrm{s}^{-1} \left(\frac{M_{\rm PNS}}{1.4M_{\odot}}\right)^{6} \left(\frac{R_{\rm PNS}}{10\,\mathrm{km}}\right)^{-6} \left(\frac{g\beta}{3}\right)^{4} \left(\frac{t+t_{0}}{100\,\mathrm{s}}\right)^{-6}$

Neutrino average energy

 $\left\langle E_{\nu} \right\rangle = 16 \,\mathrm{MeV}\left(\frac{M_{\mathrm{PNS}}}{1.4M_{\odot}}\right)^{3/2} \left(\frac{R_{\mathrm{PNS}}}{10 \,\mathrm{km}}\right)^{-2} \left(\frac{g\beta}{3}\right) \left(\frac{t+t_{0}}{100 \,\mathrm{s}}\right)^{-3/2}$

- two-component model
 - early cooling phase (β =3, free p and n)
 - **late cooling phase** (β =O(10), heavy nuclei)

Evolution in p-T plane

Yudai Suwa (UT&YITP) @ NS Workshop 2023 (Kyoto)

NS crust forms at ~100 s after SN

Relaxation time scales

- * Turbulent B-fields would be relaxed to some ec **configuration** (Braithwaite & Cantiello 2013)
 - $t_{equil} \sim t_{Alfven}^2/P \sim 10 \text{ s} (B_{equil}/10^{15}\text{G})^{-2}(P/1ms)^{-1}$

	B (G)	P (ms)
magnetar	10 ¹⁵	10 ³
ms-magnetar	10 ¹⁵	1
pulsar	10 ¹²	30
CCO	10 ¹⁰	300

- * An idea
 - Magnetars have strong magnetic fields, sustained by internal currents originating from dynamos
 - Radio pulsars have weaker magnetic fields, which are *remnant fields embedded in the* neutron-star crust
- * Impacts of crust formation
 - If crust forms earlier than relaxation \rightarrow radio pulsars
 - Two different timescales, crust formation and relaxation of turbulent motion
 - If crust forms later than relaxation \rightarrow magnetars

* Origin of dichotomy of magnetic fields in neutron stars remains puzzling

